open-nomad/scheduler/feasible_test.go

1490 lines
34 KiB
Go

package scheduler
import (
"fmt"
"reflect"
"testing"
"github.com/hashicorp/nomad/nomad/mock"
"github.com/hashicorp/nomad/nomad/structs"
)
func TestStaticIterator_Reset(t *testing.T) {
_, ctx := testContext(t)
var nodes []*structs.Node
for i := 0; i < 3; i++ {
nodes = append(nodes, mock.Node())
}
static := NewStaticIterator(ctx, nodes)
for i := 0; i < 6; i++ {
static.Reset()
for j := 0; j < i; j++ {
static.Next()
}
static.Reset()
out := collectFeasible(static)
if len(out) != len(nodes) {
t.Fatalf("out: %#v", out)
t.Fatalf("missing nodes %d %#v", i, static)
}
ids := make(map[string]struct{})
for _, o := range out {
if _, ok := ids[o.ID]; ok {
t.Fatalf("duplicate")
}
ids[o.ID] = struct{}{}
}
}
}
func TestStaticIterator_SetNodes(t *testing.T) {
_, ctx := testContext(t)
var nodes []*structs.Node
for i := 0; i < 3; i++ {
nodes = append(nodes, mock.Node())
}
static := NewStaticIterator(ctx, nodes)
newNodes := []*structs.Node{mock.Node()}
static.SetNodes(newNodes)
out := collectFeasible(static)
if !reflect.DeepEqual(out, newNodes) {
t.Fatalf("bad: %#v", out)
}
}
func TestRandomIterator(t *testing.T) {
_, ctx := testContext(t)
var nodes []*structs.Node
for i := 0; i < 10; i++ {
nodes = append(nodes, mock.Node())
}
nc := make([]*structs.Node, len(nodes))
copy(nc, nodes)
rand := NewRandomIterator(ctx, nc)
out := collectFeasible(rand)
if len(out) != len(nodes) {
t.Fatalf("missing nodes")
}
if reflect.DeepEqual(out, nodes) {
t.Fatalf("same order")
}
}
func TestDriverChecker(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
}
nodes[0].Attributes["driver.foo"] = "1"
nodes[1].Attributes["driver.foo"] = "0"
nodes[2].Attributes["driver.foo"] = "true"
nodes[3].Attributes["driver.foo"] = "False"
drivers := map[string]struct{}{
"exec": struct{}{},
"foo": struct{}{},
}
checker := NewDriverChecker(ctx, drivers)
cases := []struct {
Node *structs.Node
Result bool
}{
{
Node: nodes[0],
Result: true,
},
{
Node: nodes[1],
Result: false,
},
{
Node: nodes[2],
Result: true,
},
{
Node: nodes[3],
Result: false,
},
}
for i, c := range cases {
if act := checker.Feasible(c.Node); act != c.Result {
t.Fatalf("case(%d) failed: got %v; want %v", i, act, c.Result)
}
}
}
func TestConstraintChecker(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
}
nodes[0].Attributes["kernel.name"] = "freebsd"
nodes[1].Datacenter = "dc2"
nodes[2].NodeClass = "large"
constraints := []*structs.Constraint{
&structs.Constraint{
Operand: "=",
LTarget: "${node.datacenter}",
RTarget: "dc1",
},
&structs.Constraint{
Operand: "is",
LTarget: "${attr.kernel.name}",
RTarget: "linux",
},
&structs.Constraint{
Operand: "is",
LTarget: "${node.class}",
RTarget: "large",
},
}
checker := NewConstraintChecker(ctx, constraints)
cases := []struct {
Node *structs.Node
Result bool
}{
{
Node: nodes[0],
Result: false,
},
{
Node: nodes[1],
Result: false,
},
{
Node: nodes[2],
Result: true,
},
}
for i, c := range cases {
if act := checker.Feasible(c.Node); act != c.Result {
t.Fatalf("case(%d) failed: got %v; want %v", i, act, c.Result)
}
}
}
func TestResolveConstraintTarget(t *testing.T) {
type tcase struct {
target string
node *structs.Node
val interface{}
result bool
}
node := mock.Node()
cases := []tcase{
{
target: "${node.unique.id}",
node: node,
val: node.ID,
result: true,
},
{
target: "${node.datacenter}",
node: node,
val: node.Datacenter,
result: true,
},
{
target: "${node.unique.name}",
node: node,
val: node.Name,
result: true,
},
{
target: "${node.class}",
node: node,
val: node.NodeClass,
result: true,
},
{
target: "${node.foo}",
node: node,
