open-nomad/client/client.go

2158 lines
64 KiB
Go

package client
import (
"errors"
"fmt"
"io/ioutil"
"log"
"net"
"os"
"path/filepath"
"strconv"
"strings"
"sync"
"time"
metrics "github.com/armon/go-metrics"
"github.com/boltdb/bolt"
consulapi "github.com/hashicorp/consul/api"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/client/allocdir"
"github.com/hashicorp/nomad/client/config"
"github.com/hashicorp/nomad/client/driver"
"github.com/hashicorp/nomad/client/fingerprint"
"github.com/hashicorp/nomad/client/stats"
"github.com/hashicorp/nomad/client/vaultclient"
"github.com/hashicorp/nomad/command/agent/consul"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/helper/tlsutil"
"github.com/hashicorp/nomad/nomad"
"github.com/hashicorp/nomad/nomad/structs"
vaultapi "github.com/hashicorp/vault/api"
"github.com/mitchellh/hashstructure"
"github.com/shirou/gopsutil/host"
)
const (
// clientRPCCache controls how long we keep an idle connection
// open to a server
clientRPCCache = 5 * time.Minute
// clientMaxStreams controsl how many idle streams we keep
// open to a server
clientMaxStreams = 2
// datacenterQueryLimit searches through up to this many adjacent
// datacenters looking for the Nomad server service.
datacenterQueryLimit = 9
// registerRetryIntv is minimum interval on which we retry
// registration. We pick a value between this and 2x this.
registerRetryIntv = 15 * time.Second
// getAllocRetryIntv is minimum interval on which we retry
// to fetch allocations. We pick a value between this and 2x this.
getAllocRetryIntv = 30 * time.Second
// devModeRetryIntv is the retry interval used for development
devModeRetryIntv = time.Second
// stateSnapshotIntv is how often the client snapshots state
stateSnapshotIntv = 60 * time.Second
// initialHeartbeatStagger is used to stagger the interval between
// starting and the intial heartbeat. After the intial heartbeat,
// we switch to using the TTL specified by the servers.
initialHeartbeatStagger = 10 * time.Second
// nodeUpdateRetryIntv is how often the client checks for updates to the
// node attributes or meta map.
nodeUpdateRetryIntv = 5 * time.Second
// allocSyncIntv is the batching period of allocation updates before they
// are synced with the server.
allocSyncIntv = 200 * time.Millisecond
// allocSyncRetryIntv is the interval on which we retry updating
// the status of the allocation
allocSyncRetryIntv = 5 * time.Second
)
// ClientStatsReporter exposes all the APIs related to resource usage of a Nomad
// Client
type ClientStatsReporter interface {
// GetAllocStats returns the AllocStatsReporter for the passed allocation.
// If it does not exist an error is reported.
GetAllocStats(allocID string) (AllocStatsReporter, error)
// LatestHostStats returns the latest resource usage stats for the host
LatestHostStats() *stats.HostStats
}
// Client is used to implement the client interaction with Nomad. Clients
// are expected to register as a schedulable node to the servers, and to
// run allocations as determined by the servers.
type Client struct {
config *config.Config
start time.Time
// stateDB is used to efficiently store client state.
stateDB *bolt.DB
// configCopy is a copy that should be passed to alloc-runners.
configCopy *config.Config
configLock sync.RWMutex
logger *log.Logger
connPool *nomad.ConnPool
// servers is the (optionally prioritized) list of nomad servers
servers *serverlist
// heartbeat related times for tracking how often to heartbeat
lastHeartbeat time.Time
heartbeatTTL time.Duration
heartbeatLock sync.Mutex
// triggerDiscoveryCh triggers Consul discovery; see triggerDiscovery
triggerDiscoveryCh chan struct{}
// discovered will be ticked whenever Consul discovery completes
// succesfully
serversDiscoveredCh chan struct{}
// allocs is the current set of allocations
allocs map[string]*AllocRunner
allocLock sync.RWMutex
// allocUpdates stores allocations that need to be synced to the server.
allocUpdates chan *structs.Allocation
// consulService is Nomad's custom Consul client for managing services
// and checks.
consulService ConsulServiceAPI
// consulCatalog is the subset of Consul's Catalog API Nomad uses.
consulCatalog consul.CatalogAPI
// HostStatsCollector collects host resource usage stats
hostStatsCollector *stats.HostStatsCollector
shutdown bool
shutdownCh chan struct{}
shutdownLock sync.Mutex
// vaultClient is used to interact with Vault for token and secret renewals
vaultClient vaultclient.VaultClient
// garbageCollector is used to garbage collect terminal allocations present
// in the node automatically
garbageCollector *AllocGarbageCollector
// clientACLResolver holds the ACL resolution state
clientACLResolver
// baseLabels are used when emitting tagged metrics. All client metrics will
// have these tags, and optionally more.
baseLabels []metrics.Label
}
var (
// noServersErr is returned by the RPC method when the client has no
// configured servers. This is used to trigger Consul discovery if
// enabled.
noServersErr = errors.New("no servers")
)
// NewClient is used to create a new client from the given configuration
func NewClient(cfg *config.Config, consulCatalog consul.CatalogAPI, consulService ConsulServiceAPI, logger *log.Logger) (*Client, error) {
// Create the tls wrapper
var tlsWrap tlsutil.RegionWrapper
if cfg.TLSConfig.EnableRPC {
tw, err := cfg.TLSConfiguration().OutgoingTLSWrapper()
if err != nil {
return nil, err
}
tlsWrap = tw
}
// Create the client
c := &Client{
config: cfg,
consulCatalog: consulCatalog,
consulService: consulService,
start: time.Now(),
connPool: nomad.NewPool(cfg.LogOutput, clientRPCCache, clientMaxStreams, tlsWrap),
logger: logger,
allocs: make(map[string]*AllocRunner),
allocUpdates: make(chan *structs.Allocation, 64),
shutdownCh: make(chan struct{}),
servers: newServerList(),
triggerDiscoveryCh: make(chan struct{}),
serversDiscoveredCh: make(chan struct{}),
}
// Initialize the client
if err := c.init(); err != nil {
return nil, fmt.Errorf("failed to initialize client: %v", err)
}
// Initialize the ACL state
if err := c.clientACLResolver.init(); err != nil {
return nil, fmt.Errorf("failed to initialize ACL state: %v", err)
}
// Add the stats collector
statsCollector := stats.NewHostStatsCollector(logger, c.config.AllocDir)
c.hostStatsCollector = statsCollector
// Add the garbage collector
gcConfig := &GCConfig{
MaxAllocs: cfg.GCMaxAllocs,
DiskUsageThreshold: cfg.GCDiskUsageThreshold,
InodeUsageThreshold: cfg.GCInodeUsageThreshold,
Interval: cfg.GCInterval,
ParallelDestroys: cfg.GCParallelDestroys,
ReservedDiskMB: cfg.Node.Reserved.DiskMB,
}
c.garbageCollector = NewAllocGarbageCollector(logger, statsCollector, c, gcConfig)
go c.garbageCollector.Run()
// Setup the node
if err := c.setupNode(); err != nil {
return nil, fmt.Errorf("node setup failed: %v", err)
}
// Fingerprint the node
if err := c.fingerprint(); err != nil {
return nil, fmt.Errorf("fingerprinting failed: %v", err)
}
// Scan for drivers
if err := c.setupDrivers(); err != nil {
return nil, fmt.Errorf("driver setup failed: %v", err)
}
// Setup the reserved resources
c.reservePorts()
// Store the config copy before restoring state but after it has been
// initialized.
