open-nomad/nomad/deploymentwatcher/deployment_watcher.go

962 lines
28 KiB
Go

package deploymentwatcher
import (
"context"
"fmt"
"sync"
"time"
log "github.com/hashicorp/go-hclog"
memdb "github.com/hashicorp/go-memdb"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
"golang.org/x/time/rate"
)
const (
// perJobEvalBatchPeriod is the batching length before creating an evaluation to
// trigger the scheduler when allocations are marked as healthy.
perJobEvalBatchPeriod = 1 * time.Second
)
var (
// allowRescheduleTransition is the transition that allows failed
// allocations part of a deployment to be rescheduled. We create a one off
// variable to avoid creating a new object for every request.
allowRescheduleTransition = &structs.DesiredTransition{
Reschedule: helper.BoolToPtr(true),
}
)
// deploymentTriggers are the set of functions required to trigger changes on
// behalf of a deployment
type deploymentTriggers interface {
// createUpdate is used to create allocation desired transition updates and
// an evaluation.
createUpdate(allocs map[string]*structs.DesiredTransition, eval *structs.Evaluation) (uint64, error)
// upsertJob is used to roll back a job when autoreverting for a deployment
upsertJob(job *structs.Job) (uint64, error)
// upsertDeploymentStatusUpdate is used to upsert a deployment status update
// and an optional evaluation and job to upsert
upsertDeploymentStatusUpdate(u *structs.DeploymentStatusUpdate, eval *structs.Evaluation, job *structs.Job) (uint64, error)
// upsertDeploymentPromotion is used to promote canaries in a deployment
upsertDeploymentPromotion(req *structs.ApplyDeploymentPromoteRequest) (uint64, error)
// upsertDeploymentAllocHealth is used to set the health of allocations in a
// deployment
upsertDeploymentAllocHealth(req *structs.ApplyDeploymentAllocHealthRequest) (uint64, error)
}
// deploymentWatcher is used to watch a single deployment and trigger the
// scheduler when allocation health transitions.
type deploymentWatcher struct {
// queryLimiter is used to limit the rate of blocking queries
queryLimiter *rate.Limiter
// deploymentTriggers holds the methods required to trigger changes on behalf of the
// deployment
deploymentTriggers
// DeploymentRPC holds methods for interacting with peer regions
// in enterprise edition
DeploymentRPC
// JobRPC holds methods for interacting with peer regions
// in enterprise edition
JobRPC
// state is the state that is watched for state changes.
state *state.StateStore
// deploymentID is the deployment's ID being watched
deploymentID string
// deploymentUpdateCh is triggered when there is an updated deployment
deploymentUpdateCh chan struct{}
// d is the deployment being watched
d *structs.Deployment
// j is the job the deployment is for
j *structs.Job
// outstandingBatch marks whether an outstanding function exists to create
// the evaluation. Access should be done through the lock.
outstandingBatch bool
// outstandingAllowReplacements is the map of allocations that will be
// marked as allowing a replacement. Access should be done through the lock.
outstandingAllowReplacements map[string]*structs.DesiredTransition
// latestEval is the latest eval for the job. It is updated by the watch
// loop and any time an evaluation is created. The field should be accessed
// by holding the lock or using the setter and getter methods.
latestEval uint64
logger log.Logger
ctx context.Context
exitFn context.CancelFunc
l sync.RWMutex
}
// newDeploymentWatcher returns a deployment watcher that is used to watch
// deployments and trigger the scheduler as needed.
func newDeploymentWatcher(parent context.Context, queryLimiter *rate.Limiter,
logger log.Logger, state *state.StateStore, d *structs.Deployment,
j *structs.Job, triggers deploymentTriggers,
deploymentRPC DeploymentRPC, jobRPC JobRPC) *deploymentWatcher {
ctx, exitFn := context.WithCancel(parent)
w := &deploymentWatcher{
queryLimiter: queryLimiter,
deploymentID: d.ID,
deploymentUpdateCh: make(chan struct{}, 1),
d: d,
j: j,
state: state,
deploymentTriggers: triggers,
DeploymentRPC: deploymentRPC,
JobRPC: jobRPC,
logger: logger.With("deployment_id", d.ID, "job", j.NamespacedID()),
ctx: ctx,
exitFn: exitFn,
}
// Start the long lived watcher that scans for allocation updates
go w.watch()
return w
}
// updateDeployment is used to update the tracked deployment.