result: false,
},
{
target: "${attr.kernel.name}",
node: node,
val: node.Attributes["kernel.name"],
result: true,
},
{
target: "${attr.rand}",
node: node,
result: false,
},
{
target: "${meta.pci-dss}",
node: node,
val: node.Meta["pci-dss"],
result: true,
},
{
target: "${meta.rand}",
node: node,
result: false,
},
}
for _, tc := range cases {
res, ok := resolveConstraintTarget(tc.target, tc.node)
if ok != tc.result {
t.Fatalf("TC: %#v, Result: %v %v", tc, res, ok)
}
if ok && !reflect.DeepEqual(res, tc.val) {
t.Fatalf("TC: %#v, Result: %v %v", tc, res, ok)
}
}
}
func TestCheckConstraint(t *testing.T) {
type tcase struct {
op string
lVal, rVal interface{}
result bool
}
cases := []tcase{
{
op: "=",
lVal: "foo", rVal: "foo",
result: true,
},
{
op: "is",
lVal: "foo", rVal: "foo",
result: true,
},
{
op: "==",
lVal: "foo", rVal: "foo",
result: true,
},
{
op: "!=",
lVal: "foo", rVal: "foo",
result: false,
},
{
op: "!=",
lVal: "foo", rVal: "bar",
result: true,
},
{
op: "not",
lVal: "foo", rVal: "bar",
result: true,
},
{
op: structs.ConstraintVersion,
lVal: "1.2.3", rVal: "~> 1.0",
result: true,
},
{
op: structs.ConstraintRegex,
lVal: "foobarbaz", rVal: "[\\w]+",
result: true,
},
{
op: "<",
lVal: "foo", rVal: "bar",
result: false,
},
{
op: structs.ConstraintSetContains,
lVal: "foo,bar,baz", rVal: "foo, bar ",
result: true,
},
{
op: structs.ConstraintSetContains,
lVal: "foo,bar,baz", rVal: "foo,bam",
result: false,
},
}
for _, tc := range cases {
_, ctx := testContext(t)
if res := checkConstraint(ctx, tc.op, tc.lVal, tc.rVal); res != tc.result {
t.Fatalf("TC: %#v, Result: %v", tc, res)
}
}
}
func TestCheckLexicalOrder(t *testing.T) {
type tcase struct {
op string
lVal, rVal interface{}
result bool
}
cases := []tcase{
{
op: "<",
lVal: "bar", rVal: "foo",
result: true,
},
{
op: "<=",
lVal: "foo", rVal: "foo",
result: true,
},
{
op: ">",
lVal: "bar", rVal: "foo",
result: false,
},
{
op: ">=",
lVal: "bar", rVal: "bar",
result: true,
},
{
op: ">",
lVal: 1, rVal: "foo",
result: false,
},
}
for _, tc := range cases {
if res := checkLexicalOrder(tc.op, tc.lVal, tc.rVal); res != tc.result {
t.Fatalf("TC: %#v, Result: %v", tc, res)
}
}
}
func TestCheckVersionConstraint(t *testing.T) {
type tcase struct {
lVal, rVal interface{}
result bool
}
cases := []tcase{
{
lVal: "1.2.3", rVal: "~> 1.0",
result: true,
},
{
lVal: "1.2.3", rVal: ">= 1.0, < 1.4",
result: true,
},
{
lVal: "2.0.1", rVal: "~> 1.0",
result: false,
},
{
lVal: "1.4", rVal: ">= 1.0, < 1.4",
result: false,
},
{
lVal: 1, rVal: "~> 1.0",
result: true,
},
}
for _, tc := range cases {
_, ctx := testContext(t)
if res := checkVersionConstraint(ctx, tc.lVal, tc.rVal); res != tc.result {
t.Fatalf("TC: %#v, Result: %v", tc, res)
}
}
}
func TestCheckRegexpConstraint(t *testing.T) {
type tcase struct {
lVal, rVal interface{}
result bool
}
cases := []tcase{
{
lVal: "foobar", rVal: "bar",
result: true,
},
{
lVal: "foobar", rVal: "^foo",
result: true,
},
{
lVal: "foobar", rVal: "^bar",
result: false,
},
{
lVal: "zipzap", rVal: "foo",
result: false,
},
{
lVal: 1, rVal: "foo",
result: false,
},
}
for _, tc := range cases {
_, ctx := testContext(t)
if res := checkRegexpConstraint(ctx, tc.lVal, tc.rVal); res != tc.result {
t.Fatalf("TC: %#v, Result: %v", tc, res)
}
}
}
// This test puts allocations on the node to test if it detects infeasibility of
// nodes correctly and picks the only feasible one
func TestDistinctHostsIterator_JobDistinctHosts(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
mock.Node(),
}
static := NewStaticIterator(ctx, nodes)
// Create a job with a distinct_hosts constraint and two task groups.
