open-nomad/client/allocrunner/alloc_runner.go
Tim Gross a0cf5db797
provide -no-shutdown-delay flag for job/alloc stop (#11596)
Some operators use very long group/task `shutdown_delay` settings to
safely drain network connections to their workloads after service
deregistration. But during incident response, they may want to cause
that drain to be skipped so they can quickly shed load.

Provide a `-no-shutdown-delay` flag on the `nomad alloc stop` and
`nomad job stop` commands that bypasses the delay. This sets a new
desired transition state on the affected allocations that the
allocation/task runner will identify during pre-kill on the client.

Note (as documented here) that using this flag will almost always
result in failed inbound network connections for workloads as the
tasks will exit before clients receive updated service discovery
information and won't be gracefully drained.
2021-12-13 14:54:53 -05:00

1253 lines
36 KiB
Go

package allocrunner
import (
"context"
"fmt"
"sync"
"time"
"github.com/hashicorp/nomad/client/lib/cgutil"
log "github.com/hashicorp/go-hclog"
multierror "github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/client/allocdir"
"github.com/hashicorp/nomad/client/allocrunner/interfaces"
"github.com/hashicorp/nomad/client/allocrunner/state"
"github.com/hashicorp/nomad/client/allocrunner/taskrunner"
"github.com/hashicorp/nomad/client/allocwatcher"
"github.com/hashicorp/nomad/client/config"
"github.com/hashicorp/nomad/client/consul"
"github.com/hashicorp/nomad/client/devicemanager"
"github.com/hashicorp/nomad/client/dynamicplugins"
cinterfaces "github.com/hashicorp/nomad/client/interfaces"
"github.com/hashicorp/nomad/client/pluginmanager/csimanager"
"github.com/hashicorp/nomad/client/pluginmanager/drivermanager"
cstate "github.com/hashicorp/nomad/client/state"
cstructs "github.com/hashicorp/nomad/client/structs"
"github.com/hashicorp/nomad/client/vaultclient"
agentconsul "github.com/hashicorp/nomad/command/agent/consul"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/nomad/plugins/device"
"github.com/hashicorp/nomad/plugins/drivers"
)
// allocRunner is used to run all the tasks in a given allocation
type allocRunner struct {
// id is the ID of the allocation. Can be accessed without a lock
id string
// Logger is the logger for the alloc runner.
logger log.Logger
clientConfig *config.Config
// stateUpdater is used to emit updated alloc state
stateUpdater cinterfaces.AllocStateHandler
// taskStateUpdatedCh is ticked whenever task state as changed. Must
// have len==1 to allow nonblocking notification of state updates while
// the goroutine is already processing a previous update.
taskStateUpdatedCh chan struct{}
// taskStateUpdateHandlerCh is closed when the task state handling
// goroutine exits. It is unsafe to destroy the local allocation state
// before this goroutine exits.
taskStateUpdateHandlerCh chan struct{}
// allocUpdatedCh is a channel that is used to stream allocation updates into
// the allocUpdate handler. Must have len==1 to allow nonblocking notification
// of new allocation updates while the goroutine is processing a previous
// update.
allocUpdatedCh chan *structs.Allocation
// consulClient is the client used by the consul service hook for
// registering services and checks
consulClient consul.ConsulServiceAPI
// consulProxiesClient is the client used by the envoy version hook for
// looking up supported envoy versions of the consul agent.
consulProxiesClient consul.SupportedProxiesAPI
// sidsClient is the client used by the service identity hook for
// managing SI tokens
sidsClient consul.ServiceIdentityAPI
// vaultClient is the used to manage Vault tokens
vaultClient vaultclient.VaultClient
// waitCh is closed when the Run loop has exited
waitCh chan struct{}
// destroyed is true when the Run loop has exited, postrun hooks have
// run, and alloc runner has been destroyed. Must acquire destroyedLock
// to access.
destroyed bool
// destroyCh is closed when the Run loop has exited, postrun hooks have
// run, and alloc runner has been destroyed.
destroyCh chan struct{}
// shutdown is true when the Run loop has exited, and shutdown hooks have
// run. Must acquire destroyedLock to access.
shutdown bool
// shutdownCh is closed when the Run loop has exited, and shutdown hooks
// have run.
shutdownCh chan struct{}
// destroyLaunched is true if Destroy has been called. Must acquire
// destroyedLock to access.
destroyLaunched bool
// shutdownLaunched is true if Shutdown has been called. Must acquire
// destroyedLock to access.
shutdownLaunched bool
// destroyedLock guards destroyed, destroyLaunched, shutdownLaunched,
// and serializes Shutdown/Destroy calls.
destroyedLock sync.Mutex
// Alloc captures the allocation being run.
alloc *structs.Allocation
allocLock sync.RWMutex
// state is the alloc runner's state
state *state.State
stateLock sync.RWMutex
stateDB cstate.StateDB
// allocDir is used to build the allocations directory structure.
