open-nomad/client/allocrunner/taskrunner/task_runner.go

1603 lines
51 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package taskrunner
import (
"context"
"errors"
"fmt"
"strings"
"sync"
"time"
"golang.org/x/exp/slices"
metrics "github.com/armon/go-metrics"
log "github.com/hashicorp/go-hclog"
multierror "github.com/hashicorp/go-multierror"
"github.com/hashicorp/hcl/v2/hcldec"
"github.com/hashicorp/nomad/client/allocdir"
"github.com/hashicorp/nomad/client/allocrunner/interfaces"
"github.com/hashicorp/nomad/client/allocrunner/taskrunner/restarts"
"github.com/hashicorp/nomad/client/allocrunner/taskrunner/state"
"github.com/hashicorp/nomad/client/config"
"github.com/hashicorp/nomad/client/consul"
"github.com/hashicorp/nomad/client/devicemanager"
"github.com/hashicorp/nomad/client/dynamicplugins"
cinterfaces "github.com/hashicorp/nomad/client/interfaces"
"github.com/hashicorp/nomad/client/lib/cgutil"
"github.com/hashicorp/nomad/client/pluginmanager/csimanager"
"github.com/hashicorp/nomad/client/pluginmanager/drivermanager"
"github.com/hashicorp/nomad/client/serviceregistration"
"github.com/hashicorp/nomad/client/serviceregistration/wrapper"
cstate "github.com/hashicorp/nomad/client/state"
cstructs "github.com/hashicorp/nomad/client/structs"
"github.com/hashicorp/nomad/client/taskenv"
"github.com/hashicorp/nomad/client/vaultclient"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/helper/pluginutils/hclspecutils"
"github.com/hashicorp/nomad/helper/pluginutils/hclutils"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/structs"
bstructs "github.com/hashicorp/nomad/plugins/base/structs"
"github.com/hashicorp/nomad/plugins/drivers"
)
const (
// defaultMaxEvents is the default max capacity for task events on the
// task state. Overrideable for testing.
defaultMaxEvents = 10
// killBackoffBaseline is the baseline time for exponential backoff while
// killing a task.
killBackoffBaseline = 5 * time.Second
// killBackoffLimit is the limit of the exponential backoff for killing
// the task.
killBackoffLimit = 2 * time.Minute
// killFailureLimit is how many times we will attempt to kill a task before
// giving up and potentially leaking resources.
killFailureLimit = 5
// triggerUpdateChCap is the capacity for the triggerUpdateCh used for
// triggering updates. It should be exactly 1 as even if multiple
// updates have come in since the last one was handled, we only need to
// handle the last one.
triggerUpdateChCap = 1
// restartChCap is the capacity for the restartCh used for triggering task
// restarts. It should be exactly 1 as even if multiple restarts have come
// we only need to handle the last one.
restartChCap = 1
)
type TaskRunner struct {
// allocID, taskName, taskLeader, and taskResources are immutable so these fields may
// be accessed without locks
allocID string
taskName string
taskLeader bool
taskResources *structs.AllocatedTaskResources
alloc *structs.Allocation
allocLock sync.Mutex
clientConfig *config.Config
// stateUpdater is used to emit updated task state
stateUpdater interfaces.TaskStateHandler
// state captures the state of the task for updating the allocation
// Must acquire stateLock to access.
state *structs.TaskState
// localState captures the node-local state of the task for when the
// Nomad agent restarts.
// Must acquire stateLock to access.
localState *state.LocalState
// stateLock must be acquired when accessing state or localState.
stateLock sync.RWMutex
// stateDB is for persisting localState and taskState
stateDB cstate.StateDB
// restartCh is used to signal that the task should restart.
restartCh chan struct{}
// shutdownCtx is used to exit the TaskRunner *without* affecting task state.
shutdownCtx context.Context
// shutdownCtxCancel causes the TaskRunner to exit immediately without
// affecting task state. Useful for testing or graceful agent shutdown.
shutdownCtxCancel context.CancelFunc
// killCtx is the task runner's context representing the tasks's lifecycle.