tg1 := &structs.TaskGroup{Name: "bar"}
tg2 := &structs.TaskGroup{Name: "baz"}
job := &structs.Job{
ID: "foo",
Constraints: []*structs.Constraint{{Operand: structs.ConstraintDistinctHosts}},
TaskGroups: []*structs.TaskGroup{tg1, tg2},
}
// Add allocs placing tg1 on node1 and tg2 on node2. This should make the
// job unsatisfiable on all nodes but node3
plan := ctx.Plan()
plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
},
}
plan.NodeAllocation[nodes[1].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
},
}
proposed := NewDistinctHostsIterator(ctx, static)
proposed.SetTaskGroup(tg1)
proposed.SetJob(job)
out := collectFeasible(proposed)
if len(out) != 1 {
t.Fatalf("Bad: %#v", out)
}
if out[0].ID != nodes[2].ID {
t.Fatalf("wrong node picked")
}
}
func TestDistinctHostsIterator_JobDistinctHosts_InfeasibleCount(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
}
static := NewStaticIterator(ctx, nodes)
// Create a job with a distinct_hosts constraint and three task groups.
tg1 := &structs.TaskGroup{Name: "bar"}
tg2 := &structs.TaskGroup{Name: "baz"}
tg3 := &structs.TaskGroup{Name: "bam"}
job := &structs.Job{
ID: "foo",
Constraints: []*structs.Constraint{{Operand: structs.ConstraintDistinctHosts}},
TaskGroups: []*structs.TaskGroup{tg1, tg2, tg3},
}
// Add allocs placing tg1 on node1 and tg2 on node2. This should make the
// job unsatisfiable for tg3
plan := ctx.Plan()
plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
ID: structs.GenerateUUID(),
},
}
plan.NodeAllocation[nodes[1].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
ID: structs.GenerateUUID(),
},
}
proposed := NewDistinctHostsIterator(ctx, static)
proposed.SetTaskGroup(tg3)
proposed.SetJob(job)
// It should not be able to place 3 tasks with only two nodes.
out := collectFeasible(proposed)
if len(out) != 0 {
t.Fatalf("Bad: %#v", out)
}
}
func TestDistinctHostsIterator_TaskGroupDistinctHosts(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
}
static := NewStaticIterator(ctx, nodes)
// Create a task group with a distinct_hosts constraint.
tg1 := &structs.TaskGroup{
Name: "example",
Constraints: []*structs.Constraint{
{Operand: structs.ConstraintDistinctHosts},
},
}
tg2 := &structs.TaskGroup{Name: "baz"}
// Add a planned alloc to node1.
plan := ctx.Plan()
plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: "foo",
},
}
// Add a planned alloc to node2 with the same task group name but a
// different job.
plan.NodeAllocation[nodes[1].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: "bar",
},
}
proposed := NewDistinctHostsIterator(ctx, static)
proposed.SetTaskGroup(tg1)
proposed.SetJob(&structs.Job{ID: "foo"})
out := collectFeasible(proposed)
if len(out) != 1 {
t.Fatalf("Bad: %#v", out)
}
// Expect it to skip the first node as there is a previous alloc on it for
// the same task group.
if out[0] != nodes[1] {
t.Fatalf("Bad: %v", out)
}
// Since the other task group doesn't have the constraint, both nodes should
// be feasible.
proposed.Reset()
proposed.SetTaskGroup(tg2)
out = collectFeasible(proposed)
if len(out) != 2 {
t.Fatalf("Bad: %#v", out)
}
}
// This test puts creates allocations across task groups that use a property
// value to detect if the constraint at the job level properly considers all
// task groups.