c.configLock.Lock()
c.configCopy = c.config.Copy()
c.configLock.Unlock()
// Set the preconfigured list of static servers
c.configLock.RLock()
if len(c.configCopy.Servers) > 0 {
if err := c.SetServers(c.configCopy.Servers); err != nil {
logger.Printf("[WARN] client: None of the configured servers are valid: %v", err)
}
}
c.configLock.RUnlock()
// Setup Consul discovery if enabled
if c.configCopy.ConsulConfig.ClientAutoJoin != nil && *c.configCopy.ConsulConfig.ClientAutoJoin {
go c.consulDiscovery()
if len(c.servers.all()) == 0 {
// No configured servers; trigger discovery manually
c.triggerDiscoveryCh <- struct{}{}
}
}
// Setup the vault client for token and secret renewals
if err := c.setupVaultClient(); err != nil {
return nil, fmt.Errorf("failed to setup vault client: %v", err)
}
// Restore the state
if err := c.restoreState(); err != nil {
logger.Printf("[ERR] client: failed to restore state: %v", err)
logger.Printf("[ERR] client: Nomad is unable to start due to corrupt state. "+
"The safest way to proceed is to manually stop running task processes "+
"and remove Nomad's state (%q) and alloc (%q) directories before "+
"restarting. Lost allocations will be rescheduled.",
c.config.StateDir, c.config.AllocDir)
logger.Printf("[ERR] client: Corrupt state is often caused by a bug. Please " +
"report as much information as possible to " +
"https://github.com/hashicorp/nomad/issues")
return nil, fmt.Errorf("failed to restore state")
}
// Register and then start heartbeating to the servers.
go c.registerAndHeartbeat()
// Begin periodic snapshotting of state.
go c.periodicSnapshot()
// Begin syncing allocations to the server
go c.allocSync()
// Start the client!
go c.run()
// Start collecting stats
go c.emitStats()
c.logger.Printf("[INFO] client: Node ID %q", c.NodeID())
return c, nil
}
// init is used to initialize the client and perform any setup
// needed before we begin starting its various components.
func (c *Client) init() error {
// Ensure the state dir exists if we have one
if c.config.StateDir != "" {
if err := os.MkdirAll(c.config.StateDir, 0700); err != nil {
return fmt.Errorf("failed creating state dir: %s", err)
}
} else {
// Othewise make a temp directory to use.
p, err := ioutil.TempDir("", "NomadClient")
if err != nil {
return fmt.Errorf("failed creating temporary directory for the StateDir: %v", err)
}
p, err = filepath.EvalSymlinks(p)
if err != nil {
return fmt.Errorf("failed to find temporary directory for the StateDir: %v", err)
}
c.config.StateDir = p
}
c.logger.Printf("[INFO] client: using state directory %v", c.config.StateDir)
// Create or open the state database
db, err := bolt.Open(filepath.Join(c.config.StateDir, "state.db"), 0600, nil)
if err != nil {
return fmt.Errorf("failed to create state database: %v", err)
}
c.stateDB = db
// Ensure the alloc dir exists if we have one
if c.config.AllocDir != "" {
if err := os.MkdirAll(c.config.AllocDir, 0711); err != nil {
return fmt.Errorf("failed creating alloc dir: %s", err)
}
} else {
// Othewise make a temp directory to use.
p, err := ioutil.TempDir("", "NomadClient")
if err != nil {
return fmt.Errorf("failed creating temporary directory for the AllocDir: %v", err)
}
p, err = filepath.EvalSymlinks(p)
if err != nil {
return fmt.Errorf("failed to find temporary directory for the AllocDir: %v", err)
}
// Change the permissions to have the execute bit
if err := os.Chmod(p, 0711); err != nil {
return fmt.Errorf("failed to change directory permissions for the AllocDir: %v", err)
}
c.config.AllocDir = p
}
c.logger.Printf("[INFO] client: using alloc directory %v", c.config.AllocDir)
return nil
}
// Leave is used to prepare the client to leave the cluster
func (c *Client) Leave() error {
// TODO
return nil
}
// Datacenter returns the datacenter for the given client
func (c *Client) Datacenter() string {
return c.config.Node.Datacenter
}
// Region returns the region for the given client
func (c *Client) Region() string {
return c.config.Region
}
// NodeID returns the node ID for the given client
func (c *Client) NodeID() string {
return c.config.Node.ID
}
// secretNodeID returns the secret node ID for the given client
func (c *Client) secretNodeID() string {
return c.config.Node.SecretID
}
// RPCMajorVersion returns the structs.ApiMajorVersion supported by the
// client.
func (c *Client) RPCMajorVersion() int {
return structs.ApiMajorVersion
}
// RPCMinorVersion returns the structs.ApiMinorVersion supported by the
// client.
func (c *Client) RPCMinorVersion() int {
return structs.ApiMinorVersion
}
// Shutdown is used to tear down the client
func (c *Client) Shutdown() error {
c.logger.Printf("[INFO] client: shutting down")
c.shutdownLock.Lock()
defer c.shutdownLock.Unlock()
if c.shutdown {
return nil
}
// Defer closing the database
defer func() {
if err := c.stateDB.Close(); err != nil {
c.logger.Printf("[ERR] client: failed to close state database on shutdown: %v", err)
}
}()
// Stop renewing tokens and secrets
if c.vaultClient != nil {
c.vaultClient.Stop()
}
// Stop Garbage collector
c.garbageCollector.Stop()
// Destroy all the running allocations.
if c.config.DevMode {
for _, ar := range c.getAllocRunners() {
ar.Destroy()
<-ar.WaitCh()
}
}
c.shutdown = true
close(c.shutdownCh)
c.connPool.Shutdown()
return c.saveState()
}
// RPC is used to forward an RPC call to a nomad server, or fail if no servers.
func (c *Client) RPC(method string, args interface{}, reply interface{}) error {
// Invoke the RPCHandler if it exists
if c.config.RPCHandler != nil {
return c.config.RPCHandler.RPC(method, args, reply)
}
servers := c.servers.all()
if len(servers) == 0 {
return noServersErr
}
var mErr multierror.Error
for _, s := range servers {
// Make the RPC request
if err := c.connPool.RPC(c.Region(), s.addr, c.RPCMajorVersion(), method, args, reply); err != nil {
errmsg := fmt.Errorf("RPC failed to server %s: %v", s.addr, err)
mErr.Errors = append(mErr.Errors, errmsg)
c.logger.Printf("[DEBUG] client: %v", errmsg)
c.servers.failed(s)
continue
}
c.servers.good(s)
return nil
}
return mErr.ErrorOrNil()
}
// Stats is used to return statistics for debugging and insight
// for various sub-systems
func (c *Client) Stats() map[string]map[string]string {
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
stats := map[string]map[string]string{
"client": map[string]string{
"node_id": c.NodeID(),
"known_servers": c.servers.all().String(),
"num_allocations": strconv.Itoa(c.NumAllocs()),
"last_heartbeat": fmt.Sprintf("%v", time.Since(c.lastHeartbeat)),
"heartbeat_ttl": fmt.Sprintf("%v", c.heartbeatTTL),
},
"runtime": nomad.RuntimeStats(),
}
return stats
}
// CollectAllocation garbage collects a single allocation
func (c *Client) CollectAllocation(allocID string) error {
return c.garbageCollector.Collect(allocID)
}
// CollectAllAllocs garbage collects all allocations on a node in the terminal
// state
func (c *Client) CollectAllAllocs() error {
return c.garbageCollector.CollectAll()
}
// Node returns the locally registered node
func (c *Client) Node() *structs.Node {
c.configLock.RLock()
defer c.configLock.RUnlock()
return c.config.Node
}
// StatsReporter exposes the various APIs related resource usage of a Nomad
// client
func (c *Client) StatsReporter() ClientStatsReporter {
return c
}
func (c *Client) GetAllocStats(allocID string) (AllocStatsReporter, error) {
c.allocLock.RLock()
defer c.allocLock.RUnlock()
ar, ok := c.allocs[allocID]
if !ok {
return nil, fmt.Errorf("unknown allocation ID %q", allocID)
}
return ar.StatsReporter(), nil
}
// HostStats returns all the stats related to a Nomad client
func (c *Client) LatestHostStats() *stats.HostStats {
return c.hostStatsCollector.Stats()
}
// GetAllocFS returns the AllocFS interface for the alloc dir of an allocation
func (c *Client) GetAllocFS(allocID string) (allocdir.AllocDirFS, error) {
c.allocLock.RLock()
defer c.allocLock.RUnlock()
ar, ok := c.allocs[allocID]
if !ok {
return nil, fmt.Errorf("unknown allocation ID %q", allocID)
}
return ar.GetAllocDir(), nil
}
// GetClientAlloc returns the allocation from the client
func (c *Client) GetClientAlloc(allocID string) (*structs.Allocation, error) {
all := c.allAllocs()
alloc, ok := all[allocID]
if !ok {
return nil, fmt.Errorf("unknown allocation ID %q", allocID)
}
return alloc, nil
}
// GetServers returns the list of nomad servers this client is aware of.