func (w *deploymentWatcher) updateDeployment(d *structs.Deployment) {
w.l.Lock()
defer w.l.Unlock()
// Update and trigger
w.d = d
select {
case w.deploymentUpdateCh <- struct{}{}:
default:
}
}
// getDeployment returns the tracked deployment.
func (w *deploymentWatcher) getDeployment() *structs.Deployment {
w.l.RLock()
defer w.l.RUnlock()
return w.d
}
func (w *deploymentWatcher) SetAllocHealth(
req *structs.DeploymentAllocHealthRequest,
resp *structs.DeploymentUpdateResponse) error {
// If we are failing the deployment, update the status and potentially
// rollback
var j *structs.Job
var u *structs.DeploymentStatusUpdate
// If there are unhealthy allocations we need to mark the deployment as
// failed and check if we should roll back to a stable job.
if l := len(req.UnhealthyAllocationIDs); l != 0 {
unhealthy := make(map[string]struct{}, l)
for _, alloc := range req.UnhealthyAllocationIDs {
unhealthy[alloc] = struct{}{}
}
// Get the allocations for the deployment
snap, err := w.state.Snapshot()
if err != nil {
return err
}
allocs, err := snap.AllocsByDeployment(nil, req.DeploymentID)
if err != nil {
return err
}
// Determine if we should autorevert to an older job
desc := structs.DeploymentStatusDescriptionFailedAllocations
for _, alloc := range allocs {
// Check that the alloc has been marked unhealthy
if _, ok := unhealthy[alloc.ID]; !ok {
continue
}
// Check if the group has autorevert set
dstate, ok := w.getDeployment().TaskGroups[alloc.TaskGroup]
if !ok || !dstate.AutoRevert {
continue
}
var err error
j, err = w.latestStableJob()
if err != nil {
return err
}
if j != nil {
j, desc = w.handleRollbackValidity(j, desc)
}
break
}
u = w.getDeploymentStatusUpdate(structs.DeploymentStatusFailed, desc)
}
// Canonicalize the job in case it doesn't have namespace set
j.Canonicalize()
// Create the request
areq := &structs.ApplyDeploymentAllocHealthRequest{
DeploymentAllocHealthRequest: *req,
Timestamp: time.Now(),
Eval: w.getEval(),
DeploymentUpdate: u,
Job: j,
}
index, err := w.upsertDeploymentAllocHealth(areq)
if err != nil {
return err
}
// Build the response
resp.EvalID = areq.Eval.ID
resp.EvalCreateIndex = index
resp.DeploymentModifyIndex = index
resp.Index = index
if j != nil {
resp.RevertedJobVersion = helper.Uint64ToPtr(j.Version)
}
return nil
}
// handleRollbackValidity checks if the job being rolled back to has the same spec as the existing job
// Returns a modified description and job accordingly.
func (w *deploymentWatcher) handleRollbackValidity(rollbackJob *structs.Job, desc string) (*structs.Job, string) {
// Only rollback if job being changed has a different spec.
// This prevents an infinite revert cycle when a previously stable version of the job fails to start up during a rollback
// If the job we are trying to rollback to is identical to the current job, we stop because the rollback will not succeed.