func TestDistinctPropertyIterator_JobDistinctProperty(t *testing.T) {
state, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
mock.Node(),
}
for i, n := range nodes {
n.Meta["rack"] = fmt.Sprintf("%d", i)
// Add to state store
if err := state.UpsertNode(uint64(100+i), n); err != nil {
t.Fatalf("failed to upsert node: %v", err)
}
}
static := NewStaticIterator(ctx, nodes)
// Create a job with a distinct_property constraint and a task groups.
tg1 := &structs.TaskGroup{Name: "bar"}
tg2 := &structs.TaskGroup{Name: "baz"}
job := &structs.Job{
ID: "foo",
Constraints: []*structs.Constraint{
{
Operand: structs.ConstraintDistinctProperty,
LTarget: "${meta.rack}",
},
},
TaskGroups: []*structs.TaskGroup{tg1, tg2},
}
// Add allocs placing tg1 on node1 and 2 and tg2 on node3 and 4. This should make the
// job unsatisfiable on all nodes but node5. Also mix the allocations
// existing in the plan and the state store.
plan := ctx.Plan()
alloc1ID := structs.GenerateUUID()
plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: alloc1ID,
NodeID: nodes[0].ID,
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
}
plan.NodeAllocation[nodes[2].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[2].ID,
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[2].ID,
},
}
// Put an allocation on Node 5 but make it stopped in the plan
stoppingAllocID := structs.GenerateUUID()
plan.NodeUpdate[nodes[4].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: stoppingAllocID,
NodeID: nodes[4].ID,
},
}
upserting := []*structs.Allocation{
// Have one of the allocations exist in both the plan and the state
// store. This resembles an allocation update
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: alloc1ID,
EvalID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[3].ID,
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[3].ID,
},
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: stoppingAllocID,
EvalID: structs.GenerateUUID(),
NodeID: nodes[4].ID,
},
}
if err := state.UpsertAllocs(1000, upserting); err != nil {
t.Fatalf("failed to UpsertAllocs: %v", err)
}
proposed := NewDistinctPropertyIterator(ctx, static)
proposed.SetJob(job)
proposed.SetTaskGroup(tg2)
proposed.Reset()
out := collectFeasible(proposed)
if len(out) != 1 {
t.Fatalf("Bad: %#v", out)
}
if out[0].ID != nodes[4].ID {
t.Fatalf("wrong node picked")
}
}
// This test creates allocations across task groups that use a property value to
// detect if the constraint at the job level properly considers all task groups
// when the constraint allows a count greater than one
func TestDistinctPropertyIterator_JobDistinctProperty_Count(t *testing.T) {
state, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
mock.Node(),
}
for i, n := range nodes {
n.Meta["rack"] = fmt.Sprintf("%d", i)
// Add to state store
if err := state.UpsertNode(uint64(100+i), n); err != nil {
t.Fatalf("failed to upsert node: %v", err)
}
}
static := NewStaticIterator(ctx, nodes)
// Create a job with a distinct_property constraint and a task groups.
tg1 := &structs.TaskGroup{Name: "bar"}
tg2 := &structs.TaskGroup{Name: "baz"}
job := &structs.Job{
ID: "foo",
Constraints: []*structs.Constraint{
{
Operand: structs.ConstraintDistinctProperty,
LTarget: "${meta.rack}",
RTarget: "2",
},
},
TaskGroups: []*structs.TaskGroup{tg1, tg2},
}
// Add allocs placing two allocations on both node 1 and 2 and only one on
// node 3. This should make the job unsatisfiable on all nodes but node5.
// Also mix the allocations existing in the plan and the state store.
plan := ctx.Plan()
alloc1ID := structs.GenerateUUID()
plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: alloc1ID,
NodeID: nodes[0].ID,
},
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: alloc1ID,
NodeID: nodes[0].ID,
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
}
plan.NodeAllocation[nodes[1].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
}
plan.NodeAllocation[nodes[2].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[2].ID,
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[2].ID,
},
}
// Put an allocation on Node 3 but make it stopped in the plan
stoppingAllocID := structs.GenerateUUID()
plan.NodeUpdate[nodes[2].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: stoppingAllocID,
NodeID: nodes[2].ID,
},
}
upserting := []*structs.Allocation{
// Have one of the allocations exist in both the plan and the state
// store. This resembles an allocation update
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: alloc1ID,
EvalID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
}
if err := state.UpsertAllocs(1000, upserting); err != nil {
t.Fatalf("failed to UpsertAllocs: %v", err)
}
proposed := NewDistinctPropertyIterator(ctx, static)
proposed.SetJob(job)
proposed.SetTaskGroup(tg2)
proposed.Reset()
out := collectFeasible(proposed)
if len(out) != 1 {
t.Fatalf("Bad: %#v", out)
}
if out[0].ID != nodes[2].ID {
t.Fatalf("wrong node picked")
}
}
// This test checks that if a node has an allocation on it that gets stopped,
// there is a plan to re-use that for a new allocation, that the next select
// won't select that node.