func (c *Client) GetServers() []string {
endpoints := c.servers.all()
res := make([]string, len(endpoints))
for i := range endpoints {
res[i] = endpoints[i].addr.String()
}
return res
}
// SetServers sets a new list of nomad servers to connect to. As long as one
// server is resolvable no error is returned.
func (c *Client) SetServers(servers []string) error {
endpoints := make([]*endpoint, 0, len(servers))
var merr multierror.Error
for _, s := range servers {
addr, err := resolveServer(s)
if err != nil {
c.logger.Printf("[DEBUG] client: ignoring server %s due to resolution error: %v", s, err)
merr.Errors = append(merr.Errors, err)
continue
}
// Valid endpoint, append it without a priority as this API
// doesn't support different priorities for different servers
endpoints = append(endpoints, &endpoint{name: s, addr: addr})
}
// Only return errors if no servers are valid
if len(endpoints) == 0 {
if len(merr.Errors) > 0 {
return merr.ErrorOrNil()
}
return noServersErr
}
c.servers.set(endpoints)
return nil
}
// restoreState is used to restore our state from the data dir
func (c *Client) restoreState() error {
if c.config.DevMode {
return nil
}
// COMPAT: Remove in 0.7.0
// 0.6.0 transistioned from individual state files to a single bolt-db.
// The upgrade path is to:
// Check if old state exists
// If so, restore from that and delete old state
// Restore using state database
// Allocs holds the IDs of the allocations being restored
var allocs []string
// Upgrading tracks whether this is a pre 0.6.0 upgrade path
var upgrading bool
// Scan the directory
allocDir := filepath.Join(c.config.StateDir, "alloc")
list, err := ioutil.ReadDir(allocDir)
if err != nil && !os.IsNotExist(err) {
return fmt.Errorf("failed to list alloc state: %v", err)
} else if err == nil && len(list) != 0 {
upgrading = true
for _, entry := range list {
allocs = append(allocs, entry.Name())
}
} else {
// Normal path
err := c.stateDB.View(func(tx *bolt.Tx) error {
allocs, err = getAllAllocationIDs(tx)
if err != nil {
return fmt.Errorf("failed to list allocations: %v", err)
}
return nil
})
if err != nil {
return err
}
}
// Load each alloc back
var mErr multierror.Error
for _, id := range allocs {
alloc := &structs.Allocation{ID: id}
// don't worry about blocking/migrating when restoring
watcher := noopPrevAlloc{}
c.configLock.RLock()
ar := NewAllocRunner(c.logger, c.configCopy, c.stateDB, c.updateAllocStatus, alloc, c.vaultClient, c.consulService, watcher)
c.configLock.RUnlock()
c.allocLock.Lock()
c.allocs[id] = ar
c.allocLock.Unlock()
if err := ar.RestoreState(); err != nil {
c.logger.Printf("[ERR] client: failed to restore state for alloc %q: %v", id, err)
mErr.Errors = append(mErr.Errors, err)
} else {
go ar.Run()
if upgrading {
if err := ar.SaveState(); err != nil {
c.logger.Printf("[WARN] client: initial save state for alloc %q failed: %v", id, err)
}
}
}
}
// Delete all the entries
if upgrading {
if err := os.RemoveAll(allocDir); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
}
return mErr.ErrorOrNil()
}
// saveState is used to snapshot our state into the data dir.
func (c *Client) saveState() error {
if c.config.DevMode {
return nil
}
var wg sync.WaitGroup
var l sync.Mutex
var mErr multierror.Error
runners := c.getAllocRunners()
wg.Add(len(runners))
for id, ar := range runners {
go func(id string, ar *AllocRunner) {
err := ar.SaveState()
if err != nil {
c.logger.Printf("[ERR] client: failed to save state for alloc %q: %v", id, err)
l.Lock()
multierror.Append(&mErr, err)
l.Unlock()
}
wg.Done()
}(id, ar)
}
wg.Wait()
return mErr.ErrorOrNil()
}
// getAllocRunners returns a snapshot of the current set of alloc runners.
func (c *Client) getAllocRunners() map[string]*AllocRunner {
c.allocLock.RLock()
defer c.allocLock.RUnlock()
runners := make(map[string]*AllocRunner, len(c.allocs))
for id, ar := range c.allocs {
runners[id] = ar
}
return runners
}
// NumAllocs returns the number of allocs this client has. Used to
// fulfill the AllocCounter interface for the GC.
func (c *Client) NumAllocs() int {
c.allocLock.RLock()
n := len(c.allocs)
c.allocLock.RUnlock()
return n
}
// nodeID restores, or generates if necessary, a unique node ID and SecretID.
// The node ID is, if available, a persistent unique ID. The secret ID is a
// high-entropy random UUID.
func (c *Client) nodeID() (id, secret string, err error) {
var hostID string
hostInfo, err := host.Info()
if !c.config.NoHostUUID && err == nil {
if hashed, ok := helper.HashUUID(hostInfo.HostID); ok {
hostID = hashed
}
}
if hostID == "" {
// Generate a random hostID if no constant ID is available on
// this platform.
hostID = structs.GenerateUUID()
}
// Do not persist in dev mode
if c.config.DevMode {
return hostID, structs.GenerateUUID(), nil
}
// Attempt to read existing ID
idPath := filepath.Join(c.config.StateDir, "client-id")
idBuf, err := ioutil.ReadFile(idPath)
if err != nil && !os.IsNotExist(err) {
return "", "", err
}
// Attempt to read existing secret ID
secretPath := filepath.Join(c.config.StateDir, "secret-id")
secretBuf, err := ioutil.ReadFile(secretPath)
if err != nil && !os.IsNotExist(err) {
return "", "", err
}
// Use existing ID if any
if len(idBuf) != 0 {
id = strings.ToLower(string(idBuf))
} else {
id = hostID
// Persist the ID
if err := ioutil.WriteFile(idPath, []byte(id), 0700); err != nil {
return "", "", err
}
}
if len(secretBuf) != 0 {
secret = string(secretBuf)
} else {
// Generate new ID
secret = structs.GenerateUUID()
// Persist the ID
if err := ioutil.WriteFile(secretPath, []byte(secret), 0700); err != nil {
return "", "", err
}
}
return id, secret, nil
}
// setupNode is used to setup the initial node
func (c *Client) setupNode() error {
node := c.config.Node
if node == nil {
node = &structs.Node{}
c.config.Node = node
}
// Generate an ID and secret for the node
id, secretID, err := c.nodeID()
if err != nil {
return fmt.Errorf("node ID setup failed: %v", err)
}
node.ID = id
node.SecretID = secretID
if node.Attributes == nil {
node.Attributes = make(map[string]string)
}
if node.Links == nil {
node.Links = make(map[string]string)
}
if node.Meta == nil {
node.Meta = make(map[string]string)
}
if node.Resources == nil {
node.Resources = &structs.Resources{}
}
if node.Reserved == nil {
node.Reserved = &structs.Resources{}
}
if node.Datacenter == "" {
node.Datacenter = "dc1"
}
if node.Name == "" {
node.Name, _ = os.Hostname()
}
if node.Name == "" {
node.Name = node.ID
}
node.Status = structs.NodeStatusInit
return nil
}
// reservePorts is used to reserve ports on the fingerprinted network devices.
func (c *Client) reservePorts() {
c.configLock.RLock()
defer c.configLock.RUnlock()
global := c.config.GloballyReservedPorts
if len(global) == 0 {
return
}
node := c.config.Node
networks := node.Resources.Networks
reservedIndex := make(map[string]*structs.NetworkResource, len(networks))
for _, resNet := range node.Reserved.Networks {
reservedIndex[resNet.IP] = resNet
}
// Go through each network device and reserve ports on it.
for _, net := range networks {
res, ok := reservedIndex[net.IP]
if !ok {
res = net.Copy()
res.MBits = 0
reservedIndex[net.IP] = res
}
for _, portVal := range global {
p := structs.Port{Value: portVal}
res.ReservedPorts = append(res.ReservedPorts, p)
}
}
// Clear the reserved networks.