// The context is canceled when the task is killed.
killCtx context.Context
// killCtxCancel is called when killing a task.
killCtxCancel context.CancelFunc
// killErr is populated when killing a task. Access should be done use the
// getter/setter
killErr error
killErrLock sync.Mutex
// shutdownDelayCtx is a context from the alloc runner which will
// tell us to exit early from shutdown_delay
shutdownDelayCtx context.Context
shutdownDelayCancelFn context.CancelFunc
// Logger is the logger for the task runner.
logger log.Logger
// triggerUpdateCh is ticked whenever update hooks need to be run and
// must be created with cap=1 to signal a pending update and prevent
// callers from deadlocking if the receiver has exited.
triggerUpdateCh chan struct{}
// waitCh is closed when the task runner has transitioned to a terminal
// state
waitCh chan struct{}
// driver is the driver for the task.
driver drivers.DriverPlugin
// driverCapabilities is the set capabilities the driver supports
driverCapabilities *drivers.Capabilities
// taskSchema is the hcl spec for the task driver configuration
taskSchema hcldec.Spec
// handleLock guards access to handle and handleResult
handleLock sync.Mutex
// handle to the running driver
handle *DriverHandle
// task is the task being run
task *structs.Task
taskLock sync.RWMutex
// taskDir is the directory structure for this task.
taskDir *allocdir.TaskDir
// envBuilder is used to build the task's environment
envBuilder *taskenv.Builder
// restartTracker is used to decide if the task should be restarted.
restartTracker *restarts.RestartTracker
// runnerHooks are task runner lifecycle hooks that should be run on state
// transistions.
runnerHooks []interfaces.TaskHook
// hookResources captures the resources provided by hooks
hookResources *hookResources
// allocHookResources captures the resources provided by the allocrunner hooks
allocHookResources *cstructs.AllocHookResources
// consulClient is the client used by the consul service hook for
// registering services and checks
consulServiceClient serviceregistration.Handler
// consulProxiesClient is the client used by the envoy version hook for
// asking consul what version of envoy nomad should inject into the connect
// sidecar or gateway task.
consulProxiesClient consul.SupportedProxiesAPI
// sidsClient is the client used by the service identity hook for managing
// service identity tokens
siClient consul.ServiceIdentityAPI
// vaultClient is the client to use to derive and renew Vault tokens
vaultClient vaultclient.VaultClient
// vaultToken is the current Vault token. It should be accessed with the
// getter.
vaultToken string
vaultTokenLock sync.Mutex
// nomadToken is the current Nomad workload identity token. It
// should be accessed with the getter.
nomadToken string
nomadTokenLock sync.Mutex
// baseLabels are used when emitting tagged metrics. All task runner metrics
// will have these tags, and optionally more.
baseLabels []metrics.Label
// logmonHookConfig is used to get the paths to the stdout and stderr fifos
// to be passed to the driver for task logging
logmonHookConfig *logmonHookConfig
// resourceUsage is written via UpdateStats and read via
// LatestResourceUsage. May be nil at all times.
resourceUsage *cstructs.TaskResourceUsage
resourceUsageLock sync.Mutex
// deviceStatsReporter is used to lookup resource usage for alloc devices
deviceStatsReporter cinterfaces.DeviceStatsReporter
// csiManager is used to manage the mounting of CSI volumes into tasks
csiManager csimanager.Manager
// devicemanager is used to mount devices as well as lookup device
// statistics
devicemanager devicemanager.Manager
// cpusetCgroupPathGetter is used to lookup the cgroup path if supported by the platform
cpusetCgroupPathGetter cgutil.CgroupPathGetter
// driverManager is used to dispense driver plugins and register event
// handlers
driverManager drivermanager.Manager
// dynamicRegistry is where dynamic plugins should be registered.
dynamicRegistry dynamicplugins.Registry
// maxEvents is the capacity of the TaskEvents on the TaskState.
// Defaults to defaultMaxEvents but overrideable for testing.
maxEvents int
// serversContactedCh is passed to TaskRunners so they can detect when
// GetClientAllocs has been called in case of a failed restore.
serversContactedCh <-chan struct{}
// startConditionMetCh signals the TaskRunner when it should start the task
startConditionMetCh <-chan struct{}
// waitOnServers defaults to false but will be set true if a restore
// fails and the Run method should wait until serversContactedCh is
// closed.
waitOnServers bool
networkIsolationLock sync.Mutex
networkIsolationSpec *drivers.NetworkIsolationSpec
// serviceRegWrapper is the handler wrapper that is used by service hooks
// to perform service and check registration and deregistration.
serviceRegWrapper *wrapper.HandlerWrapper
// getter is an interface for retrieving artifacts.
getter cinterfaces.ArtifactGetter
}
type Config struct {
Alloc *structs.Allocation
ClientConfig *config.Config
Task *structs.Task
TaskDir *allocdir.TaskDir
Logger log.Logger
// Consul is the client to use for managing Consul service registrations
Consul serviceregistration.Handler
// ConsulProxies is the client to use for looking up supported envoy versions
// from Consul.