func TestDistinctPropertyIterator_JobDistinctProperty_RemoveAndReplace(t *testing.T) {
state, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
}
nodes[0].Meta["rack"] = "1"
// Add to state store
if err := state.UpsertNode(uint64(100), nodes[0]); err != nil {
t.Fatalf("failed to upsert node: %v", err)
}
static := NewStaticIterator(ctx, nodes)
// Create a job with a distinct_property constraint and a task groups.
tg1 := &structs.TaskGroup{Name: "bar"}
job := &structs.Job{
ID: "foo",
Constraints: []*structs.Constraint{
{
Operand: structs.ConstraintDistinctProperty,
LTarget: "${meta.rack}",
},
},
TaskGroups: []*structs.TaskGroup{tg1},
}
plan := ctx.Plan()
plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
}
stoppingAllocID := structs.GenerateUUID()
plan.NodeUpdate[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: stoppingAllocID,
NodeID: nodes[0].ID,
},
}
upserting := []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: stoppingAllocID,
EvalID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
}
if err := state.UpsertAllocs(1000, upserting); err != nil {
t.Fatalf("failed to UpsertAllocs: %v", err)
}
proposed := NewDistinctPropertyIterator(ctx, static)
proposed.SetJob(job)
proposed.SetTaskGroup(tg1)
proposed.Reset()
out := collectFeasible(proposed)
if len(out) != 0 {
t.Fatalf("Bad: %#v", out)
}
}
// This test creates previous allocations selecting certain property values to
// test if it detects infeasibility of property values correctly and picks the
// only feasible one
func TestDistinctPropertyIterator_JobDistinctProperty_Infeasible(t *testing.T) {
state, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
}
for i, n := range nodes {
n.Meta["rack"] = fmt.Sprintf("%d", i)
// Add to state store
if err := state.UpsertNode(uint64(100+i), n); err != nil {
t.Fatalf("failed to upsert node: %v", err)
}
}
static := NewStaticIterator(ctx, nodes)
// Create a job with a distinct_property constraint and a task groups.
tg1 := &structs.TaskGroup{Name: "bar"}
tg2 := &structs.TaskGroup{Name: "baz"}
tg3 := &structs.TaskGroup{Name: "bam"}
job := &structs.Job{
ID: "foo",
Constraints: []*structs.Constraint{
{
Operand: structs.ConstraintDistinctProperty,
LTarget: "${meta.rack}",
},
},
TaskGroups: []*structs.TaskGroup{tg1, tg2, tg3},
}
// Add allocs placing tg1 on node1 and tg2 on node2. This should make the
// job unsatisfiable for tg3.
plan := ctx.Plan()
plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
}
upserting := []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
}
if err := state.UpsertAllocs(1000, upserting); err != nil {
t.Fatalf("failed to UpsertAllocs: %v", err)
}
proposed := NewDistinctPropertyIterator(ctx, static)
proposed.SetJob(job)
proposed.SetTaskGroup(tg3)
proposed.Reset()
out := collectFeasible(proposed)
if len(out) != 0 {
t.Fatalf("Bad: %#v", out)
}
}
// This test creates previous allocations selecting certain property values to
// test if it detects infeasibility of property values correctly and picks the
// only feasible one
func TestDistinctPropertyIterator_JobDistinctProperty_Infeasible_Count(t *testing.T) {
state, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
}
for i, n := range nodes {
n.Meta["rack"] = fmt.Sprintf("%d", i)
// Add to state store
if err := state.UpsertNode(uint64(100+i), n); err != nil {
t.Fatalf("failed to upsert node: %v", err)
}
}
static := NewStaticIterator(ctx, nodes)
// Create a job with a distinct_property constraint and a task groups.