if node.Reserved == nil {
node.Reserved = new(structs.Resources)
} else {
node.Reserved.Networks = nil
}
// Restore the reserved networks
for _, net := range reservedIndex {
node.Reserved.Networks = append(node.Reserved.Networks, net)
}
}
// fingerprint is used to fingerprint the client and setup the node
func (c *Client) fingerprint() error {
whitelist := c.config.ReadStringListToMap("fingerprint.whitelist")
whitelistEnabled := len(whitelist) > 0
blacklist := c.config.ReadStringListToMap("fingerprint.blacklist")
c.logger.Printf("[DEBUG] client: built-in fingerprints: %v", fingerprint.BuiltinFingerprints())
var applied []string
var skipped []string
for _, name := range fingerprint.BuiltinFingerprints() {
// Skip modules that are not in the whitelist if it is enabled.
if _, ok := whitelist[name]; whitelistEnabled && !ok {
skipped = append(skipped, name)
continue
}
// Skip modules that are in the blacklist
if _, ok := blacklist[name]; ok {
skipped = append(skipped, name)
continue
}
f, err := fingerprint.NewFingerprint(name, c.logger)
if err != nil {
return err
}
c.configLock.Lock()
applies, err := f.Fingerprint(c.config, c.config.Node)
c.configLock.Unlock()
if err != nil {
return err
}
if applies {
applied = append(applied, name)
}
p, period := f.Periodic()
if p {
// TODO: If more periodic fingerprinters are added, then
// fingerprintPeriodic should be used to handle all the periodic
// fingerprinters by using a priority queue.
go c.fingerprintPeriodic(name, f, period)
}
}
c.logger.Printf("[DEBUG] client: applied fingerprints %v", applied)
if len(skipped) != 0 {
c.logger.Printf("[DEBUG] client: fingerprint modules skipped due to white/blacklist: %v", skipped)
}
return nil
}
// fingerprintPeriodic runs a fingerprinter at the specified duration.
func (c *Client) fingerprintPeriodic(name string, f fingerprint.Fingerprint, d time.Duration) {
c.logger.Printf("[DEBUG] client: fingerprinting %v every %v", name, d)
for {
select {
case <-time.After(d):
c.configLock.Lock()
if _, err := f.Fingerprint(c.config, c.config.Node); err != nil {
c.logger.Printf("[DEBUG] client: periodic fingerprinting for %v failed: %v", name, err)
}
c.configLock.Unlock()
case <-c.shutdownCh:
return
}
}
}
// setupDrivers is used to find the available drivers
func (c *Client) setupDrivers() error {
// Build the white/blacklists of drivers.
whitelist := c.config.ReadStringListToMap("driver.whitelist")
whitelistEnabled := len(whitelist) > 0
blacklist := c.config.ReadStringListToMap("driver.blacklist")
var avail []string
var skipped []string
driverCtx := driver.NewDriverContext("", "", c.config, c.config.Node, c.logger, nil)
for name := range driver.BuiltinDrivers {
// Skip fingerprinting drivers that are not in the whitelist if it is
// enabled.
if _, ok := whitelist[name]; whitelistEnabled && !ok {
skipped = append(skipped, name)
continue
}
// Skip fingerprinting drivers that are in the blacklist
if _, ok := blacklist[name]; ok {
skipped = append(skipped, name)
continue
}
d, err := driver.NewDriver(name, driverCtx)
if err != nil {
return err
}
c.configLock.Lock()
applies, err := d.Fingerprint(c.config, c.config.Node)
c.configLock.Unlock()
if err != nil {
return err
}
if applies {
avail = append(avail, name)
}
p, period := d.Periodic()
if p {
go c.fingerprintPeriodic(name, d, period)
}
}
c.logger.Printf("[DEBUG] client: available drivers %v", avail)
if len(skipped) != 0 {
c.logger.Printf("[DEBUG] client: drivers skipped due to white/blacklist: %v", skipped)
}
return nil
}
// retryIntv calculates a retry interval value given the base
func (c *Client) retryIntv(base time.Duration) time.Duration {
if c.config.DevMode {
return devModeRetryIntv
}
return base + lib.RandomStagger(base)
}
// registerAndHeartbeat is a long lived goroutine used to register the client
// and then start heartbeatng to the server.
func (c *Client) registerAndHeartbeat() {
// Register the node
c.retryRegisterNode()
// Start watching changes for node changes
go c.watchNodeUpdates()
// Setup the heartbeat timer, for the initial registration
// we want to do this quickly. We want to do it extra quickly
// in development mode.
var heartbeat <-chan time.Time
if c.config.DevMode {
heartbeat = time.After(0)
} else {
heartbeat = time.After(lib.RandomStagger(initialHeartbeatStagger))
}
for {
select {
case <-c.serversDiscoveredCh:
case <-heartbeat:
case <-c.shutdownCh:
return
}
if err := c.updateNodeStatus(); err != nil {
// The servers have changed such that this node has not been
// registered before
if strings.Contains(err.Error(), "node not found") {
// Re-register the node
c.logger.Printf("[INFO] client: re-registering node")
c.retryRegisterNode()
heartbeat = time.After(lib.RandomStagger(initialHeartbeatStagger))
} else {
intv := c.retryIntv(registerRetryIntv)
c.logger.Printf("[ERR] client: heartbeating failed. Retrying in %v: %v", intv, err)
heartbeat = time.After(intv)
// if heartbeating fails, trigger Consul discovery
c.triggerDiscovery()
}
} else {
c.heartbeatLock.Lock()
heartbeat = time.After(c.heartbeatTTL)
c.heartbeatLock.Unlock()
}
}
}
// periodicSnapshot is a long lived goroutine used to periodically snapshot the
// state of the client
func (c *Client) periodicSnapshot() {
// Create a snapshot timer
snapshot := time.After(stateSnapshotIntv)
for {
select {
case <-snapshot:
snapshot = time.After(stateSnapshotIntv)
if err := c.saveState(); err != nil {
c.logger.Printf("[ERR] client: failed to save state: %v", err)
}
case <-c.shutdownCh:
return
}
}
}
// run is a long lived goroutine used to run the client
func (c *Client) run() {
// Watch for changes in allocations
allocUpdates := make(chan *allocUpdates, 8)
go c.watchAllocations(allocUpdates)
for {
select {
case update := <-allocUpdates:
c.runAllocs(update)
case <-c.shutdownCh:
return
}
}
}
// hasNodeChanged calculates a hash for the node attributes- and meta map.
// The new hash values are compared against the old (passed-in) hash values to
// determine if the node properties have changed. It returns the new hash values
// in case they are different from the old hash values.
func (c *Client) hasNodeChanged(oldAttrHash uint64, oldMetaHash uint64) (bool, uint64, uint64) {
c.configLock.RLock()
defer c.configLock.RUnlock()
newAttrHash, err := hashstructure.Hash(c.config.Node.Attributes, nil)
if err != nil {
c.logger.Printf("[DEBUG] client: unable to calculate node attributes hash: %v", err)
}
// Calculate node meta map hash
newMetaHash, err := hashstructure.Hash(c.config.Node.Meta, nil)
if err != nil {
c.logger.Printf("[DEBUG] client: unable to calculate node meta hash: %v", err)
}
if newAttrHash != oldAttrHash || newMetaHash != oldMetaHash {
return true, newAttrHash, newMetaHash
}
return false, oldAttrHash, oldMetaHash
}
// retryRegisterNode is used to register the node or update the registration and
// retry in case of failure.
func (c *Client) retryRegisterNode() {
for {
err := c.registerNode()
if err == nil {
// Registered!
return
}
if err == noServersErr {
c.logger.Print("[DEBUG] client: registration waiting on servers")
c.triggerDiscovery()
} else {
c.logger.Printf("[ERR] client: registration failure: %v", err)
}
select {
case <-c.serversDiscoveredCh:
case <-time.After(c.retryIntv(registerRetryIntv)):
case <-c.shutdownCh:
return
}
}
}
// registerNode is used to register the node or update the registration
func (c *Client) registerNode() error {
node := c.Node()
req := structs.NodeRegisterRequest{
Node: node,
WriteRequest: structs.WriteRequest{Region: c.Region()},
}
var resp structs.NodeUpdateResponse
if err := c.RPC("Node.Register", &req, &resp); err != nil {
return err
}
// Update the node status to ready after we register.