ConsulProxies consul.SupportedProxiesAPI
// ConsulSI is the client to use for managing Consul SI tokens
ConsulSI consul.ServiceIdentityAPI
// DynamicRegistry is where dynamic plugins should be registered.
DynamicRegistry dynamicplugins.Registry
// Vault is the client to use to derive and renew Vault tokens
Vault vaultclient.VaultClient
// StateDB is used to store and restore state.
StateDB cstate.StateDB
// StateUpdater is used to emit updated task state
StateUpdater interfaces.TaskStateHandler
// deviceStatsReporter is used to lookup resource usage for alloc devices
DeviceStatsReporter cinterfaces.DeviceStatsReporter
// CSIManager is used to manage the mounting of CSI volumes into tasks
CSIManager csimanager.Manager
// CpusetCgroupPathGetter is used to lookup the cgroup path if supported by the platform
CpusetCgroupPathGetter cgutil.CgroupPathGetter
// DeviceManager is used to mount devices as well as lookup device
// statistics
DeviceManager devicemanager.Manager
// DriverManager is used to dispense driver plugins and register event
// handlers
DriverManager drivermanager.Manager
// ServersContactedCh is closed when the first GetClientAllocs call to
// servers succeeds and allocs are synced.
ServersContactedCh chan struct{}
// StartConditionMetCh signals the TaskRunner when it should start the task
StartConditionMetCh <-chan struct{}
// ShutdownDelayCtx is a context from the alloc runner which will
// tell us to exit early from shutdown_delay
ShutdownDelayCtx context.Context
// ShutdownDelayCancelFn should only be used in testing.
ShutdownDelayCancelFn context.CancelFunc
// ServiceRegWrapper is the handler wrapper that is used by service hooks
// to perform service and check registration and deregistration.
ServiceRegWrapper *wrapper.HandlerWrapper
// Getter is an interface for retrieving artifacts.
Getter cinterfaces.ArtifactGetter
// AllocHookResources is how taskrunner hooks can get state written by
// allocrunner hooks
AllocHookResources *cstructs.AllocHookResources
}
func NewTaskRunner(config *Config) (*TaskRunner, error) {
// Create a context for causing the runner to exit
trCtx, trCancel := context.WithCancel(context.Background())
// Create a context for killing the runner
killCtx, killCancel := context.WithCancel(context.Background())
// Initialize the environment builder
envBuilder := taskenv.NewBuilder(
config.ClientConfig.Node,
config.Alloc,
config.Task,
config.ClientConfig.Region,
)
// Initialize state from alloc if it is set
tstate := structs.NewTaskState()
if ts := config.Alloc.TaskStates[config.Task.Name]; ts != nil {
tstate = ts.Copy()
}
tr := &TaskRunner{
alloc: config.Alloc,
allocID: config.Alloc.ID,
clientConfig: config.ClientConfig,
task: config.Task,
taskDir: config.TaskDir,
taskName: config.Task.Name,
taskLeader: config.Task.Leader,
envBuilder: envBuilder,
dynamicRegistry: config.DynamicRegistry,
consulServiceClient: config.Consul,
consulProxiesClient: config.ConsulProxies,
siClient: config.ConsulSI,
vaultClient: config.Vault,
state: tstate,
localState: state.NewLocalState(),
allocHookResources: config.AllocHookResources,
stateDB: config.StateDB,
stateUpdater: config.StateUpdater,
deviceStatsReporter: config.DeviceStatsReporter,
killCtx: killCtx,
killCtxCancel: killCancel,
shutdownCtx: trCtx,
shutdownCtxCancel: trCancel,
triggerUpdateCh: make(chan struct{}, triggerUpdateChCap),
restartCh: make(chan struct{}, restartChCap),
waitCh: make(chan struct{}),
csiManager: config.CSIManager,
cpusetCgroupPathGetter: config.CpusetCgroupPathGetter,
devicemanager: config.DeviceManager,
driverManager: config.DriverManager,
maxEvents: defaultMaxEvents,
serversContactedCh: config.ServersContactedCh,
startConditionMetCh: config.StartConditionMetCh,
shutdownDelayCtx: config.ShutdownDelayCtx,
shutdownDelayCancelFn: config.ShutdownDelayCancelFn,
serviceRegWrapper: config.ServiceRegWrapper,
getter: config.Getter,
}
// Create the logger based on the allocation ID
tr.logger = config.Logger.Named("task_runner").With("task", config.Task.Name)
// Pull out the task's resources
ares := tr.alloc.AllocatedResources
if ares == nil {
return nil, fmt.Errorf("no task resources found on allocation")
}
tres, ok := ares.Tasks[tr.taskName]
if !ok {
return nil, fmt.Errorf("no task resources found on allocation")
}
tr.taskResources = tres
// Build the restart tracker.