tg1 := &structs.TaskGroup{Name: "bar"}
tg2 := &structs.TaskGroup{Name: "baz"}
tg3 := &structs.TaskGroup{Name: "bam"}
job := &structs.Job{
ID: "foo",
Constraints: []*structs.Constraint{
{
Operand: structs.ConstraintDistinctProperty,
LTarget: "${meta.rack}",
RTarget: "2",
},
},
TaskGroups: []*structs.TaskGroup{tg1, tg2, tg3},
}
// Add allocs placing two tg1's on node1 and two tg2's on node2. This should
// make the job unsatisfiable for tg3.
plan := ctx.Plan()
plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
}
upserting := []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
&structs.Allocation{
TaskGroup: tg2.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
}
if err := state.UpsertAllocs(1000, upserting); err != nil {
t.Fatalf("failed to UpsertAllocs: %v", err)
}
proposed := NewDistinctPropertyIterator(ctx, static)
proposed.SetJob(job)
proposed.SetTaskGroup(tg3)
proposed.Reset()
out := collectFeasible(proposed)
if len(out) != 0 {
t.Fatalf("Bad: %#v", out)
}
}
// This test creates previous allocations selecting certain property values to
// test if it detects infeasibility of property values correctly and picks the
// only feasible one when the constraint is at the task group.
func TestDistinctPropertyIterator_TaskGroupDistinctProperty(t *testing.T) {
state, ctx := testContext(t)
nodes := []*structs.Node{
mock.Node(),
mock.Node(),
mock.Node(),
}
for i, n := range nodes {
n.Meta["rack"] = fmt.Sprintf("%d", i)
// Add to state store
if err := state.UpsertNode(uint64(100+i), n); err != nil {
t.Fatalf("failed to upsert node: %v", err)
}
}
static := NewStaticIterator(ctx, nodes)
// Create a job with a task group with the distinct_property constraint
tg1 := &structs.TaskGroup{
Name: "example",
Constraints: []*structs.Constraint{
{
Operand: structs.ConstraintDistinctProperty,
LTarget: "${meta.rack}",
},
},
}
tg2 := &structs.TaskGroup{Name: "baz"}
job := &structs.Job{
ID: "foo",
TaskGroups: []*structs.TaskGroup{tg1, tg2},
}
// Add allocs placing tg1 on node1 and 2. This should make the
// job unsatisfiable on all nodes but node3. Also mix the allocations
// existing in the plan and the state store.
plan := ctx.Plan()
plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
NodeID: nodes[0].ID,
},
}
// Put an allocation on Node 3 but make it stopped in the plan
stoppingAllocID := structs.GenerateUUID()
plan.NodeUpdate[nodes[2].ID] = []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: stoppingAllocID,
NodeID: nodes[2].ID,
},
}
upserting := []*structs.Allocation{
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[1].ID,
},
// Should be ignored as it is a different job.
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: "ignore 2",
Job: job,
ID: structs.GenerateUUID(),
EvalID: structs.GenerateUUID(),
NodeID: nodes[2].ID,
},
&structs.Allocation{
TaskGroup: tg1.Name,
JobID: job.ID,
Job: job,
ID: stoppingAllocID,
EvalID: structs.GenerateUUID(),
NodeID: nodes[2].ID,
},
}
if err := state.UpsertAllocs(1000, upserting); err != nil {
t.Fatalf("failed to UpsertAllocs: %v", err)
}
proposed := NewDistinctPropertyIterator(ctx, static)
proposed.SetJob(job)
proposed.SetTaskGroup(tg1)
proposed.Reset()
out := collectFeasible(proposed)
if len(out) != 1 {
t.Fatalf("Bad: %#v", out)
}
if out[0].ID != nodes[2].ID {
t.Fatalf("wrong node picked")
}
// Since the other task group doesn't have the constraint, both nodes should
// be feasible.
proposed.SetTaskGroup(tg2)
proposed.Reset()
out = collectFeasible(proposed)
if len(out) != 3 {
t.Fatalf("Bad: %#v", out)
}
}
func collectFeasible(iter FeasibleIterator) (out []*structs.Node) {
for {
next := iter.Next()
if next == nil {
break
}
out = append(out, next)
}
return
}
// mockFeasibilityChecker is a FeasibilityChecker that returns predetermined
// feasibility values.