c.configLock.Lock()
node.Status = structs.NodeStatusReady
c.configLock.Unlock()
c.logger.Printf("[INFO] client: node registration complete")
if len(resp.EvalIDs) != 0 {
c.logger.Printf("[DEBUG] client: %d evaluations triggered by node registration", len(resp.EvalIDs))
}
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
c.lastHeartbeat = time.Now()
c.heartbeatTTL = resp.HeartbeatTTL
return nil
}
// updateNodeStatus is used to heartbeat and update the status of the node
func (c *Client) updateNodeStatus() error {
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
req := structs.NodeUpdateStatusRequest{
NodeID: c.NodeID(),
Status: structs.NodeStatusReady,
WriteRequest: structs.WriteRequest{Region: c.Region()},
}
var resp structs.NodeUpdateResponse
if err := c.RPC("Node.UpdateStatus", &req, &resp); err != nil {
c.triggerDiscovery()
return fmt.Errorf("failed to update status: %v", err)
}
if len(resp.EvalIDs) != 0 {
c.logger.Printf("[DEBUG] client: %d evaluations triggered by node update", len(resp.EvalIDs))
}
if resp.Index != 0 {
c.logger.Printf("[DEBUG] client: state updated to %s", req.Status)
}
// Update heartbeat time and ttl
c.lastHeartbeat = time.Now()
c.heartbeatTTL = resp.HeartbeatTTL
// Convert []*NodeServerInfo to []*endpoints
localdc := c.Datacenter()
servers := make(endpoints, 0, len(resp.Servers))
for _, s := range resp.Servers {
addr, err := resolveServer(s.RPCAdvertiseAddr)
if err != nil {
continue
}
e := endpoint{name: s.RPCAdvertiseAddr, addr: addr}
if s.Datacenter != localdc {
// server is non-local; de-prioritize
e.priority = 1
}
servers = append(servers, &e)
}
if len(servers) == 0 {
return fmt.Errorf("server returned no valid servers")
}
c.servers.set(servers)
// Begin polling Consul if there is no Nomad leader. We could be
// heartbeating to a Nomad server that is in the minority of a
// partition of the Nomad server quorum, but this Nomad Agent still
// has connectivity to the existing majority of Nomad Servers, but
// only if it queries Consul.
if resp.LeaderRPCAddr == "" {
c.triggerDiscovery()
}
return nil
}
// updateAllocStatus is used to update the status of an allocation
func (c *Client) updateAllocStatus(alloc *structs.Allocation) {
if alloc.Terminated() {
// Terminated, mark for GC
if ar, ok := c.getAllocRunners()[alloc.ID]; ok {
c.garbageCollector.MarkForCollection(ar)
}
}
// Strip all the information that can be reconstructed at the server. Only
// send the fields that are updatable by the client.
stripped := new(structs.Allocation)
stripped.ID = alloc.ID
stripped.NodeID = c.NodeID()
stripped.TaskStates = alloc.TaskStates
stripped.ClientStatus = alloc.ClientStatus
stripped.ClientDescription = alloc.ClientDescription
stripped.DeploymentStatus = alloc.DeploymentStatus
select {
case c.allocUpdates <- stripped:
case <-c.shutdownCh:
}
}
// allocSync is a long lived function that batches allocation updates to the
// server.
func (c *Client) allocSync() {
staggered := false
syncTicker := time.NewTicker(allocSyncIntv)
updates := make(map[string]*structs.Allocation)
for {
select {
case <-c.shutdownCh:
syncTicker.Stop()
return
case alloc := <-c.allocUpdates:
// Batch the allocation updates until the timer triggers.
updates[alloc.ID] = alloc
case <-syncTicker.C:
// Fast path if there are no updates
if len(updates) == 0 {
continue
}
sync := make([]*structs.Allocation, 0, len(updates))
for _, alloc := range updates {
sync = append(sync, alloc)
}
// Send to server.
args := structs.AllocUpdateRequest{
Alloc: sync,
WriteRequest: structs.WriteRequest{Region: c.Region()},
}
var resp structs.GenericResponse
if err := c.RPC("Node.UpdateAlloc", &args, &resp); err != nil {
c.logger.Printf("[ERR] client: failed to update allocations: %v", err)
syncTicker.Stop()
syncTicker = time.NewTicker(c.retryIntv(allocSyncRetryIntv))
staggered = true
} else {
updates = make(map[string]*structs.Allocation)
if staggered {
syncTicker.Stop()
syncTicker = time.NewTicker(allocSyncIntv)
staggered = false
}
}
}
}
}
// allocUpdates holds the results of receiving updated allocations from the
// servers.
type allocUpdates struct {
// pulled is the set of allocations that were downloaded from the servers.
pulled map[string]*structs.Allocation
// filtered is the set of allocations that were not pulled because their
// AllocModifyIndex didn't change.
filtered map[string]struct{}
}
// watchAllocations is used to scan for updates to allocations
func (c *Client) watchAllocations(updates chan *allocUpdates) {
// The request and response for getting the map of allocations that should
// be running on the Node to their AllocModifyIndex which is incremented
// when the allocation is updated by the servers.
req := structs.NodeSpecificRequest{
NodeID: c.NodeID(),
SecretID: c.secretNodeID(),
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: true,
},
}
var resp structs.NodeClientAllocsResponse
// The request and response for pulling down the set of allocations that are
// new, or updated server side.
allocsReq := structs.AllocsGetRequest{
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: true,
},
}
var allocsResp structs.AllocsGetResponse
OUTER:
for {
// Get the allocation modify index map, blocking for updates. We will
// use this to determine exactly what allocations need to be downloaded
// in full.
resp = structs.NodeClientAllocsResponse{}
err := c.RPC("Node.GetClientAllocs", &req, &resp)
if err != nil {
// Shutdown often causes EOF errors, so check for shutdown first
select {
case <-c.shutdownCh:
return
default:
}
// COMPAT: Remove in 0.6. This is to allow the case in which the
// servers are not fully upgraded before the clients register. This
// can cause the SecretID to be lost
if strings.Contains(err.Error(), "node secret ID does not match") {
c.logger.Printf("[DEBUG] client: re-registering node as there was a secret ID mismatch: %v", err)
c.retryRegisterNode()
} else if err != noServersErr {
c.logger.Printf("[ERR] client: failed to query for node allocations: %v", err)
}
retry := c.retryIntv(getAllocRetryIntv)
select {
case <-c.serversDiscoveredCh:
continue
case <-time.After(retry):
continue
case <-c.shutdownCh:
return
}
}
// Check for shutdown
select {
case <-c.shutdownCh:
return
default:
}
// Filter all allocations whose AllocModifyIndex was not incremented.
// These are the allocations who have either not been updated, or whose
// updates are a result of the client sending an update for the alloc.
// This lets us reduce the network traffic to the server as we don't
// need to pull all the allocations.
var pull []string
filtered := make(map[string]struct{})
runners := c.getAllocRunners()
var pullIndex uint64
for allocID, modifyIndex := range resp.Allocs {
// Pull the allocation if we don't have an alloc runner for the
// allocation or if the alloc runner requires an updated allocation.
runner, ok := runners[allocID]
if !ok || runner.shouldUpdate(modifyIndex) {
// Only pull allocs that are required. Filtered
// allocs might be at a higher index, so ignore
// it.
if modifyIndex > pullIndex {
pullIndex = modifyIndex
}
pull = append(pull, allocID)
} else {
filtered[allocID] = struct{}{}
}
}
// Pull the allocations that passed filtering.
allocsResp.Allocs = nil
var pulledAllocs map[string]*structs.Allocation
if len(pull) != 0 {
// Pull the allocations that need to be updated.