rp := config.Task.RestartPolicy
if rp == nil {
tg := tr.alloc.Job.LookupTaskGroup(tr.alloc.TaskGroup)
if tg == nil {
tr.logger.Error("alloc missing task group")
return nil, fmt.Errorf("alloc missing task group")
}
rp = tg.RestartPolicy
}
tr.restartTracker = restarts.NewRestartTracker(rp, tr.alloc.Job.Type, config.Task.Lifecycle)
// Get the driver
if err := tr.initDriver(); err != nil {
tr.logger.Error("failed to create driver", "error", err)
return nil, err
}
// Use the client secret only as the initial value; the identity hook will
// update this with a workload identity if one is available
tr.setNomadToken(config.ClientConfig.Node.SecretID)
// Initialize the runners hooks. Must come after initDriver so hooks
// can use tr.driverCapabilities
tr.initHooks()
// Initialize base labels
tr.initLabels()
// Initialize initial task received event
tr.appendEvent(structs.NewTaskEvent(structs.TaskReceived))
return tr, nil
}
func (tr *TaskRunner) initLabels() {
alloc := tr.Alloc()
tr.baseLabels = []metrics.Label{
{
Name: "job",
Value: alloc.Job.Name,
},
{
Name: "task_group",
Value: alloc.TaskGroup,
},
{
Name: "alloc_id",
Value: tr.allocID,
},
{
Name: "task",
Value: tr.taskName,
},
{
Name: "namespace",
Value: tr.alloc.Namespace,
},
}
if tr.alloc.Job.ParentID != "" {
tr.baseLabels = append(tr.baseLabels, metrics.Label{
Name: "parent_id",
Value: tr.alloc.Job.ParentID,
})
if strings.Contains(tr.alloc.Job.Name, "/dispatch-") {
tr.baseLabels = append(tr.baseLabels, metrics.Label{
Name: "dispatch_id",
Value: strings.Split(tr.alloc.Job.Name, "/dispatch-")[1],
})
}
if strings.Contains(tr.alloc.Job.Name, "/periodic-") {
tr.baseLabels = append(tr.baseLabels, metrics.Label{
Name: "periodic_id",
Value: strings.Split(tr.alloc.Job.Name, "/periodic-")[1],
})
}
}
}
// MarkFailedKill marks a task as failed and should be killed.
// It should be invoked when alloc runner prestart hooks fail.
// Afterwards, Run() will perform any necessary cleanup.
func (tr *TaskRunner) MarkFailedKill(reason string) {
// Emit an event that fails the task and gives reasons for humans.
event := structs.NewTaskEvent(structs.TaskSetupFailure).
SetKillReason(structs.TaskRestoreFailed).
SetDisplayMessage(reason).
SetFailsTask()
tr.EmitEvent(event)
// Cancel kill context, so later when allocRunner runs tr.Run(),
// we'll follow the usual kill path and do all the appropriate cleanup steps.
tr.killCtxCancel()
}
// Run the TaskRunner. Starts the user's task or reattaches to a restored task.