if w.j.SpecChanged(rollbackJob) {
desc = structs.DeploymentStatusDescriptionRollback(desc, rollbackJob.Version)
} else {
desc = structs.DeploymentStatusDescriptionRollbackNoop(desc, rollbackJob.Version)
rollbackJob = nil
}
return rollbackJob, desc
}
func (w *deploymentWatcher) PromoteDeployment(
req *structs.DeploymentPromoteRequest,
resp *structs.DeploymentUpdateResponse) error {
// Create the request
areq := &structs.ApplyDeploymentPromoteRequest{
DeploymentPromoteRequest: *req,
Eval: w.getEval(),
}
index, err := w.upsertDeploymentPromotion(areq)
if err != nil {
return err
}
// Build the response
resp.EvalID = areq.Eval.ID
resp.EvalCreateIndex = index
resp.DeploymentModifyIndex = index
resp.Index = index
return nil
}
// autoPromoteDeployment creates a synthetic promotion request, and upserts it for processing
func (w *deploymentWatcher) autoPromoteDeployment(allocs []*structs.AllocListStub) error {
d := w.getDeployment()
if !d.HasPlacedCanaries() || !d.RequiresPromotion() {
return nil
}
// AutoPromote iff every task group is marked auto_promote and is healthy. The whole
// job version has been incremented, so we promote together. See also AutoRevert
for _, dstate := range d.TaskGroups {
if !dstate.AutoPromote || dstate.DesiredCanaries != len(dstate.PlacedCanaries) {
return nil
}
// Find the health status of each canary
for _, c := range dstate.PlacedCanaries {
for _, a := range allocs {
if c == a.ID && !a.DeploymentStatus.IsHealthy() {
return nil
}
}
}
}
// Send the request
_, err := w.upsertDeploymentPromotion(&structs.ApplyDeploymentPromoteRequest{
DeploymentPromoteRequest: structs.DeploymentPromoteRequest{DeploymentID: d.GetID(), All: true},
Eval: w.getEval(),
})
return err
}
func (w *deploymentWatcher) PauseDeployment(
req *structs.DeploymentPauseRequest,
resp *structs.DeploymentUpdateResponse) error {
// Determine the status we should transition to and if we need to create an
// evaluation
status, desc := structs.DeploymentStatusPaused, structs.DeploymentStatusDescriptionPaused
var eval *structs.Evaluation
evalID := ""
if !req.Pause {
status, desc = structs.DeploymentStatusRunning, structs.DeploymentStatusDescriptionRunning
eval = w.getEval()
evalID = eval.ID
}
update := w.getDeploymentStatusUpdate(status, desc)
// Commit the change
i, err := w.upsertDeploymentStatusUpdate(update, eval, nil)
if err != nil {
return err
}
// Build the response
if evalID != "" {
resp.EvalID = evalID
resp.EvalCreateIndex = i
}
resp.DeploymentModifyIndex = i
resp.Index = i
return nil
}
func (w *deploymentWatcher) FailDeployment(
req *structs.DeploymentFailRequest,
resp *structs.DeploymentUpdateResponse) error {
status, desc := structs.DeploymentStatusFailed, structs.DeploymentStatusDescriptionFailedByUser
// Determine if we should rollback
rollback := false
for _, dstate := range w.getDeployment().TaskGroups {
if dstate.AutoRevert {
rollback = true
break
}
}
var rollbackJob *structs.Job
if rollback {
var err error
rollbackJob, err = w.latestStableJob()
if err != nil {
return err
}
if rollbackJob != nil {
rollbackJob, desc = w.handleRollbackValidity(rollbackJob, desc)
} else {
desc = structs.DeploymentStatusDescriptionNoRollbackTarget(desc)
}
}
// Commit the change
update := w.getDeploymentStatusUpdate(status, desc)
eval := w.getEval()
i, err := w.upsertDeploymentStatusUpdate(update, eval, rollbackJob)
if err != nil {
return err
}
// Build the response
resp.EvalID = eval.ID
resp.EvalCreateIndex = i
resp.DeploymentModifyIndex = i
resp.Index = i
if rollbackJob != nil {
resp.RevertedJobVersion = helper.Uint64ToPtr(rollbackJob.Version)
}
return nil
}
// StopWatch stops watching the deployment. This should be called whenever a
// deployment is completed or the watcher is no longer needed.
func (w *deploymentWatcher) StopWatch() {
w.exitFn()
}
// watch is the long running watcher that watches for both allocation and
// deployment changes. Its function is to create evaluations to trigger the
// scheduler when more progress can be made, to fail the deployment if it has
// failed and potentially rolling back the job. Progress can be made when an
// allocation transitions to healthy, so we create an eval.