allocDir *allocdir.AllocDir
// runnerHooks are alloc runner lifecycle hooks that should be run on state
// transistions.
runnerHooks []interfaces.RunnerHook
// hookState is the output of allocrunner hooks
hookState *cstructs.AllocHookResources
hookStateMu sync.RWMutex
// tasks are the set of task runners
tasks map[string]*taskrunner.TaskRunner
// deviceStatsReporter is used to lookup resource usage for alloc devices
deviceStatsReporter cinterfaces.DeviceStatsReporter
// allocBroadcaster sends client allocation updates to all listeners
allocBroadcaster *cstructs.AllocBroadcaster
// prevAllocWatcher allows waiting for any previous or preempted allocations
// to exit
prevAllocWatcher allocwatcher.PrevAllocWatcher
// prevAllocMigrator allows the migration of a previous allocations alloc dir.
prevAllocMigrator allocwatcher.PrevAllocMigrator
// dynamicRegistry contains all locally registered dynamic plugins (e.g csi
// plugins).
dynamicRegistry dynamicplugins.Registry
// csiManager is used to wait for CSI Volumes to be attached, and by the task
// runner to manage their mounting
csiManager csimanager.Manager
// cpusetManager is responsible for configuring task cgroups if supported by the platform
cpusetManager cgutil.CpusetManager
// devicemanager is used to mount devices as well as lookup device
// statistics
devicemanager devicemanager.Manager
// driverManager is responsible for dispensing driver plugins and registering
// event handlers
driverManager drivermanager.Manager
// serversContactedCh is passed to TaskRunners so they can detect when
// servers have been contacted for the first time in case of a failed
// restore.
serversContactedCh chan struct{}
taskHookCoordinator *taskHookCoordinator
shutdownDelayCtx context.Context
shutdownDelayCancelFn context.CancelFunc
// rpcClient is the RPC Client that should be used by the allocrunner and its
// hooks to communicate with Nomad Servers.
rpcClient RPCer
}
// RPCer is the interface needed by hooks to make RPC calls.
type RPCer interface {
RPC(method string, args interface{}, reply interface{}) error
}
// NewAllocRunner returns a new allocation runner.
func NewAllocRunner(config *Config) (*allocRunner, error) {
alloc := config.Alloc
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if tg == nil {
return nil, fmt.Errorf("failed to lookup task group %q", alloc.TaskGroup)
}
ar := &allocRunner{
id: alloc.ID,
alloc: alloc,
clientConfig: config.ClientConfig,
consulClient: config.Consul,
consulProxiesClient: config.ConsulProxies,
sidsClient: config.ConsulSI,
vaultClient: config.Vault,
tasks: make(map[string]*taskrunner.TaskRunner, len(tg.Tasks)),
waitCh: make(chan struct{}),
destroyCh: make(chan struct{}),
shutdownCh: make(chan struct{}),
state: &state.State{},
stateDB: config.StateDB,
stateUpdater: config.StateUpdater,
taskStateUpdatedCh: make(chan struct{}, 1),
taskStateUpdateHandlerCh: make(chan struct{}),
allocUpdatedCh: make(chan *structs.Allocation, 1),
deviceStatsReporter: config.DeviceStatsReporter,
prevAllocWatcher: config.PrevAllocWatcher,
prevAllocMigrator: config.PrevAllocMigrator,
dynamicRegistry: config.DynamicRegistry,
csiManager: config.CSIManager,
cpusetManager: config.CpusetManager,
devicemanager: config.DeviceManager,
driverManager: config.DriverManager,
serversContactedCh: config.ServersContactedCh,
rpcClient: config.RPCClient,
}
// Create the logger based on the allocation ID
ar.logger = config.Logger.Named("alloc_runner").With("alloc_id", alloc.ID)
// Create alloc broadcaster
ar.allocBroadcaster = cstructs.NewAllocBroadcaster(ar.logger)
// Create alloc dir
ar.allocDir = allocdir.NewAllocDir(ar.logger, config.ClientConfig.AllocDir, alloc.ID)
ar.taskHookCoordinator = newTaskHookCoordinator(ar.logger, tg.Tasks)
shutdownDelayCtx, shutdownDelayCancel := context.WithCancel(context.Background())
ar.shutdownDelayCtx = shutdownDelayCtx
ar.shutdownDelayCancelFn = shutdownDelayCancel
// Initialize the runners hooks.
if err := ar.initRunnerHooks(config.ClientConfig); err != nil {
return nil, err
}
// Create the TaskRunners
if err := ar.initTaskRunners(tg.Tasks); err != nil {
return nil, err
}
return ar, nil
}
// initTaskRunners creates task runners but does *not* run them.