type mockFeasibilityChecker struct {
retVals []bool
i int
}
func newMockFeasiblityChecker(values ...bool) *mockFeasibilityChecker {
return &mockFeasibilityChecker{retVals: values}
}
func (c *mockFeasibilityChecker) Feasible(*structs.Node) bool {
if c.i >= len(c.retVals) {
c.i++
return false
}
f := c.retVals[c.i]
c.i++
return f
}
// calls returns how many times the checker was called.
func (c *mockFeasibilityChecker) calls() int { return c.i }
func TestFeasibilityWrapper_JobIneligible(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{mock.Node()}
static := NewStaticIterator(ctx, nodes)
mocked := newMockFeasiblityChecker(false)
wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{mocked}, nil)
// Set the job to ineligible
ctx.Eligibility().SetJobEligibility(false, nodes[0].ComputedClass)
// Run the wrapper.
out := collectFeasible(wrapper)
if out != nil || mocked.calls() != 0 {
t.Fatalf("bad: %#v %d", out, mocked.calls())
}
}
func TestFeasibilityWrapper_JobEscapes(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{mock.Node()}
static := NewStaticIterator(ctx, nodes)
mocked := newMockFeasiblityChecker(false)
wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{mocked}, nil)
// Set the job to escaped
cc := nodes[0].ComputedClass
ctx.Eligibility().job[cc] = EvalComputedClassEscaped
// Run the wrapper.
out := collectFeasible(wrapper)
if out != nil || mocked.calls() != 1 {
t.Fatalf("bad: %#v", out)
}
// Ensure that the job status didn't change from escaped even though the
// option failed.
if status := ctx.Eligibility().JobStatus(cc); status != EvalComputedClassEscaped {
t.Fatalf("job status is %v; want %v", status, EvalComputedClassEscaped)
}
}
func TestFeasibilityWrapper_JobAndTg_Eligible(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{mock.Node()}
static := NewStaticIterator(ctx, nodes)
jobMock := newMockFeasiblityChecker(true)
tgMock := newMockFeasiblityChecker(false)
wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{jobMock}, []FeasibilityChecker{tgMock})
// Set the job to escaped
cc := nodes[0].ComputedClass
ctx.Eligibility().job[cc] = EvalComputedClassEligible
ctx.Eligibility().SetTaskGroupEligibility(true, "foo", cc)
wrapper.SetTaskGroup("foo")
// Run the wrapper.
out := collectFeasible(wrapper)
if out == nil || tgMock.calls() != 0 {
t.Fatalf("bad: %#v %v", out, tgMock.calls())
}
}
func TestFeasibilityWrapper_JobEligible_TgIneligible(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{mock.Node()}
static := NewStaticIterator(ctx, nodes)
jobMock := newMockFeasiblityChecker(true)
tgMock := newMockFeasiblityChecker(false)
wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{jobMock}, []FeasibilityChecker{tgMock})
// Set the job to escaped
cc := nodes[0].ComputedClass
ctx.Eligibility().job[cc] = EvalComputedClassEligible
ctx.Eligibility().SetTaskGroupEligibility(false, "foo", cc)
wrapper.SetTaskGroup("foo")
// Run the wrapper.
out := collectFeasible(wrapper)
if out != nil || tgMock.calls() != 0 {
t.Fatalf("bad: %#v %v", out, tgMock.calls())
}
}
func TestFeasibilityWrapper_JobEligible_TgEscaped(t *testing.T) {
_, ctx := testContext(t)
nodes := []*structs.Node{mock.Node()}
static := NewStaticIterator(ctx, nodes)
jobMock := newMockFeasiblityChecker(true)
tgMock := newMockFeasiblityChecker(true)
wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{jobMock}, []FeasibilityChecker{tgMock})
// Set the job to escaped
cc := nodes[0].ComputedClass
ctx.Eligibility().job[cc] = EvalComputedClassEligible
ctx.Eligibility().taskGroups["foo"] =
map[string]ComputedClassFeasibility{cc: EvalComputedClassEscaped}
wrapper.SetTaskGroup("foo")
// Run the wrapper.
out := collectFeasible(wrapper)
if out == nil || tgMock.calls() != 1 {
t.Fatalf("bad: %#v %v", out, tgMock.calls())
}
if e, ok := ctx.Eligibility().taskGroups["foo"][cc]; !ok || e != EvalComputedClassEscaped {
t.Fatalf("bad: %v %v", e, ok)
}
}