allocsReq.AllocIDs = pull
allocsReq.MinQueryIndex = pullIndex - 1
allocsResp = structs.AllocsGetResponse{}
if err := c.RPC("Alloc.GetAllocs", &allocsReq, &allocsResp); err != nil {
c.logger.Printf("[ERR] client: failed to query updated allocations: %v", err)
retry := c.retryIntv(getAllocRetryIntv)
select {
case <-c.serversDiscoveredCh:
continue
case <-time.After(retry):
continue
case <-c.shutdownCh:
return
}
}
// Ensure that we received all the allocations we wanted
pulledAllocs = make(map[string]*structs.Allocation, len(allocsResp.Allocs))
for _, alloc := range allocsResp.Allocs {
pulledAllocs[alloc.ID] = alloc
}
for _, desiredID := range pull {
if _, ok := pulledAllocs[desiredID]; !ok {
// We didn't get everything we wanted. Do not update the
// MinQueryIndex, sleep and then retry.
wait := c.retryIntv(2 * time.Second)
select {
case <-time.After(wait):
// Wait for the server we contact to receive the
// allocations
continue OUTER
case <-c.shutdownCh:
return
}
}
}
// Check for shutdown
select {
case <-c.shutdownCh:
return
default:
}
}
c.logger.Printf("[DEBUG] client: updated allocations at index %d (total %d) (pulled %d) (filtered %d)",
resp.Index, len(resp.Allocs), len(allocsResp.Allocs), len(filtered))
// Update the query index.
if resp.Index > req.MinQueryIndex {
req.MinQueryIndex = resp.Index
}
// Push the updates.
update := &allocUpdates{
filtered: filtered,
pulled: pulledAllocs,
}
select {
case updates <- update:
case <-c.shutdownCh:
return
}
}
}
// watchNodeUpdates periodically checks for changes to the node attributes or meta map
func (c *Client) watchNodeUpdates() {
c.logger.Printf("[DEBUG] client: periodically checking for node changes at duration %v", nodeUpdateRetryIntv)
// Initialize the hashes
_, attrHash, metaHash := c.hasNodeChanged(0, 0)
var changed bool
for {
select {
case <-time.After(c.retryIntv(nodeUpdateRetryIntv)):
changed, attrHash, metaHash = c.hasNodeChanged(attrHash, metaHash)
if changed {
c.logger.Printf("[DEBUG] client: state changed, updating node.")
// Update the config copy.
c.configLock.Lock()
node := c.config.Node.Copy()
c.configCopy.Node = node
c.configLock.Unlock()
c.retryRegisterNode()
}
case <-c.shutdownCh:
return
}
}
}
// runAllocs is invoked when we get an updated set of allocations
func (c *Client) runAllocs(update *allocUpdates) {
// Get the existing allocs
c.allocLock.RLock()
exist := make([]*structs.Allocation, 0, len(c.allocs))
for _, ar := range c.allocs {
exist = append(exist, ar.alloc)
}
c.allocLock.RUnlock()
// Diff the existing and updated allocations
diff := diffAllocs(exist, update)
c.logger.Printf("[DEBUG] client: %#v", diff)
// Remove the old allocations
for _, remove := range diff.removed {
if err := c.removeAlloc(remove); err != nil {
c.logger.Printf("[ERR] client: failed to remove alloc '%s': %v", remove.ID, err)
}
}
// Update the existing allocations
for _, update := range diff.updated {
if err := c.updateAlloc(update.exist, update.updated); err != nil {
c.logger.Printf("[ERR] client: failed to update alloc %q: %v",
update.exist.ID, err)
}
}
// Start the new allocations
for _, add := range diff.added {
if err := c.addAlloc(add); err != nil {
c.logger.Printf("[ERR] client: failed to add alloc '%s': %v",
add.ID, err)
}
}
}
// removeAlloc is invoked when we should remove an allocation
func (c *Client) removeAlloc(alloc *structs.Allocation) error {
c.allocLock.Lock()
ar, ok := c.allocs[alloc.ID]
if !ok {
c.allocLock.Unlock()
c.logger.Printf("[WARN] client: missing context for alloc '%s'", alloc.ID)
return nil
}
delete(c.allocs, alloc.ID)
c.allocLock.Unlock()
// Ensure the GC has a reference and then collect. Collecting through the GC
// applies rate limiting
c.garbageCollector.MarkForCollection(ar)
go c.garbageCollector.Collect(alloc.ID)
return nil
}
// updateAlloc is invoked when we should update an allocation
func (c *Client) updateAlloc(exist, update *structs.Allocation) error {
c.allocLock.RLock()
ar, ok := c.allocs[exist.ID]
c.allocLock.RUnlock()
if !ok {
c.logger.Printf("[WARN] client: missing context for alloc '%s'", exist.ID)
return nil
}
ar.Update(update)
return nil
}
// addAlloc is invoked when we should add an allocation
func (c *Client) addAlloc(alloc *structs.Allocation) error {
// Check if we already have an alloc runner
c.allocLock.Lock()
if _, ok := c.allocs[alloc.ID]; ok {
c.logger.Printf("[DEBUG]: client: dropping duplicate add allocation request: %q", alloc.ID)
c.allocLock.Unlock()
return nil
}
// get the previous alloc runner - if one exists - for the
// blocking/migrating watcher
var prevAR *AllocRunner
if alloc.PreviousAllocation != "" {
prevAR = c.allocs[alloc.PreviousAllocation]
}
c.configLock.RLock()
prevAlloc := newAllocWatcher(alloc, prevAR, c, c.configCopy, c.logger)
ar := NewAllocRunner(c.logger, c.configCopy, c.stateDB, c.updateAllocStatus, alloc, c.vaultClient, c.consulService, prevAlloc)
c.configLock.RUnlock()
// Store the alloc runner.
c.allocs[alloc.ID] = ar
if err := ar.SaveState(); err != nil {
c.logger.Printf("[WARN] client: initial save state for alloc %q failed: %v", alloc.ID, err)
}
// Must release allocLock as GC acquires it to count allocs
c.allocLock.Unlock()
// Make room for the allocation before running it
if err := c.garbageCollector.MakeRoomFor([]*structs.Allocation{alloc}); err != nil {
c.logger.Printf("[ERR] client: error making room for allocation: %v", err)
}
go ar.Run()
return nil
}
// setupVaultClient creates an object to periodically renew tokens and secrets
// with vault.
func (c *Client) setupVaultClient() error {
var err error
c.vaultClient, err = vaultclient.NewVaultClient(c.config.VaultConfig, c.logger, c.deriveToken)
if err != nil {
return err
}
if c.vaultClient == nil {
c.logger.Printf("[ERR] client: failed to create vault client")
return fmt.Errorf("failed to create vault client")
}
// Start renewing tokens and secrets
c.vaultClient.Start()
return nil
}
// deriveToken takes in an allocation and a set of tasks and derives vault
// tokens for each of the tasks, unwraps all of them using the supplied vault
// client and returns a map of unwrapped tokens, indexed by the task name.
func (c *Client) deriveToken(alloc *structs.Allocation, taskNames []string, vclient *vaultapi.Client) (map[string]string, error) {
if alloc == nil {
return nil, fmt.Errorf("nil allocation")
}
if taskNames == nil || len(taskNames) == 0 {
return nil, fmt.Errorf("missing task names")
}
group := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if group == nil {
return nil, fmt.Errorf("group name in allocation is not present in job")
}
verifiedTasks := []string{}
found := false
// Check if the given task names actually exist in the allocation
for _, taskName := range taskNames {
found = false
for _, task := range group.Tasks {
if task.Name == taskName {
found = true
}
}
if !found {
c.logger.Printf("[ERR] task %q not found in the allocation", taskName)
return nil, fmt.Errorf("task %q not found in the allocaition", taskName)
}
verifiedTasks = append(verifiedTasks, taskName)
}
// DeriveVaultToken of nomad server can take in a set of tasks and
// creates tokens for all the tasks.