// Run closes WaitCh when it exits. Should be started in a goroutine.
func (tr *TaskRunner) Run() {
defer close(tr.waitCh)
var result *drivers.ExitResult
tr.stateLock.RLock()
dead := tr.state.State == structs.TaskStateDead
runComplete := tr.localState.RunComplete
tr.stateLock.RUnlock()
// If restoring a dead task, ensure the task is cleared and, if the local
// state indicates that the previous Run() call is complete, execute all
// post stop hooks and exit early, otherwise proceed until the
// ALLOC_RESTART loop skipping MAIN since the task is dead.
if dead {
// do cleanup functions without emitting any additional events/work
// to handle cases where we restored a dead task where client terminated
// after task finished before completing post-run actions.
tr.clearDriverHandle()
tr.stateUpdater.TaskStateUpdated()
if runComplete {
if err := tr.stop(); err != nil {
tr.logger.Error("stop failed on terminal task", "error", err)
}
return
}
}
// Updates are handled asynchronously with the other hooks but each
// triggered update - whether due to alloc updates or a new vault token
// - should be handled serially.
go tr.handleUpdates()
// If restore failed wait until servers are contacted before running.
// #1795
if tr.waitOnServers {
tr.logger.Info("task failed to restore; waiting to contact server before restarting")
select {
case <-tr.killCtx.Done():
tr.logger.Info("task killed while waiting for server contact")
case <-tr.shutdownCtx.Done():
return
case <-tr.serversContactedCh:
tr.logger.Info("server contacted; unblocking waiting task")
}
}
// Set the initial task state.
tr.stateUpdater.TaskStateUpdated()
// start with a stopped timer; actual restart delay computed later
timer, stop := helper.NewStoppedTimer()
defer stop()
MAIN:
for !tr.shouldShutdown() {
if dead {
break
}
select {
case <-tr.killCtx.Done():
break MAIN
case <-tr.shutdownCtx.Done():
// TaskRunner was told to exit immediately
return
case <-tr.startConditionMetCh:
tr.logger.Debug("lifecycle start condition has been met, proceeding")
// yay proceed
}
// Run the prestart hooks
if err := tr.prestart(); err != nil {
tr.logger.Error("prestart failed", "error", err)
tr.restartTracker.SetStartError(err)
goto RESTART
}
select {
case <-tr.killCtx.Done():
break MAIN
case <-tr.shutdownCtx.Done():
// TaskRunner was told to exit immediately
return
default:
}
// Run the task
if err := tr.runDriver(); err != nil {
tr.logger.Error("running driver failed", "error", err)
tr.restartTracker.SetStartError(err)
goto RESTART
}
// Run the poststart hooks
if err := tr.poststart(); err != nil {
tr.logger.Error("poststart failed", "error", err)
}
// Grab the result proxy and wait for task to exit
WAIT:
{
handle := tr.getDriverHandle()
result = nil
// Do *not* use tr.killCtx here as it would cause
// Wait() to unblock before the task exits when Kill()
// is called.
if resultCh, err := handle.WaitCh(context.Background()); err != nil {
tr.logger.Error("wait task failed", "error", err)
} else {
select {
case <-tr.killCtx.Done():
// We can go through the normal should restart check since
// the restart tracker knowns it is killed
result = tr.handleKill(resultCh)
case <-tr.shutdownCtx.Done():
// TaskRunner was told to exit immediately
return
case result = <-resultCh:
}
// WaitCh returned a result
if retryWait := tr.handleTaskExitResult(result); retryWait {
goto WAIT
}
}
}
// Clear the handle
tr.clearDriverHandle()
// Store the wait result on the restart tracker
tr.restartTracker.SetExitResult(result)
if err := tr.exited(); err != nil {
tr.logger.Error("exited hooks failed", "error", err)
}
RESTART:
restart, restartDelay := tr.shouldRestart()
if !restart {
break MAIN
}
timer.Reset(restartDelay)
// Actually restart by sleeping and also watching for destroy events
select {
case <-timer.C:
case <-tr.killCtx.Done():
tr.logger.Trace("task killed between restarts", "delay", restartDelay)
break MAIN
case <-tr.shutdownCtx.Done():
// TaskRunner was told to exit immediately
tr.logger.Trace("gracefully shutting down during restart delay")
return
}
}
// Ensure handle is cleaned up. Restore could have recovered a task
// that should be terminal, so if the handle still exists we should
// kill it here.