func (ar *allocRunner) initTaskRunners(tasks []*structs.Task) error {
for _, task := range tasks {
trConfig := &taskrunner.Config{
Alloc: ar.alloc,
ClientConfig: ar.clientConfig,
Task: task,
TaskDir: ar.allocDir.NewTaskDir(task.Name),
Logger: ar.logger,
StateDB: ar.stateDB,
StateUpdater: ar,
DynamicRegistry: ar.dynamicRegistry,
Consul: ar.consulClient,
ConsulProxies: ar.consulProxiesClient,
ConsulSI: ar.sidsClient,
Vault: ar.vaultClient,
DeviceStatsReporter: ar.deviceStatsReporter,
CSIManager: ar.csiManager,
DeviceManager: ar.devicemanager,
DriverManager: ar.driverManager,
ServersContactedCh: ar.serversContactedCh,
StartConditionMetCtx: ar.taskHookCoordinator.startConditionForTask(task),
ShutdownDelayCtx: ar.shutdownDelayCtx,
}
if ar.cpusetManager != nil {
trConfig.CpusetCgroupPathGetter = ar.cpusetManager.CgroupPathFor(ar.id, task.Name)
}
// Create, but do not Run, the task runner
tr, err := taskrunner.NewTaskRunner(trConfig)
if err != nil {
return fmt.Errorf("failed creating runner for task %q: %v", task.Name, err)
}
ar.tasks[task.Name] = tr
}
return nil
}
func (ar *allocRunner) WaitCh() <-chan struct{} {
return ar.waitCh
}
// Run the AllocRunner. Starts tasks if the alloc is non-terminal and closes
// WaitCh when it exits. Should be started in a goroutine.
func (ar *allocRunner) Run() {
// Close the wait channel on return
defer close(ar.waitCh)
// Start the task state update handler
go ar.handleTaskStateUpdates()
// Start the alloc update handler
go ar.handleAllocUpdates()
// If task update chan has been closed, that means we've been shutdown.
select {
case <-ar.taskStateUpdateHandlerCh:
return
default:
}
// When handling (potentially restored) terminal alloc, ensure tasks and post-run hooks are run
// to perform any cleanup that's necessary, potentially not done prior to earlier termination
// Run the prestart hooks if non-terminal
if ar.shouldRun() {
if err := ar.prerun(); err != nil {
ar.logger.Error("prerun failed", "error", err)
for _, tr := range ar.tasks {
tr.MarkFailedDead(fmt.Sprintf("failed to setup alloc: %v", err))
}
goto POST
}
}
// Run the runners (blocks until they exit)
ar.runTasks()
POST:
if ar.isShuttingDown() {
return
}
// Run the postrun hooks
if err := ar.postrun(); err != nil {
ar.logger.Error("postrun failed", "error", err)
}
}
// shouldRun returns true if the alloc is in a state that the alloc runner
// should run it.
func (ar *allocRunner) shouldRun() bool {
// Do not run allocs that are terminal
if ar.Alloc().TerminalStatus() {
ar.logger.Trace("alloc terminal; not running",
"desired_status", ar.Alloc().DesiredStatus,
"client_status", ar.Alloc().ClientStatus,
)
return false
}
// It's possible that the alloc local state was marked terminal before
// the server copy of the alloc (checked above) was marked as terminal,
// so check the local state as well.
switch clientStatus := ar.AllocState().ClientStatus; clientStatus {
case structs.AllocClientStatusComplete, structs.AllocClientStatusFailed, structs.AllocClientStatusLost:
ar.logger.Trace("alloc terminal; updating server and not running", "status", clientStatus)
return false
}
return true
}
// runTasks is used to run the task runners and block until they exit.
func (ar *allocRunner) runTasks() {
// Start all tasks
for _, task := range ar.tasks {
go task.Run()
}
// Block on all tasks except poststop tasks
for _, task := range ar.tasks {
if !task.IsPoststopTask() {
<-task.WaitCh()
}
}
// Signal poststop tasks to proceed to main runtime
ar.taskHookCoordinator.StartPoststopTasks()
// Wait for poststop tasks to finish before proceeding
for _, task := range ar.tasks {
if task.IsPoststopTask() {
<-task.WaitCh()
}
}
}
// Alloc returns the current allocation being run by this runner as sent by the
// server. This view of the allocation does not have updated task states.
func (ar *allocRunner) Alloc() *structs.Allocation {
ar.allocLock.RLock()
defer ar.allocLock.RUnlock()
return ar.alloc
}
func (ar *allocRunner) setAlloc(updated *structs.Allocation) {
ar.allocLock.Lock()
ar.alloc = updated
ar.allocLock.Unlock()
}
// GetAllocDir returns the alloc dir which is safe for concurrent use.
func (ar *allocRunner) GetAllocDir() *allocdir.AllocDir {
return ar.allocDir
}
// Restore state from database. Must be called after NewAllocRunner but before
// Run.
func (ar *allocRunner) Restore() error {
// Retrieve deployment status to avoid reseting it across agent
// restarts. Once a deployment status is set Nomad no longer monitors
// alloc health, so we must persist deployment state across restarts.
