open-nomad/scheduler/system_sched.go
2018-03-26 17:54:46 -07:00

347 lines
10 KiB
Go

package scheduler
import (
"fmt"
"log"
memdb "github.com/hashicorp/go-memdb"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// maxSystemScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for system
// jobs.
maxSystemScheduleAttempts = 5
)
// SystemScheduler is used for 'system' jobs. This scheduler is
// designed for services that should be run on every client.
type SystemScheduler struct {
logger *log.Logger
state State
planner Planner
eval *structs.Evaluation
job *structs.Job
plan *structs.Plan
planResult *structs.PlanResult
ctx *EvalContext
stack *SystemStack
nodes []*structs.Node
nodesByDC map[string]int
limitReached bool
nextEval *structs.Evaluation
failedTGAllocs map[string]*structs.AllocMetric
queuedAllocs map[string]int
}
// NewSystemScheduler is a factory function to instantiate a new system
// scheduler.
func NewSystemScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
return &SystemScheduler{
logger: logger,
state: state,
planner: planner,
}
}
// Process is used to handle a single evaluation.
func (s *SystemScheduler) Process(eval *structs.Evaluation) error {
// Store the evaluation
s.eval = eval
// Verify the evaluation trigger reason is understood
switch eval.TriggeredBy {
case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate,
structs.EvalTriggerJobDeregister, structs.EvalTriggerRollingUpdate,
structs.EvalTriggerDeploymentWatcher, structs.EvalTriggerNodeDrain:
default:
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
return setStatus(s.logger, s.planner, s.eval, s.nextEval, nil, s.failedTGAllocs, structs.EvalStatusFailed, desc,
s.queuedAllocs, "")
}
// Retry up to the maxSystemScheduleAttempts and reset if progress is made.
progress := func() bool { return progressMade(s.planResult) }
if err := retryMax(maxSystemScheduleAttempts, s.process, progress); err != nil {
if statusErr, ok := err.(*SetStatusError); ok {
return setStatus(s.logger, s.planner, s.eval, s.nextEval, nil, s.failedTGAllocs, statusErr.EvalStatus, err.Error(),
s.queuedAllocs, "")
}
return err
}
// Update the status to complete
return setStatus(s.logger, s.planner, s.eval, s.nextEval, nil, s.failedTGAllocs, structs.EvalStatusComplete, "",
s.queuedAllocs, "")
}
// process is wrapped in retryMax to iteratively run the handler until we have no
// further work or we've made the maximum number of attempts.
func (s *SystemScheduler) process() (bool, error) {
// Lookup the Job by ID
var err error
ws := memdb.NewWatchSet()
s.job, err = s.state.JobByID(ws, s.eval.Namespace, s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job '%s': %v",
s.eval.JobID, err)
}
numTaskGroups := 0
if !s.job.Stopped() {
numTaskGroups = len(s.job.TaskGroups)
}
s.queuedAllocs = make(map[string]int, numTaskGroups)
// Get the ready nodes in the required datacenters
if !s.job.Stopped() {
s.nodes, s.nodesByDC, err = readyNodesInDCs(s.state, s.job.Datacenters)
if err != nil {
return false, fmt.Errorf("failed to get ready nodes: %v", err)
}
}
// Create a plan
s.plan = s.eval.MakePlan(s.job)
// Reset the failed allocations
s.failedTGAllocs = nil
// Create an evaluation context
s.ctx = NewEvalContext(s.state, s.plan, s.logger)
// Construct the placement stack
s.stack = NewSystemStack(s.ctx)
if !s.job.Stopped() {
s.stack.SetJob(s.job)
}
// Compute the target job allocations
if err := s.computeJobAllocs(); err != nil {
s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
return false, err
}
// If the plan is a no-op, we can bail. If AnnotatePlan is set submit the plan
// anyways to get the annotations.
if s.plan.IsNoOp() && !s.eval.AnnotatePlan {
return true, nil
}
// If the limit of placements was reached we need to create an evaluation
// to pickup from here after the stagger period.
if s.limitReached && s.nextEval == nil {
s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger)
if err := s.planner.CreateEval(s.nextEval); err != nil {
s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", s.eval, err)
return false, err
}
s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID)
}
// Submit the plan
result, newState, err := s.planner.SubmitPlan(s.plan)
s.planResult = result
if err != nil {
return false, err
}
// Decrement the number of allocations pending per task group based on the
// number of allocations successfully placed
adjustQueuedAllocations(s.logger, result, s.queuedAllocs)
// If we got a state refresh, try again since we have stale data
if newState != nil {
s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
s.state = newState
return false, nil
}
// Try again if the plan was not fully committed, potential conflict
fullCommit, expected, actual := result.FullCommit(s.plan)
if !fullCommit {
s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
s.eval, expected, actual)
return false, nil
}
// Success!