if tr.getDriverHandle() != nil {
if result = tr.handleKill(nil); result != nil {
tr.emitExitResultEvent(result)
}
tr.clearDriverHandle()
if err := tr.exited(); err != nil {
tr.logger.Error("exited hooks failed while cleaning up terminal task", "error", err)
}
}
// Mark the task as dead
tr.UpdateState(structs.TaskStateDead, nil)
// Wait here in case the allocation is restarted. Poststop tasks will never
// run again so skip them to avoid blocking forever.
if !tr.Task().IsPoststop() {
ALLOC_RESTART:
// Run in a loop to handle cases where restartCh is triggered but the
// task runner doesn't need to restart.
for {
select {
case <-tr.killCtx.Done():
break ALLOC_RESTART
case <-tr.shutdownCtx.Done():
return
case <-tr.restartCh:
// Restart without delay since the task is not running anymore.
restart, _ := tr.shouldRestart()
if restart {
// Set runner as not dead to allow the MAIN loop to run.
dead = false
goto MAIN
}
}
}
}
tr.stateLock.Lock()
tr.localState.RunComplete = true
err := tr.stateDB.PutTaskRunnerLocalState(tr.allocID, tr.taskName, tr.localState)
if err != nil {
tr.logger.Warn("error persisting task state on run loop exit", "error", err)
}
tr.stateLock.Unlock()
// Run the stop hooks
if err := tr.stop(); err != nil {
tr.logger.Error("stop failed", "error", err)
}
tr.logger.Debug("task run loop exiting")
}
func (tr *TaskRunner) shouldShutdown() bool {
alloc := tr.Alloc()
if alloc.ClientTerminalStatus() {
return true
}
if !tr.IsPoststopTask() && alloc.ServerTerminalStatus() {
return true
}
return false
}
// handleTaskExitResult handles the results returned by the task exiting. If
// retryWait is true, the caller should attempt to wait on the task again since
// it has not actually finished running. This can happen if the driver plugin
// has exited.
func (tr *TaskRunner) handleTaskExitResult(result *drivers.ExitResult) (retryWait bool) {
if result == nil {
return false
}
if result.Err == bstructs.ErrPluginShutdown {
dn := tr.Task().Driver
tr.logger.Debug("driver plugin has shutdown; attempting to recover task", "driver", dn)
// Initialize a new driver handle
if err := tr.initDriver(); err != nil {
tr.logger.Error("failed to initialize driver after it exited unexpectedly", "error", err, "driver", dn)
return false
}
// Try to restore the handle
tr.stateLock.RLock()
h := tr.localState.TaskHandle
net := tr.localState.DriverNetwork
tr.stateLock.RUnlock()
if !tr.restoreHandle(h, net) {
tr.logger.Error("failed to restore handle on driver after it exited unexpectedly", "driver", dn)
return false
}
tr.logger.Debug("task successfully recovered on driver", "driver", dn)
return true
}
// Emit Terminated event
tr.emitExitResultEvent(result)
return false
}
// emitExitResultEvent emits a TaskTerminated event for an ExitResult.
func (tr *TaskRunner) emitExitResultEvent(result *drivers.ExitResult) {
event := structs.NewTaskEvent(structs.TaskTerminated).
SetExitCode(result.ExitCode).
SetSignal(result.Signal).
SetOOMKilled(result.OOMKilled).
SetExitMessage(result.Err)
tr.EmitEvent(event)
if result.OOMKilled {
metrics.IncrCounterWithLabels([]string{"client", "allocs", "oom_killed"}, 1, tr.baseLabels)
}
}
// handleUpdates runs update hooks when triggerUpdateCh is ticked and exits
// when Run has returned. Should only be run in a goroutine from Run.
func (tr *TaskRunner) handleUpdates() {
for {
select {
case <-tr.triggerUpdateCh:
case <-tr.waitCh:
return
}
// Non-terminal update; run hooks
tr.updateHooks()
}
}
// shouldRestart determines whether the task should be restarted and updates
// the task state unless the task is killed or terminated.
func (tr *TaskRunner) shouldRestart() (bool, time.Duration) {
// Determine if we should restart
state, when := tr.restartTracker.GetState()
reason := tr.restartTracker.GetReason()
switch state {
case structs.TaskKilled:
// Never restart an explicitly killed task. Kill method handles
// updating the server.