ds, err := ar.stateDB.GetDeploymentStatus(ar.id)
if err != nil {
return err
}
ns, err := ar.stateDB.GetNetworkStatus(ar.id)
if err != nil {
return err
}
ar.stateLock.Lock()
ar.state.DeploymentStatus = ds
ar.state.NetworkStatus = ns
ar.stateLock.Unlock()
states := make(map[string]*structs.TaskState)
// Restore task runners
for _, tr := range ar.tasks {
if err := tr.Restore(); err != nil {
return err
}
states[tr.Task().Name] = tr.TaskState()
}
ar.taskHookCoordinator.taskStateUpdated(states)
return nil
}
// persistDeploymentStatus stores AllocDeploymentStatus.
func (ar *allocRunner) persistDeploymentStatus(ds *structs.AllocDeploymentStatus) {
if err := ar.stateDB.PutDeploymentStatus(ar.id, ds); err != nil {
// While any persistence errors are very bad, the worst case
// scenario for failing to persist deployment status is that if
// the agent is restarted it will monitor the deployment status
// again. This could cause a deployment's status to change when
// that shouldn't happen. However, allowing that seems better
// than failing the entire allocation.
ar.logger.Error("error storing deployment status", "error", err)
}
}
// TaskStateUpdated is called by TaskRunner when a task's state has been
// updated. It does not process the update synchronously but instead notifies a
// goroutine the state has change. Since processing the state change may cause
// the task to be killed (thus change its state again) it cannot be done
// synchronously as it would cause a deadlock due to reentrancy.
//
// The goroutine is used to compute changes to the alloc's ClientStatus and to
// update the server with the new state.
func (ar *allocRunner) TaskStateUpdated() {
select {
case ar.taskStateUpdatedCh <- struct{}{}:
default:
// already pending updates
}
}
// handleTaskStateUpdates must be run in goroutine as it monitors
// taskStateUpdatedCh for task state update notifications and processes task
// states.
//
// Processing task state updates must be done in a goroutine as it may have to
// kill tasks which causes further task state updates.
func (ar *allocRunner) handleTaskStateUpdates() {
defer close(ar.taskStateUpdateHandlerCh)
hasSidecars := hasSidecarTasks(ar.tasks)
for done := false; !done; {
select {
case <-ar.taskStateUpdatedCh:
case <-ar.waitCh:
// Run has exited, sync once more to ensure final
// states are collected.
done = true
}
ar.logger.Trace("handling task state update", "done", done)
// Set with the appropriate event if task runners should be
// killed.
var killEvent *structs.TaskEvent
// If task runners should be killed, this is set to the task
// name whose fault it is.
killTask := ""
// Task state has been updated; gather the state of the other tasks
trNum := len(ar.tasks)
liveRunners := make([]*taskrunner.TaskRunner, 0, trNum)
states := make(map[string]*structs.TaskState, trNum)
for name, tr := range ar.tasks {
state := tr.TaskState()
states[name] = state
if tr.IsPoststopTask() {
continue
}
// Capture live task runners in case we need to kill them
if state.State != structs.TaskStateDead {
liveRunners = append(liveRunners, tr)
continue
}
// Task is dead, determine if other tasks should be killed
if state.Failed {
// Only set failed event if no event has been
// set yet to give dead leaders priority.
if killEvent == nil {
killTask = name
killEvent = structs.NewTaskEvent(structs.TaskSiblingFailed).
SetFailedSibling(name)
}
} else if tr.IsLeader() {
killEvent = structs.NewTaskEvent(structs.TaskLeaderDead)
}
}
// if all live runners are sidecars - kill alloc
if killEvent == nil && hasSidecars && !hasNonSidecarTasks(liveRunners) {
killEvent = structs.NewTaskEvent(structs.TaskMainDead)
}
// If there's a kill event set and live runners, kill them
if killEvent != nil && len(liveRunners) > 0 {
// Log kill reason
switch killEvent.Type {
case structs.TaskLeaderDead:
ar.logger.Debug("leader task dead, destroying all tasks", "leader_task", killTask)
case structs.TaskMainDead:
ar.logger.Debug("main tasks dead, destroying all sidecar tasks")
default:
ar.logger.Debug("task failure, destroying all tasks", "failed_task", killTask)
}
// Emit kill event for live runners
for _, tr := range liveRunners {
tr.EmitEvent(killEvent)
}
// Kill 'em all
states = ar.killTasks()
// Wait for TaskRunners to exit before continuing to
// prevent looping before TaskRunners have transitioned
// to Dead.
for _, tr := range liveRunners {
ar.logger.Info("killing task", "task", tr.Task().Name)
select {
case <-tr.WaitCh():
case <-ar.waitCh:
}
}
}
ar.taskHookCoordinator.taskStateUpdated(states)
// Get the client allocation
calloc := ar.clientAlloc(states)
// Update the server
ar.stateUpdater.AllocStateUpdated(calloc)
// Broadcast client alloc to listeners
ar.allocBroadcaster.Send(calloc)
}
}
// killTasks kills all task runners, leader (if there is one) first. Errors are
// logged except taskrunner.ErrTaskNotRunning which is ignored. Task states
// after Kill has been called are returned.