func (w *deploymentWatcher) watch() {
// Get the deadline. This is likely a zero time to begin with but we need to
// handle the case that the deployment has already progressed and we are now
// just starting to watch it. This must likely would occur if there was a
// leader transition and we are now starting our watcher.
currentDeadline := w.getDeploymentProgressCutoff(w.getDeployment())
var deadlineTimer *time.Timer
if currentDeadline.IsZero() {
deadlineTimer = time.NewTimer(0)
if !deadlineTimer.Stop() {
<-deadlineTimer.C
}
} else {
deadlineTimer = time.NewTimer(time.Until(currentDeadline))
}
allocIndex := uint64(1)
var updates *allocUpdates
rollback, deadlineHit := false, false
FAIL:
for {
select {
case <-w.ctx.Done():
// This is the successful case, and we stop the loop
return
case <-deadlineTimer.C:
// We have hit the progress deadline so fail the deployment. We need
// to determine whether we should roll back the job by inspecting
// which allocs as part of the deployment are healthy and which
// aren't.
deadlineHit = true
fail, rback, err := w.shouldFail()
if err != nil {
w.logger.Error("failed to determine whether to rollback job", "error", err)
}
if !fail {
w.logger.Debug("skipping deadline")
continue
}
w.logger.Debug("deadline hit", "rollback", rback)
rollback = rback
err = w.nextRegion(structs.DeploymentStatusFailed)
if err != nil {
w.logger.Error("multiregion deployment error", "error", err)
}
break FAIL
case <-w.deploymentUpdateCh:
// Get the updated deployment and check if we should change the
// deadline timer
next := w.getDeploymentProgressCutoff(w.getDeployment())
if !next.Equal(currentDeadline) {
prevDeadlineZero := currentDeadline.IsZero()
currentDeadline = next
// The most recent deadline can be zero if no allocs were created for this deployment.
// The deadline timer would have already been stopped once in that case. To prevent
// deadlocking on the already stopped deadline timer, we only drain the channel if
// the previous deadline was not zero.
if !prevDeadlineZero && !deadlineTimer.Stop() {
select {
case <-deadlineTimer.C:
default:
}
}
// If the next deadline is zero, we should not reset the timer
// as we aren't tracking towards a progress deadline yet. This
// can happen if you have multiple task groups with progress
// deadlines and one of the task groups hasn't made any
// placements. As soon as the other task group finishes its
// rollout, the next progress deadline becomes zero, so we want
// to avoid resetting, causing a deployment failure.
if !next.IsZero() {
deadlineTimer.Reset(time.Until(next))
}
}
err := w.nextRegion(w.getStatus())
if err != nil {
break FAIL
}
case updates = <-w.getAllocsCh(allocIndex):
if err := updates.err; err != nil {
if err == context.Canceled || w.ctx.Err() == context.Canceled {
return
}
w.logger.Error("failed to retrieve allocations", "error", err)
return
}
allocIndex = updates.index
// We have allocation changes for this deployment so determine the
// steps to take.
res, err := w.handleAllocUpdate(updates.allocs)
if err != nil {
if err == context.Canceled || w.ctx.Err() == context.Canceled {
return
}
w.logger.Error("failed handling allocation updates", "error", err)
return
}
// The deployment has failed, so break out of the watch loop and
// handle the failure
if res.failDeployment {
rollback = res.rollback
err := w.nextRegion(structs.DeploymentStatusFailed)
if err != nil {
w.logger.Error("multiregion deployment error", "error", err)
}
break FAIL
}
// If permitted, automatically promote this canary deployment
err = w.autoPromoteDeployment(updates.allocs)
if err != nil {
w.logger.Error("failed to auto promote deployment", "error", err)
}
// Create an eval to push the deployment along
if res.createEval || len(res.allowReplacements) != 0 {
w.createBatchedUpdate(res.allowReplacements, allocIndex)
}
}
}
// Change the deployments status to failed
desc := structs.DeploymentStatusDescriptionFailedAllocations
if deadlineHit {
desc = structs.DeploymentStatusDescriptionProgressDeadline
}
// Rollback to the old job if necessary
var j *structs.Job
if rollback {
var err error
j, err = w.latestStableJob()
if err != nil {
w.logger.Error("failed to lookup latest stable job", "error", err)
}
// Description should include that the job is being rolled back to
// version N
if j != nil {
j, desc = w.handleRollbackValidity(j, desc)
} else {
desc = structs.DeploymentStatusDescriptionNoRollbackTarget(desc)
}
}
// Update the status of the deployment to failed and create an evaluation.