req := &structs.DeriveVaultTokenRequest{
NodeID: c.NodeID(),
SecretID: c.secretNodeID(),
AllocID: alloc.ID,
Tasks: verifiedTasks,
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: false,
},
}
// Derive the tokens
var resp structs.DeriveVaultTokenResponse
if err := c.RPC("Node.DeriveVaultToken", &req, &resp); err != nil {
c.logger.Printf("[ERR] client.vault: DeriveVaultToken RPC failed: %v", err)
return nil, fmt.Errorf("DeriveVaultToken RPC failed: %v", err)
}
if resp.Error != nil {
c.logger.Printf("[ERR] client.vault: failed to derive vault tokens: %v", resp.Error)
return nil, resp.Error
}
if resp.Tasks == nil {
c.logger.Printf("[ERR] client.vault: failed to derive vault token: invalid response")
return nil, fmt.Errorf("failed to derive vault tokens: invalid response")
}
unwrappedTokens := make(map[string]string)
// Retrieve the wrapped tokens from the response and unwrap it
for _, taskName := range verifiedTasks {
// Get the wrapped token
wrappedToken, ok := resp.Tasks[taskName]
if !ok {
c.logger.Printf("[ERR] client.vault: wrapped token missing for task %q", taskName)
return nil, fmt.Errorf("wrapped token missing for task %q", taskName)
}
// Unwrap the vault token
unwrapResp, err := vclient.Logical().Unwrap(wrappedToken)
if err != nil {
return nil, fmt.Errorf("failed to unwrap the token for task %q: %v", taskName, err)
}
if unwrapResp == nil || unwrapResp.Auth == nil || unwrapResp.Auth.ClientToken == "" {
return nil, fmt.Errorf("failed to unwrap the token for task %q", taskName)
}
// Append the unwrapped token to the return value
unwrappedTokens[taskName] = unwrapResp.Auth.ClientToken
}
return unwrappedTokens, nil
}
// triggerDiscovery causes a Consul discovery to begin (if one hasn't alread)
func (c *Client) triggerDiscovery() {
select {
case c.triggerDiscoveryCh <- struct{}{}:
// Discovery goroutine was released to execute
default:
// Discovery goroutine was already running
}
}
// consulDiscovery waits for the signal to attempt server discovery via Consul.
// It's intended to be started in a goroutine. See triggerDiscovery() for
// causing consul discovery from other code locations.
func (c *Client) consulDiscovery() {
for {
select {
case <-c.triggerDiscoveryCh:
if err := c.consulDiscoveryImpl(); err != nil {
c.logger.Printf("[ERR] client.consul: error discovering nomad servers: %v", err)
}
case <-c.shutdownCh:
return
}
}
}
func (c *Client) consulDiscoveryImpl() error {
// Acquire heartbeat lock to prevent heartbeat from running
// concurrently with discovery. Concurrent execution is safe, however
// discovery is usually triggered when heartbeating has failed so
// there's no point in allowing it.
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
dcs, err := c.consulCatalog.Datacenters()
if err != nil {
return fmt.Errorf("client.consul: unable to query Consul datacenters: %v", err)
}
if len(dcs) > 2 {
// Query the local DC first, then shuffle the
// remaining DCs. Future heartbeats will cause Nomad
// Clients to fixate on their local datacenter so
// it's okay to talk with remote DCs. If the no
// Nomad servers are available within
// datacenterQueryLimit, the next heartbeat will pick
// a new set of servers so it's okay.
shuffleStrings(dcs[1:])
dcs = dcs[0:lib.MinInt(len(dcs), datacenterQueryLimit)]
}
// Query for servers in this client's region only
region := c.Region()
rpcargs := structs.GenericRequest{
QueryOptions: structs.QueryOptions{
Region: region,
},
}
serviceName := c.configCopy.ConsulConfig.ServerServiceName
var mErr multierror.Error
var servers endpoints
c.logger.Printf("[DEBUG] client.consul: bootstrap contacting following Consul DCs: %+q", dcs)
DISCOLOOP:
for _, dc := range dcs {
consulOpts := &consulapi.QueryOptions{
AllowStale: true,
Datacenter: dc,
Near: "_agent",
WaitTime: consul.DefaultQueryWaitDuration,
}
consulServices, _, err := c.consulCatalog.Service(serviceName, consul.ServiceTagRPC, consulOpts)
if err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("unable to query service %+q from Consul datacenter %+q: %v", serviceName, dc, err))
continue
}
for _, s := range consulServices {
port := strconv.Itoa(s.ServicePort)
addrstr := s.ServiceAddress
if addrstr == "" {
addrstr = s.Address
}
addr, err := net.ResolveTCPAddr("tcp", net.JoinHostPort(addrstr, port))
if err != nil {
mErr.Errors = append(mErr.Errors, err)
continue
}
var peers []string
if err := c.connPool.RPC(region, addr, c.RPCMajorVersion(), "Status.Peers", rpcargs, &peers); err != nil {
mErr.Errors = append(mErr.Errors, err)
continue
}
// Successfully received the Server peers list of the correct
// region
for _, p := range peers {
addr, err := net.ResolveTCPAddr("tcp", p)
if err != nil {
mErr.Errors = append(mErr.Errors, err)
}
servers = append(servers, &endpoint{name: p, addr: addr})
}
if len(servers) > 0 {
break DISCOLOOP
}
}
}
if len(servers) == 0 {
if len(mErr.Errors) > 0 {
return mErr.ErrorOrNil()
}
return fmt.Errorf("no Nomad Servers advertising service %q in Consul datacenters: %+q", serviceName, dcs)
}
c.logger.Printf("[INFO] client.consul: discovered following Servers: %s", servers)
c.servers.set(servers)
// Notify waiting rpc calls. If a goroutine just failed an RPC call and
// isn't receiving on this chan yet they'll still retry eventually.
// This is a shortcircuit for the longer retry intervals.
for {
select {
case c.serversDiscoveredCh <- struct{}{}:
default:
return nil
}
}
}
// emitStats collects host resource usage stats periodically
func (c *Client) emitStats() {
// Assign labels directly before emitting stats so the information expected
// is ready
c.baseLabels = []metrics.Label{{Name: "node_id", Value: c.NodeID()}, {Name: "datacenter", Value: c.Datacenter()}}
// Start collecting host stats right away and then keep collecting every
// collection interval
next := time.NewTimer(0)
defer next.Stop()
for {
select {
case <-next.C:
err := c.hostStatsCollector.Collect()
next.Reset(c.config.StatsCollectionInterval)
if err != nil {
c.logger.Printf("[WARN] client: error fetching host resource usage stats: %v", err)
continue
}
// Publish Node metrics if operator has opted in
if c.config.PublishNodeMetrics {
c.emitHostStats()
}
c.emitClientMetrics()
case <-c.shutdownCh:
return
}
}
}
// setGaugeForMemoryStats proxies metrics for memory specific statistics
func (c *Client) setGaugeForMemoryStats(nodeID string, hStats *stats.HostStats) {
if !c.config.DisableTaggedMetrics {
metrics.SetGaugeWithLabels([]string{"client", "host", "memory", "total"}, float32(hStats.Memory.Total), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "host", "memory", "available"}, float32(hStats.Memory.Available), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "host", "memory", "used"}, float32(hStats.Memory.Used), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "host", "memory", "free"}, float32(hStats.Memory.Free), c.baseLabels)
}
if c.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "total"}, float32(hStats.Memory.Total))
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "available"}, float32(hStats.Memory.Available))
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "used"}, float32(hStats.Memory.Used))
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "free"}, float32(hStats.Memory.Free))
}
}
// setGaugeForCPUStats proxies metrics for CPU specific statistics
func (c *Client) setGaugeForCPUStats(nodeID string, hStats *stats.HostStats) {
for _, cpu := range hStats.CPU {
if !c.config.DisableTaggedMetrics {
labels := append(c.baseLabels, metrics.Label{"cpu", cpu.CPU})
metrics.SetGaugeWithLabels([]string{"client", "host", "cpu", "total"}, float32(cpu.Total), labels)
metrics.SetGaugeWithLabels([]string{"client", "host", "cpu", "user"}, float32(cpu.User), labels)
metrics.SetGaugeWithLabels([]string{"client", "host", "cpu", "idle"}, float32(cpu.Idle), labels)
metrics.SetGaugeWithLabels([]string{"client", "host", "cpu", "system"}, float32(cpu.System), labels)
}
if c.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "total"}, float32(cpu.Total))
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "user"}, float32(cpu.User))
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "idle"}, float32(cpu.Idle))
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "system"}, float32(cpu.System))
}
}
}
// setGaugeForDiskStats proxies metrics for disk specific statistics
func (c *Client) setGaugeForDiskStats(nodeID string, hStats *stats.HostStats) {