func (ar *allocRunner) killTasks() map[string]*structs.TaskState {
var mu sync.Mutex
states := make(map[string]*structs.TaskState, len(ar.tasks))
// run alloc prekill hooks
ar.preKillHooks()
// Kill leader first, synchronously
for name, tr := range ar.tasks {
if !tr.IsLeader() {
continue
}
taskEvent := structs.NewTaskEvent(structs.TaskKilling)
taskEvent.SetKillTimeout(tr.Task().KillTimeout)
err := tr.Kill(context.TODO(), taskEvent)
if err != nil && err != taskrunner.ErrTaskNotRunning {
ar.logger.Warn("error stopping leader task", "error", err, "task_name", name)
}
state := tr.TaskState()
states[name] = state
break
}
// Kill the rest concurrently
wg := sync.WaitGroup{}
for name, tr := range ar.tasks {
// Filter out poststop tasks so they run after all the other tasks are killed
if tr.IsLeader() || tr.IsPoststopTask() {
continue
}
wg.Add(1)
go func(name string, tr *taskrunner.TaskRunner) {
defer wg.Done()
taskEvent := structs.NewTaskEvent(structs.TaskKilling)
taskEvent.SetKillTimeout(tr.Task().KillTimeout)
err := tr.Kill(context.TODO(), taskEvent)
if err != nil && err != taskrunner.ErrTaskNotRunning {
ar.logger.Warn("error stopping task", "error", err, "task_name", name)
}
state := tr.TaskState()
mu.Lock()
states[name] = state
mu.Unlock()
}(name, tr)
}
wg.Wait()
return states
}
// clientAlloc takes in the task states and returns an Allocation populated
// with Client specific fields
func (ar *allocRunner) clientAlloc(taskStates map[string]*structs.TaskState) *structs.Allocation {
ar.stateLock.Lock()
defer ar.stateLock.Unlock()
// store task states for AllocState to expose
ar.state.TaskStates = taskStates
a := &structs.Allocation{
ID: ar.id,
TaskStates: taskStates,
}
if d := ar.state.DeploymentStatus; d != nil {
a.DeploymentStatus = d.Copy()
}
// Compute the ClientStatus
if ar.state.ClientStatus != "" {
// The client status is being forced
a.ClientStatus, a.ClientDescription = ar.state.ClientStatus, ar.state.ClientDescription
} else {
a.ClientStatus, a.ClientDescription = getClientStatus(taskStates)
}
// If the allocation is terminal, make sure all required fields are properly
// set.
if a.ClientTerminalStatus() {
alloc := ar.Alloc()
// If we are part of a deployment and the alloc has failed, mark the
// alloc as unhealthy. This guards against the watcher not be started.
// If the health status is already set then terminal allocations should not
if a.ClientStatus == structs.AllocClientStatusFailed &&
alloc.DeploymentID != "" && !a.DeploymentStatus.HasHealth() {
a.DeploymentStatus = &structs.AllocDeploymentStatus{
Healthy: helper.BoolToPtr(false),
}
}
// Make sure we have marked the finished at for every task. This is used
// to calculate the reschedule time for failed allocations.
now := time.Now()
for taskName := range ar.tasks {
ts, ok := a.TaskStates[taskName]
if !ok {
ts = &structs.TaskState{}
a.TaskStates[taskName] = ts
}
if ts.FinishedAt.IsZero() {
ts.FinishedAt = now
}
}
}
// Set the NetworkStatus and default DNSConfig if one is not returned from the client
netStatus := ar.state.NetworkStatus
if netStatus != nil {
a.NetworkStatus = netStatus
} else {
a.NetworkStatus = new(structs.AllocNetworkStatus)
}
if a.NetworkStatus.DNS == nil {
alloc := ar.Alloc()
nws := alloc.Job.LookupTaskGroup(alloc.TaskGroup).Networks
if len(nws) > 0 {
a.NetworkStatus.DNS = nws[0].DNS.Copy()
}
}
return a
}
// getClientStatus takes in the task states for a given allocation and computes
// the client status and description
func getClientStatus(taskStates map[string]*structs.TaskState) (status, description string) {
var pending, running, dead, failed bool
for _, state := range taskStates {
switch state.State {
case structs.TaskStateRunning:
running = true
case structs.TaskStatePending:
pending = true
case structs.TaskStateDead:
if state.Failed {
failed = true
} else {
dead = true
}
}
}
// Determine the alloc status
if failed {
return structs.AllocClientStatusFailed, "Failed tasks"
} else if running {
return structs.AllocClientStatusRunning, "Tasks are running"
} else if pending {
return structs.AllocClientStatusPending, "No tasks have started"
} else if dead {
return structs.AllocClientStatusComplete, "All tasks have completed"
}
return "", ""
}
// SetClientStatus is a helper for forcing a specific client
// status on the alloc runner. This is used during restore errors
// when the task state can't be restored.