e := w.getEval()
u := w.getDeploymentStatusUpdate(structs.DeploymentStatusFailed, desc)
if _, err := w.upsertDeploymentStatusUpdate(u, e, j); err != nil {
w.logger.Error("failed to update deployment status", "error", err)
}
}
// allocUpdateResult is used to return the desired actions given the newest set
// of allocations for the deployment.
type allocUpdateResult struct {
createEval bool
failDeployment bool
rollback bool
allowReplacements []string
}
// handleAllocUpdate is used to compute the set of actions to take based on the
// updated allocations for the deployment.
func (w *deploymentWatcher) handleAllocUpdate(allocs []*structs.AllocListStub) (allocUpdateResult, error) {
var res allocUpdateResult
// Get the latest evaluation index
latestEval, err := w.jobEvalStatus()
if err != nil {
if err == context.Canceled || w.ctx.Err() == context.Canceled {
return res, err
}
return res, fmt.Errorf("failed to determine last evaluation index for job %q: %v", w.j.ID, err)
}
deployment := w.getDeployment()
for _, alloc := range allocs {
dstate, ok := deployment.TaskGroups[alloc.TaskGroup]
if !ok {
continue
}
// Determine if the update stanza for this group is progress based
progressBased := dstate.ProgressDeadline != 0
// Check if the allocation has failed and we need to mark it for allow
// replacements
if progressBased && alloc.DeploymentStatus.IsUnhealthy() &&
deployment.Active() && !alloc.DesiredTransition.ShouldReschedule() {
res.allowReplacements = append(res.allowReplacements, alloc.ID)
continue
}
// We need to create an eval so the job can progress.
if alloc.DeploymentStatus.IsHealthy() && alloc.DeploymentStatus.ModifyIndex > latestEval {
res.createEval = true
}
// If the group is using a progress deadline, we don't have to do anything.
if progressBased {
continue
}
// Fail on the first bad allocation
if alloc.DeploymentStatus.IsUnhealthy() {
// Check if the group has autorevert set
if dstate.AutoRevert {
res.rollback = true
}
// Since we have an unhealthy allocation, fail the deployment
res.failDeployment = true
}
// All conditions have been hit so we can break
if res.createEval && res.failDeployment && res.rollback {
break
}
}
return res, nil
}
// shouldFail returns whether the job should be failed and whether it should
// rolled back to an earlier stable version by examining the allocations in the
// deployment.
func (w *deploymentWatcher) shouldFail() (fail, rollback bool, err error) {
snap, err := w.state.Snapshot()
if err != nil {
return false, false, err
}
d, err := snap.DeploymentByID(nil, w.deploymentID)
if err != nil {
return false, false, err
}
if d == nil {
// The deployment wasn't in the state store, possibly due to a system gc
return false, false, fmt.Errorf("deployment id not found: %q", w.deploymentID)
}
fail = false
for tg, dstate := range d.TaskGroups {
// If we are in a canary state we fail if there aren't enough healthy
// allocs to satisfy DesiredCanaries
if dstate.DesiredCanaries > 0 && !dstate.Promoted {
if dstate.HealthyAllocs >= dstate.DesiredCanaries {
continue
}
} else if dstate.HealthyAllocs >= dstate.DesiredTotal {
continue
}
// We have failed this TG
fail = true
// We don't need to autorevert this group
upd := w.j.LookupTaskGroup(tg).Update
if upd == nil || !upd.AutoRevert {
continue
}
// Unhealthy allocs and we need to autorevert
return true, true, nil
}
return fail, false, nil
}
// getDeploymentProgressCutoff returns the progress cutoff for the given
// deployment
func (w *deploymentWatcher) getDeploymentProgressCutoff(d *structs.Deployment) time.Time {
var next time.Time
doneTGs := w.doneGroups(d)
for name, dstate := range d.TaskGroups {
// This task group is done so we don't have to concern ourselves with
// its progress deadline.