tr.EmitEvent(structs.NewTaskEvent(state))
return false, 0
case structs.TaskNotRestarting, structs.TaskTerminated:
tr.logger.Info("not restarting task", "reason", reason)
if state == structs.TaskNotRestarting {
tr.UpdateState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskNotRestarting).SetRestartReason(reason).SetFailsTask())
}
return false, 0
case structs.TaskRestarting:
tr.logger.Info("restarting task", "reason", reason, "delay", when)
tr.UpdateState(structs.TaskStatePending, structs.NewTaskEvent(structs.TaskRestarting).SetRestartDelay(when).SetRestartReason(reason))
return true, when
default:
tr.logger.Error("restart tracker returned unknown state", "state", state)
return true, when
}
}
// runDriver runs the driver and waits for it to exit
// runDriver emits an appropriate task event on success/failure
func (tr *TaskRunner) runDriver() error {
taskConfig := tr.buildTaskConfig()
if tr.cpusetCgroupPathGetter != nil {
tr.logger.Trace("waiting for cgroup to exist for", "allocID", tr.allocID, "task", tr.task)
cpusetCgroupPath, err := tr.cpusetCgroupPathGetter(tr.killCtx)
if err != nil {
return err
}
taskConfig.Resources.LinuxResources.CpusetCgroupPath = cpusetCgroupPath
}
// Build hcl context variables
vars, errs, err := tr.envBuilder.Build().AllValues()
if err != nil {
return fmt.Errorf("error building environment variables: %v", err)
}
// Handle per-key errors
if len(errs) > 0 {
keys := make([]string, 0, len(errs))
for k, err := range errs {
keys = append(keys, k)
if tr.logger.IsTrace() {
// Verbosely log every diagnostic for debugging
tr.logger.Trace("error building environment variables", "key", k, "error", err)
}
}
tr.logger.Warn("some environment variables not available for rendering", "keys", strings.Join(keys, ", "))
}
val, diag, diagErrs := hclutils.ParseHclInterface(tr.task.Config, tr.taskSchema, vars)
if diag.HasErrors() {
parseErr := multierror.Append(errors.New("failed to parse config: "), diagErrs...)
tr.EmitEvent(structs.NewTaskEvent(structs.TaskFailedValidation).SetValidationError(parseErr))
return parseErr
}
if err := taskConfig.EncodeDriverConfig(val); err != nil {
encodeErr := fmt.Errorf("failed to encode driver config: %v", err)
tr.EmitEvent(structs.NewTaskEvent(structs.TaskFailedValidation).SetValidationError(encodeErr))
return encodeErr
}
// If there's already a task handle (eg from a Restore) there's nothing
// to do except update state.
if tr.getDriverHandle() != nil {
// Ensure running state is persisted but do *not* append a new
// task event as restoring is a client event and not relevant
// to a task's lifecycle.
if err := tr.updateStateImpl(structs.TaskStateRunning); err != nil {
//TODO return error and destroy task to avoid an orphaned task?
tr.logger.Warn("error persisting task state", "error", err)
}
return nil
}
// Start the job if there's no existing handle (or if RecoverTask failed)
handle, net, err := tr.driver.StartTask(taskConfig)
if err != nil {
// The plugin has died, try relaunching it
if err == bstructs.ErrPluginShutdown {
tr.logger.Info("failed to start task because plugin shutdown unexpectedly; attempting to recover")
if err := tr.initDriver(); err != nil {
taskErr := fmt.Errorf("failed to initialize driver after it exited unexpectedly: %v", err)
tr.EmitEvent(structs.NewTaskEvent(structs.TaskDriverFailure).SetDriverError(taskErr))
return taskErr
}
handle, net, err = tr.driver.StartTask(taskConfig)
if err != nil {
taskErr := fmt.Errorf("failed to start task after driver exited unexpectedly: %v", err)
tr.EmitEvent(structs.NewTaskEvent(structs.TaskDriverFailure).SetDriverError(taskErr))
return taskErr
}
} else {
// Do *NOT* wrap the error here without maintaining whether or not is Recoverable.