func (ar *allocRunner) SetClientStatus(clientStatus string) {
ar.stateLock.Lock()
defer ar.stateLock.Unlock()
ar.state.ClientStatus = clientStatus
}
func (ar *allocRunner) SetNetworkStatus(s *structs.AllocNetworkStatus) {
ar.stateLock.Lock()
defer ar.stateLock.Unlock()
ar.state.NetworkStatus = s.Copy()
}
func (ar *allocRunner) NetworkStatus() *structs.AllocNetworkStatus {
ar.stateLock.Lock()
defer ar.stateLock.Unlock()
return ar.state.NetworkStatus.Copy()
}
// AllocState returns a copy of allocation state including a snapshot of task
// states.
func (ar *allocRunner) AllocState() *state.State {
ar.stateLock.RLock()
state := ar.state.Copy()
ar.stateLock.RUnlock()
// If TaskStateUpdated has not been called yet, ar.state.TaskStates
// won't be set as it is not the canonical source of TaskStates.
if len(state.TaskStates) == 0 {
ar.state.TaskStates = make(map[string]*structs.TaskState, len(ar.tasks))
for k, tr := range ar.tasks {
state.TaskStates[k] = tr.TaskState()
}
}
// Generate alloc to get other state fields
alloc := ar.clientAlloc(state.TaskStates)
state.ClientStatus = alloc.ClientStatus
state.ClientDescription = alloc.ClientDescription
state.DeploymentStatus = alloc.DeploymentStatus
return state
}
// Update asyncronously updates the running allocation with a new version
// received from the server.
// When processing a new update, we will first attempt to drain stale updates
// from the queue, before appending the new one.
func (ar *allocRunner) Update(update *structs.Allocation) {
select {
// Drain queued update from the channel if possible, and check the modify
// index
case oldUpdate := <-ar.allocUpdatedCh:
// If the old update is newer than the replacement, then skip the new one
// and return. This case shouldn't happen, but may in the case of a bug
// elsewhere inside the system.
if oldUpdate.AllocModifyIndex > update.AllocModifyIndex {
ar.logger.Debug("Discarding allocation update due to newer alloc revision in queue",
"old_modify_index", oldUpdate.AllocModifyIndex,
"new_modify_index", update.AllocModifyIndex)
ar.allocUpdatedCh <- oldUpdate
return
} else {
ar.logger.Debug("Discarding allocation update",
"skipped_modify_index", oldUpdate.AllocModifyIndex,
"new_modify_index", update.AllocModifyIndex)
}
case <-ar.waitCh:
ar.logger.Trace("AllocRunner has terminated, skipping alloc update",
"modify_index", update.AllocModifyIndex)
return
default:
}
if update.DesiredTransition.ShouldIgnoreShutdownDelay() {
ar.shutdownDelayCancelFn()
}
// Queue the new update
ar.allocUpdatedCh <- update
}
func (ar *allocRunner) handleAllocUpdates() {
for {
select {
case update := <-ar.allocUpdatedCh:
ar.handleAllocUpdate(update)
case <-ar.waitCh:
return
}
}
}
// This method sends the updated alloc to Run for serially processing updates.
// If there is already a pending update it will be discarded and replaced by
// the latest update.
func (ar *allocRunner) handleAllocUpdate(update *structs.Allocation) {
// Detect Stop updates
stopping := !ar.Alloc().TerminalStatus() && update.TerminalStatus()
// Update ar.alloc
ar.setAlloc(update)
// Run update hooks if not stopping or dead
if !update.TerminalStatus() {
if err := ar.update(update); err != nil {
ar.logger.Error("error running update hooks", "error", err)
}
}
// Update task runners
for _, tr := range ar.tasks {
tr.Update(update)
}
// If alloc is being terminated, kill all tasks, leader first
if stopping {
ar.killTasks()
}
}
func (ar *allocRunner) Listener() *cstructs.AllocListener {
return ar.allocBroadcaster.Listen()
}
func (ar *allocRunner) destroyImpl() {
// Stop any running tasks and persist states in case the client is
// shutdown before Destroy finishes.
states := ar.killTasks()
calloc := ar.clientAlloc(states)
ar.stateUpdater.AllocStateUpdated(calloc)
// Wait for tasks to exit and postrun hooks to finish
<-ar.waitCh
// Run destroy hooks
if err := ar.destroy(); err != nil {
ar.logger.Warn("error running destroy hooks", "error", err)
}
// Wait for task state update handler to exit before removing local
// state if Run() ran at all.