if done, ok := doneTGs[name]; ok && done {
continue
}
if dstate.RequireProgressBy.IsZero() {
continue
}
if next.IsZero() || dstate.RequireProgressBy.Before(next) {
next = dstate.RequireProgressBy
}
}
return next
}
// doneGroups returns a map of task group to whether the deployment appears to
// be done for the group. A true value doesn't mean no more action will be taken
// in the life time of the deployment because there could always be node
// failures, or rescheduling events.
func (w *deploymentWatcher) doneGroups(d *structs.Deployment) map[string]bool {
if d == nil {
return nil
}
// Collect the allocations by the task group
snap, err := w.state.Snapshot()
if err != nil {
return nil
}
allocs, err := snap.AllocsByDeployment(nil, d.ID)
if err != nil {
return nil
}
// Go through the allocs and count up how many healthy allocs we have
healthy := make(map[string]int, len(d.TaskGroups))
for _, a := range allocs {
if a.TerminalStatus() || !a.DeploymentStatus.IsHealthy() {
continue
}
healthy[a.TaskGroup]++
}
// Go through each group and check if it done
groups := make(map[string]bool, len(d.TaskGroups))
for name, dstate := range d.TaskGroups {
// Requires promotion
if dstate.DesiredCanaries != 0 && !dstate.Promoted {
groups[name] = false
continue
}
// Check we have enough healthy currently running allocations
groups[name] = healthy[name] >= dstate.DesiredTotal
}
return groups
}
// latestStableJob returns the latest stable job. It may be nil if none exist
func (w *deploymentWatcher) latestStableJob() (*structs.Job, error) {
snap, err := w.state.Snapshot()
if err != nil {
return nil, err
}
versions, err := snap.JobVersionsByID(nil, w.j.Namespace, w.j.ID)
if err != nil {
return nil, err
}
var stable *structs.Job
for _, job := range versions {
if job.Stable {
stable = job
break
}
}
return stable, nil
}
// createBatchedUpdate creates an eval for the given index as well as updating
// the given allocations to allow them to reschedule.
func (w *deploymentWatcher) createBatchedUpdate(allowReplacements []string, forIndex uint64) {
w.l.Lock()
defer w.l.Unlock()
// Store the allocations that can be replaced
for _, allocID := range allowReplacements {
if w.outstandingAllowReplacements == nil {
w.outstandingAllowReplacements = make(map[string]*structs.DesiredTransition, len(allowReplacements))
}
w.outstandingAllowReplacements[allocID] = allowRescheduleTransition
}
if w.outstandingBatch || (forIndex < w.latestEval && len(allowReplacements) == 0) {
return
}
w.outstandingBatch = true
time.AfterFunc(perJobEvalBatchPeriod, func() {
// If the timer has been created and then we shutdown, we need to no-op
// the evaluation creation.