for _, disk := range hStats.DiskStats {
if !c.config.DisableTaggedMetrics {
labels := append(c.baseLabels, metrics.Label{"disk", disk.Device})
metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "size"}, float32(disk.Size), labels)
metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "used"}, float32(disk.Used), labels)
metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "available"}, float32(disk.Available), labels)
metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "used_percent"}, float32(disk.UsedPercent), labels)
metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "inodes_percent"}, float32(disk.InodesUsedPercent), labels)
}
if c.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "size"}, float32(disk.Size))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "used"}, float32(disk.Used))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "available"}, float32(disk.Available))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "used_percent"}, float32(disk.UsedPercent))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "inodes_percent"}, float32(disk.InodesUsedPercent))
}
}
}
// setGaugeForAllocationStats proxies metrics for allocation specific statistics
func (c *Client) setGaugeForAllocationStats(nodeID string) {
c.configLock.RLock()
node := c.configCopy.Node
c.configLock.RUnlock()
total := node.Resources
res := node.Reserved
allocated := c.getAllocatedResources(node)
// Emit allocated
if !c.config.DisableTaggedMetrics {
metrics.SetGaugeWithLabels([]string{"client", "allocated", "memory"}, float32(allocated.MemoryMB), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocated", "disk"}, float32(allocated.DiskMB), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocated", "cpu"}, float32(allocated.CPU), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocated", "iops"}, float32(allocated.IOPS), c.baseLabels)
}
if c.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "allocated", "memory", nodeID}, float32(allocated.MemoryMB))
metrics.SetGauge([]string{"client", "allocated", "disk", nodeID}, float32(allocated.DiskMB))
metrics.SetGauge([]string{"client", "allocated", "cpu", nodeID}, float32(allocated.CPU))
metrics.SetGauge([]string{"client", "allocated", "iops", nodeID}, float32(allocated.IOPS))
}
for _, n := range allocated.Networks {
if !c.config.DisableTaggedMetrics {
labels := append(c.baseLabels, metrics.Label{"device", n.Device})
metrics.SetGaugeWithLabels([]string{"client", "allocated", "network"}, float32(n.MBits), labels)
}
if c.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "allocated", "network", n.Device, nodeID}, float32(n.MBits))
}
}
// Emit unallocated
unallocatedMem := total.MemoryMB - res.MemoryMB - allocated.MemoryMB
unallocatedDisk := total.DiskMB - res.DiskMB - allocated.DiskMB
unallocatedCpu := total.CPU - res.CPU - allocated.CPU
unallocatedIops := total.IOPS - res.IOPS - allocated.IOPS
if !c.config.DisableTaggedMetrics {
metrics.SetGaugeWithLabels([]string{"client", "unallocated", "memory"}, float32(unallocatedMem), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "unallocated", "disk"}, float32(unallocatedDisk), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "unallocated", "cpu"}, float32(unallocatedCpu), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "unallocated", "iops"}, float32(unallocatedIops), c.baseLabels)
}
if c.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "unallocated", "memory", nodeID}, float32(unallocatedMem))
metrics.SetGauge([]string{"client", "unallocated", "disk", nodeID}, float32(unallocatedDisk))
metrics.SetGauge([]string{"client", "unallocated", "cpu", nodeID}, float32(unallocatedCpu))
metrics.SetGauge([]string{"client", "unallocated", "iops", nodeID}, float32(unallocatedIops))
}
for _, n := range allocated.Networks {
totalMbits := 0
totalIdx := total.NetIndex(n)
if totalIdx != -1 {
totalMbits = total.Networks[totalIdx].MBits
continue
}
unallocatedMbits := totalMbits - n.MBits
if !c.config.DisableTaggedMetrics {
labels := append(c.baseLabels, metrics.Label{"device", n.Device})
metrics.SetGaugeWithLabels([]string{"client", "unallocated", "network"}, float32(unallocatedMbits), labels)
}
if c.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "unallocated", "network", n.Device, nodeID}, float32(unallocatedMbits))
}
}
}
// No lables are required so we emit with only a key/value syntax
func (c *Client) setGaugeForUptime(hStats *stats.HostStats) {
if !c.config.DisableTaggedMetrics {
metrics.SetGaugeWithLabels([]string{"uptime"}, float32(hStats.Uptime), c.baseLabels)
}
if c.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"uptime"}, float32(hStats.Uptime))
}
}
// emitHostStats pushes host resource usage stats to remote metrics collection sinks
func (c *Client) emitHostStats() {
nodeID := c.NodeID()
hStats := c.hostStatsCollector.Stats()
c.setGaugeForMemoryStats(nodeID, hStats)
c.setGaugeForUptime(hStats)
c.setGaugeForCPUStats(nodeID, hStats)
c.setGaugeForDiskStats(nodeID, hStats)
// TODO: This should be moved to emitClientMetrics
c.setGaugeForAllocationStats(nodeID)
}
// emitClientMetrics emits lower volume client metrics
func (c *Client) emitClientMetrics() {
nodeID := c.NodeID()
// Emit allocation metrics
blocked, migrating, pending, running, terminal := 0, 0, 0, 0, 0
for _, ar := range c.getAllocRunners() {
switch ar.Alloc().ClientStatus {
case structs.AllocClientStatusPending:
switch {
case ar.IsWaiting():
blocked++
case ar.IsMigrating():
migrating++
default:
pending++
}
case structs.AllocClientStatusRunning:
running++
case structs.AllocClientStatusComplete, structs.AllocClientStatusFailed:
terminal++
}
}
if !c.config.DisableTaggedMetrics {
metrics.SetGaugeWithLabels([]string{"client", "allocations", "migrating"}, float32(migrating), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocations", "blocked"}, float32(blocked), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocations", "pending"}, float32(pending), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocations", "running"}, float32(running), c.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocations", "terminal"}, float32(terminal), c.baseLabels)
}
if c.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "allocations", "migrating", nodeID}, float32(migrating))
metrics.SetGauge([]string{"client", "allocations", "blocked", nodeID}, float32(blocked))
metrics.SetGauge([]string{"client", "allocations", "pending", nodeID}, float32(pending))
metrics.SetGauge([]string{"client", "allocations", "running", nodeID}, float32(running))
metrics.SetGauge([]string{"client", "allocations", "terminal", nodeID}, float32(terminal))
}
}
func (c *Client) getAllocatedResources(selfNode *structs.Node) *structs.Resources {
// Unfortunately the allocs only have IP so we need to match them to the
// device
cidrToDevice := make(map[*net.IPNet]string, len(selfNode.Resources.Networks))
for _, n := range selfNode.Resources.Networks {
_, ipnet, err := net.ParseCIDR(n.CIDR)
if err != nil {
continue
}
cidrToDevice[ipnet] = n.Device
}
// Sum the allocated resources
allocs := c.allAllocs()
var allocated structs.Resources
allocatedDeviceMbits := make(map[string]int)
for _, alloc := range allocs {
if !alloc.TerminalStatus() {
allocated.Add(alloc.Resources)
for _, allocatedNetwork := range alloc.Resources.Networks {
for cidr, dev := range cidrToDevice {
ip := net.ParseIP(allocatedNetwork.IP)
if cidr.Contains(ip) {
allocatedDeviceMbits[dev] += allocatedNetwork.MBits
break
}
}
}
}
}
// Clear the networks
allocated.Networks = nil
for dev, speed := range allocatedDeviceMbits {
net := &structs.NetworkResource{
Device: dev,
MBits: speed,
}
allocated.Networks = append(allocated.Networks, net)
}
return &allocated
}
// allAllocs returns all the allocations managed by the client
func (c *Client) allAllocs() map[string]*structs.Allocation {
ars := c.getAllocRunners()
allocs := make(map[string]*structs.Allocation, len(ars))
for _, ar := range c.getAllocRunners() {
a := ar.Alloc()
allocs[a.ID] = a
}
return allocs
}
// resolveServer given a sever's address as a string, return it's resolved
// net.Addr or an error.
func resolveServer(s string) (net.Addr, error) {
const defaultClientPort = "4647" // default client RPC port
host, port, err := net.SplitHostPort(s)
if err != nil {
if strings.Contains(err.Error(), "missing port") {
host = s
port = defaultClientPort
} else {
return nil, err
}
}
return net.ResolveTCPAddr("tcp", net.JoinHostPort(host, port))
}