<-ar.taskStateUpdateHandlerCh
// Mark alloc as destroyed
ar.destroyedLock.Lock()
// Cleanup state db; while holding the lock to avoid
// a race periodic PersistState that may resurrect the alloc
if err := ar.stateDB.DeleteAllocationBucket(ar.id); err != nil {
ar.logger.Warn("failed to delete allocation state", "error", err)
}
if !ar.shutdown {
ar.shutdown = true
close(ar.shutdownCh)
}
ar.destroyed = true
close(ar.destroyCh)
ar.destroyedLock.Unlock()
}
func (ar *allocRunner) PersistState() error {
ar.destroyedLock.Lock()
defer ar.destroyedLock.Unlock()
if ar.destroyed {
err := ar.stateDB.DeleteAllocationBucket(ar.id, cstate.WithBatchMode())
if err != nil {
ar.logger.Warn("failed to delete allocation bucket", "error", err)
}
return nil
}
// persist network status, wrapping in a func to release state lock as early as possible
err := func() error {
ar.stateLock.Lock()
defer ar.stateLock.Unlock()
if ar.state.NetworkStatus != nil {
err := ar.stateDB.PutNetworkStatus(ar.id, ar.state.NetworkStatus, cstate.WithBatchMode())
if err != nil {
return err
}
}
return nil
}()
if err != nil {
return err
}
// TODO: consider persisting deployment state along with task status.
// While we study why only the alloc is persisted, I opted to maintain current
// behavior and not risk adding yet more IO calls unnecessarily.
return ar.stateDB.PutAllocation(ar.Alloc(), cstate.WithBatchMode())
}
// Destroy the alloc runner by stopping it if it is still running and cleaning
// up all of its resources.
//
// This method is safe for calling concurrently with Run() and will cause it to
// exit (thus closing WaitCh).
// When the destroy action is completed, it will close DestroyCh().
func (ar *allocRunner) Destroy() {
ar.destroyedLock.Lock()
defer ar.destroyedLock.Unlock()
if ar.destroyed {
// Only destroy once
return
}
if ar.destroyLaunched {
// Only dispatch a destroy once
return
}
ar.destroyLaunched = true
// Synchronize calls to shutdown/destroy
if ar.shutdownLaunched {
go func() {
ar.logger.Debug("Waiting for shutdown before destroying runner")
<-ar.shutdownCh
ar.destroyImpl()
}()
return
}
go ar.destroyImpl()
}
// IsDestroyed returns true if the alloc runner has been destroyed (stopped and
// garbage collected).
//
// This method is safe for calling concurrently with Run(). Callers must
// receive on WaitCh() to block until alloc runner has stopped and been
// destroyed.
func (ar *allocRunner) IsDestroyed() bool {
ar.destroyedLock.Lock()
defer ar.destroyedLock.Unlock()
return ar.destroyed
}
// IsWaiting returns true if the alloc runner is waiting for its previous
// allocation to terminate.
//
// This method is safe for calling concurrently with Run().
func (ar *allocRunner) IsWaiting() bool {
return ar.prevAllocWatcher.IsWaiting()
}
// isShuttingDown returns true if the alloc runner is in a shutdown state
// due to a call to Shutdown() or Destroy()
func (ar *allocRunner) isShuttingDown() bool {
ar.destroyedLock.Lock()
defer ar.destroyedLock.Unlock()
return ar.shutdownLaunched
}
// DestroyCh is a channel that is closed when an allocrunner is closed due to
// an explicit call to Destroy().
func (ar *allocRunner) DestroyCh() <-chan struct{} {
return ar.destroyCh
}
// ShutdownCh is a channel that is closed when an allocrunner is closed due to
// either an explicit call to Shutdown(), or Destroy().
func (ar *allocRunner) ShutdownCh() <-chan struct{} {
return ar.shutdownCh
}
// Shutdown AllocRunner gracefully. Asynchronously shuts down all TaskRunners.
// Tasks are unaffected and may be restored.
// When the destroy action is completed, it will close ShutdownCh().
func (ar *allocRunner) Shutdown() {
ar.destroyedLock.Lock()
defer ar.destroyedLock.Unlock()
// Destroy is a superset of Shutdown so there's nothing to do if this
// has already been destroyed.
if ar.destroyed {
return
}
// Destroy is a superset of Shutdown so if it's been marked for destruction,
// don't try and shutdown in parallel. If shutdown has been launched, don't
// try again.
if ar.destroyLaunched || ar.shutdownLaunched {
return
}
ar.shutdownLaunched = true
go func() {
ar.logger.Trace("shutting down")
// Shutdown tasks gracefully if they were run
wg := sync.WaitGroup{}
for _, tr := range ar.tasks {
wg.Add(1)
go func(tr *taskrunner.TaskRunner) {
tr.Shutdown()
wg.Done()
}(tr)
}
wg.Wait()
// Wait for Run to exit
<-ar.waitCh
// Run shutdown hooks
ar.shutdownHooks()
// Wait for updater to finish its final run
<-ar.taskStateUpdateHandlerCh
ar.destroyedLock.Lock()
ar.shutdown = true
close(ar.shutdownCh)
ar.destroyedLock.Unlock()
}()
}
// IsMigrating returns true if the alloc runner is migrating data from its
// previous allocation.