select {
case <-w.ctx.Done():
return
default:
}
w.l.Lock()
replacements := w.outstandingAllowReplacements
w.outstandingAllowReplacements = nil
w.outstandingBatch = false
w.l.Unlock()
// Create the eval
if _, err := w.createUpdate(replacements, w.getEval()); err != nil {
w.logger.Error("failed to create evaluation for deployment", "deployment_id", w.deploymentID, "error", err)
}
})
}
// getEval returns an evaluation suitable for the deployment
func (w *deploymentWatcher) getEval() *structs.Evaluation {
now := time.Now().UTC().UnixNano()
return &structs.Evaluation{
ID: uuid.Generate(),
Namespace: w.j.Namespace,
Priority: w.j.Priority,
Type: w.j.Type,
TriggeredBy: structs.EvalTriggerDeploymentWatcher,
JobID: w.j.ID,
DeploymentID: w.deploymentID,
Status: structs.EvalStatusPending,
CreateTime: now,
ModifyTime: now,
}
}
// getDeploymentStatusUpdate returns a deployment status update
func (w *deploymentWatcher) getDeploymentStatusUpdate(status, desc string) *structs.DeploymentStatusUpdate {
return &structs.DeploymentStatusUpdate{
DeploymentID: w.deploymentID,
Status: status,
StatusDescription: desc,
}
}
// getStatus returns the current status of the deployment
func (w *deploymentWatcher) getStatus() string {
w.l.RLock()
defer w.l.RUnlock()
return w.d.Status
}
type allocUpdates struct {
allocs []*structs.AllocListStub
index uint64
err error
}
// getAllocsCh creates a channel and starts a goroutine that
// 1. parks a blocking query for allocations on the state
// 2. reads those and drops them on the channel
// This query runs once here, but watch calls it in a loop
func (w *deploymentWatcher) getAllocsCh(index uint64) <-chan *allocUpdates {
out := make(chan *allocUpdates, 1)
go func() {
allocs, index, err := w.getAllocs(index)
out <- &allocUpdates{
allocs: allocs,
index: index,
err: err,
}
}()
return out
}
// getAllocs retrieves the allocations that are part of the deployment blocking
// at the given index.
func (w *deploymentWatcher) getAllocs(index uint64) ([]*structs.AllocListStub, uint64, error) {
resp, index, err := w.state.BlockingQuery(w.getAllocsImpl, index, w.ctx)
if err != nil {
return nil, 0, err
}
if err := w.ctx.Err(); err != nil {
return nil, 0, err
}
return resp.([]*structs.AllocListStub), index, nil
}
// getDeploysImpl retrieves all deployments from the passed state store.
func (w *deploymentWatcher) getAllocsImpl(ws memdb.WatchSet, state *state.StateStore) (interface{}, uint64, error) {
if err := w.queryLimiter.Wait(w.ctx); err != nil {
return nil, 0, err
}
// Capture all the allocations
allocs, err := state.AllocsByDeployment(ws, w.deploymentID)
if err != nil {
return nil, 0, err
}
maxIndex := uint64(0)
stubs := make([]*structs.AllocListStub, 0, len(allocs))
for _, alloc := range allocs {
stubs = append(stubs, alloc.Stub(nil))
if maxIndex < alloc.ModifyIndex {
maxIndex = alloc.ModifyIndex
}
}
// Use the last index that affected the allocs table
if len(stubs) == 0 {
index, err := state.Index("allocs")
if err != nil {
return nil, index, err
}
maxIndex = index
}
return stubs, maxIndex, nil
}
// jobEvalStatus returns the latest eval index for a job. The index is used to
// determine if an allocation update requires an evaluation to be triggered.
func (w *deploymentWatcher) jobEvalStatus() (latestIndex uint64, err error) {
if err := w.queryLimiter.Wait(w.ctx); err != nil {
return 0, err
}
snap, err := w.state.Snapshot()
if err != nil {
return 0, err
}
evals, err := snap.EvalsByJob(nil, w.j.Namespace, w.j.ID)
if err != nil {
return 0, err
}
// If there are no evals for the job, return zero, since we want any
// allocation change to trigger an evaluation.
if len(evals) == 0 {
return 0, nil
}
var max uint64
for _, eval := range evals {
// A cancelled eval never impacts what the scheduler has saw, so do not
// use it's indexes.
if eval.Status == structs.EvalStatusCancelled {
continue
}
// Prefer using the snapshot index. Otherwise use the create index
if eval.SnapshotIndex != 0 && max < eval.SnapshotIndex {
max = eval.SnapshotIndex
} else if max < eval.CreateIndex {
max = eval.CreateIndex
}
}
return max, nil
}