return true, nil
}
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *SystemScheduler) computeJobAllocs() error {
// Lookup the allocations by JobID
ws := memdb.NewWatchSet()
allocs, err := s.state.AllocsByJob(ws, s.eval.Namespace, s.eval.JobID, true)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
s.eval.JobID, err)
}
// Determine the tainted nodes containing job allocs
tainted, err := taintedNodes(s.state, allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
s.eval.JobID, err)
}
// Update the allocations which are in pending/running state on tainted
// nodes to lost
updateNonTerminalAllocsToLost(s.plan, tainted, allocs)
// Filter out the allocations in a terminal state
allocs, terminalAllocs := structs.FilterTerminalAllocs(allocs)
// Diff the required and existing allocations
diff := diffSystemAllocs(s.job, s.nodes, tainted, allocs, terminalAllocs)
s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff)
// Add all the allocs to stop
for _, e := range diff.stop {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded, "")
}
// Add all the allocs to migrate
for _, e := range diff.migrate {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNodeTainted, "")
}
// Lost allocations should be transitioned to desired status stop and client
// status lost.
for _, e := range diff.lost {
s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocLost, structs.AllocClientStatusLost)
}
// Attempt to do the upgrades in place
destructiveUpdates, inplaceUpdates := inplaceUpdate(s.ctx, s.eval, s.job, s.stack, diff.update)
diff.update = destructiveUpdates
if s.eval.AnnotatePlan {
s.plan.Annotations = &structs.PlanAnnotations{
DesiredTGUpdates: desiredUpdates(diff, inplaceUpdates, destructiveUpdates),
}
}
// Check if a rolling upgrade strategy is being used
limit := len(diff.update)
if !s.job.Stopped() && s.job.Update.Rolling() {
limit = s.job.Update.MaxParallel
}
// Treat non in-place updates as an eviction and new placement.
s.limitReached = evictAndPlace(s.ctx, diff, diff.update, allocUpdating, &limit)
// Nothing remaining to do if placement is not required
if len(diff.place) == 0 {
if !s.job.Stopped() {
for _, tg := range s.job.TaskGroups {
s.queuedAllocs[tg.Name] = 0
}
}
return nil
}
// Record the number of allocations that needs to be placed per Task Group
for _, allocTuple := range diff.place {
s.queuedAllocs[allocTuple.TaskGroup.Name] += 1
}
// Compute the placements
return s.computePlacements(diff.place)
}
// computePlacements computes placements for allocations
func (s *SystemScheduler) computePlacements(place []allocTuple) error {
nodeByID := make(map[string]*structs.Node, len(s.nodes))
for _, node := range s.nodes {
nodeByID[node.ID] = node
}
nodes := make([]*structs.Node, 1)
for _, missing := range place {
node, ok := nodeByID[missing.Alloc.NodeID]
if !ok {
return fmt.Errorf("could not find node %q", missing.Alloc.NodeID)
}
// Update the set of placement nodes
nodes[0] = node
s.stack.SetNodes(nodes)
// Attempt to match the task group
option, _ := s.stack.Select(missing.TaskGroup, nil)
if option == nil {
// If nodes were filtered because of constraint mismatches and we
// couldn't create an allocation then decrementing queued for that
// task group
if s.ctx.metrics.NodesFiltered > 0 {
s.queuedAllocs[missing.TaskGroup.Name] -= 1
// If we are annotating the plan, then decrement the desired
// placements based on whether the node meets the constraints
if s.eval.AnnotatePlan && s.plan.Annotations != nil &&
s.plan.Annotations.DesiredTGUpdates != nil {
desired := s.plan.Annotations.DesiredTGUpdates[missing.TaskGroup.Name]
desired.Place -= 1
}
}
// Check if this task group has already failed
if metric, ok := s.failedTGAllocs[missing.TaskGroup.Name]; ok {
metric.CoalescedFailures += 1
continue
}
}
// Store the available nodes by datacenter
s.ctx.Metrics().NodesAvailable = s.nodesByDC
// Set fields based on if we found an allocation option
if option != nil {
// Create an allocation for this
alloc := &structs.Allocation{
ID: uuid.Generate(),
Namespace: s.job.Namespace,
EvalID: s.eval.ID,
Name: missing.Name,
JobID: s.job.ID,
TaskGroup: missing.TaskGroup.Name,
Metrics: s.ctx.Metrics(),
NodeID: option.Node.ID,
TaskResources: option.TaskResources,
DesiredStatus: structs.AllocDesiredStatusRun,
ClientStatus: structs.AllocClientStatusPending,
SharedResources: &structs.Resources{
DiskMB: missing.TaskGroup.EphemeralDisk.SizeMB,
},
}
// If the new allocation is replacing an older allocation then we
// set the record the older allocation id so that they are chained
if missing.Alloc != nil {
alloc.PreviousAllocation = missing.Alloc.ID
}
s.plan.AppendAlloc(alloc)
} else {
// Lazy initialize the failed map
if s.failedTGAllocs == nil {
s.failedTGAllocs = make(map[string]*structs.AllocMetric)
}
s.failedTGAllocs[missing.TaskGroup.Name] = s.ctx.Metrics()
}
}
return nil
}