//
// This method is safe for calling concurrently with Run().
func (ar *allocRunner) IsMigrating() bool {
return ar.prevAllocMigrator.IsMigrating()
}
func (ar *allocRunner) StatsReporter() interfaces.AllocStatsReporter {
return ar
}
// LatestAllocStats returns the latest stats for an allocation. If taskFilter
// is set, only stats for that task -- if it exists -- are returned.
func (ar *allocRunner) LatestAllocStats(taskFilter string) (*cstructs.AllocResourceUsage, error) {
astat := &cstructs.AllocResourceUsage{
Tasks: make(map[string]*cstructs.TaskResourceUsage, len(ar.tasks)),
ResourceUsage: &cstructs.ResourceUsage{
MemoryStats: &cstructs.MemoryStats{},
CpuStats: &cstructs.CpuStats{},
DeviceStats: []*device.DeviceGroupStats{},
},
}
for name, tr := range ar.tasks {
if taskFilter != "" && taskFilter != name {
// Getting stats for a particular task and its not this one!
continue
}
if usage := tr.LatestResourceUsage(); usage != nil {
astat.Tasks[name] = usage
astat.ResourceUsage.Add(usage.ResourceUsage)
if usage.Timestamp > astat.Timestamp {
astat.Timestamp = usage.Timestamp
}
}
}
return astat, nil
}
func (ar *allocRunner) GetTaskEventHandler(taskName string) drivermanager.EventHandler {
if tr, ok := ar.tasks[taskName]; ok {
return func(ev *drivers.TaskEvent) {
tr.EmitEvent(&structs.TaskEvent{
Type: structs.TaskDriverMessage,
Time: ev.Timestamp.UnixNano(),
Details: ev.Annotations,
DriverMessage: ev.Message,
})
}
}
return nil
}
// RestartTask signalls the task runner for the provided task to restart.
func (ar *allocRunner) RestartTask(taskName string, taskEvent *structs.TaskEvent) error {
tr, ok := ar.tasks[taskName]
if !ok {
return fmt.Errorf("Could not find task runner for task: %s", taskName)
}
return tr.Restart(context.TODO(), taskEvent, false)
}
// Restart satisfies the WorkloadRestarter interface restarts all task runners
// concurrently
func (ar *allocRunner) Restart(ctx context.Context, event *structs.TaskEvent, failure bool) error {
waitCh := make(chan struct{})
var err *multierror.Error
var errMutex sync.Mutex
// run alloc task restart hooks
ar.taskRestartHooks()
go func() {
var wg sync.WaitGroup
defer close(waitCh)
for tn, tr := range ar.tasks {
wg.Add(1)
go func(taskName string, r agentconsul.WorkloadRestarter) {
defer wg.Done()
e := r.Restart(ctx, event, failure)
if e != nil {
errMutex.Lock()
defer errMutex.Unlock()
err = multierror.Append(err, fmt.Errorf("failed to restart task %s: %v", taskName, e))
}
}(tn, tr)
}
wg.Wait()
}()
select {
case <-waitCh:
case <-ctx.Done():
}
return err.ErrorOrNil()
}
// RestartAll signalls all task runners in the allocation to restart and passes
// a copy of the task event to each restart event.
// Returns any errors in a concatenated form.
func (ar *allocRunner) RestartAll(taskEvent *structs.TaskEvent) error {
var err *multierror.Error
// run alloc task restart hooks
ar.taskRestartHooks()
for tn := range ar.tasks {
rerr := ar.RestartTask(tn, taskEvent.Copy())
if rerr != nil {
err = multierror.Append(err, rerr)
}
}
return err.ErrorOrNil()
}
// Signal sends a signal request to task runners inside an allocation. If the
// taskName is empty, then it is sent to all tasks.
func (ar *allocRunner) Signal(taskName, signal string) error {
event := structs.NewTaskEvent(structs.TaskSignaling).SetSignalText(signal)
if taskName != "" {
tr, ok := ar.tasks[taskName]
if !ok {
return fmt.Errorf("Task not found")
}
return tr.Signal(event, signal)
}
var err *multierror.Error
for tn, tr := range ar.tasks {
rerr := tr.Signal(event.Copy(), signal)
if rerr != nil {
err = multierror.Append(err, fmt.Errorf("Failed to signal task: %s, err: %v", tn, rerr))
}
}
return err.ErrorOrNil()
}
func (ar *allocRunner) GetTaskExecHandler(taskName string) drivermanager.TaskExecHandler {
tr, ok := ar.tasks[taskName]
if !ok {
return nil
}
return tr.TaskExecHandler()
}
func (ar *allocRunner) GetTaskDriverCapabilities(taskName string) (*drivers.Capabilities, error) {
tr, ok := ar.tasks[taskName]
if !ok {
return nil, fmt.Errorf("task not found")
}
return tr.DriverCapabilities()
}