// You must emit a task event failure to be considered Recoverable
tr.EmitEvent(structs.NewTaskEvent(structs.TaskDriverFailure).SetDriverError(err))
return err
}
}
tr.stateLock.Lock()
tr.localState.TaskHandle = handle
tr.localState.DriverNetwork = net
if err := tr.stateDB.PutTaskRunnerLocalState(tr.allocID, tr.taskName, tr.localState); err != nil {
//TODO Nomad will be unable to restore this task; try to kill
// it now and fail? In general we prefer to leave running
// tasks running even if the agent encounters an error.
tr.logger.Warn("error persisting local task state; may be unable to restore after a Nomad restart",
"error", err, "task_id", handle.Config.ID)
}
tr.stateLock.Unlock()
tr.setDriverHandle(NewDriverHandle(tr.driver, taskConfig.ID, tr.Task(), tr.clientConfig.MaxKillTimeout, net))
// Emit an event that we started
tr.UpdateState(structs.TaskStateRunning, structs.NewTaskEvent(structs.TaskStarted))
return nil
}
// initDriver retrives the DriverPlugin from the plugin loader for this task
func (tr *TaskRunner) initDriver() error {
driver, err := tr.driverManager.Dispense(tr.Task().Driver)
if err != nil {
return err
}
tr.driver = driver
schema, err := tr.driver.TaskConfigSchema()
if err != nil {
return err
}
spec, diag := hclspecutils.Convert(schema)
if diag.HasErrors() {
return multierror.Append(errors.New("failed to convert task schema"), diag.Errs()...)
}
tr.taskSchema = spec
caps, err := tr.driver.Capabilities()
if err != nil {
return err
}
tr.driverCapabilities = caps
return nil
}
// handleKill is used to handle the a request to kill a task. It will return
// the handle exit result if one is available and store any error in the task
// runner killErr value.
func (tr *TaskRunner) handleKill(resultCh <-chan *drivers.ExitResult) *drivers.ExitResult {
// Run the pre killing hooks
tr.preKill()
// Wait for task ShutdownDelay after running prekill hooks
// This allows for things like service de-registration to run
// before waiting to kill task
if delay := tr.Task().ShutdownDelay; delay != 0 {
var ev *structs.TaskEvent
if tr.alloc.DesiredTransition.ShouldIgnoreShutdownDelay() {
tr.logger.Debug("skipping shutdown_delay", "shutdown_delay", delay)
ev = structs.NewTaskEvent(structs.TaskSkippingShutdownDelay).
SetDisplayMessage(fmt.Sprintf("Skipping shutdown_delay of %s before killing the task.", delay))
} else {
tr.logger.Debug("waiting before killing task", "shutdown_delay", delay)
ev = structs.NewTaskEvent(structs.TaskWaitingShuttingDownDelay).
SetDisplayMessage(fmt.Sprintf("Waiting for shutdown_delay of %s before killing the task.", delay))
}
tr.UpdateState(structs.TaskStatePending, ev)
select {
case result := <-resultCh:
return result
case <-tr.shutdownDelayCtx.Done():
break
case <-time.After(delay):
}
}
// Tell the restart tracker that the task has been killed so it doesn't
// attempt to restart it.
tr.restartTracker.SetKilled()
// Check it is running
select {
case result := <-resultCh:
return result
default:
}
handle := tr.getDriverHandle()
if handle == nil {
return nil
}
// Kill the task using an exponential backoff in-case of failures.
result, killErr := tr.killTask(handle, resultCh)
if killErr != nil {
// We couldn't successfully destroy the resource created.
tr.logger.Error("failed to kill task. Resources may have been leaked", "error", killErr)
tr.setKillErr(killErr)
}
if result != nil {
return result
}
// Block until task has exited.
if resultCh == nil {
var err error
resultCh, err = handle.WaitCh(tr.shutdownCtx)
// The error should be nil or TaskNotFound, if it's something else then a
// failure in the driver or transport layer occurred
if err != nil {
if err == drivers.ErrTaskNotFound {
return nil
}
tr.logger.Error("failed to wait on task. Resources may have been leaked", "error", err)
tr.setKillErr(killErr)
return nil
}
}
select {
case result := <-resultCh:
return result
case <-tr.shutdownCtx.Done():
return nil
}
}
// killTask kills the task handle. In the case that killing fails,
// killTask will retry with an exponential backoff and will give up at a
// given limit. Returns an error if the task could not be killed.
func (tr *TaskRunner) killTask(handle *DriverHandle, resultCh <-chan *drivers.ExitResult) (*drivers.ExitResult, error) {
// Cap the number of times we attempt to kill the task.
var err error
for i := 0; i < killFailureLimit; i++ {
if err = handle.Kill(); err != nil {
if err == drivers.ErrTaskNotFound {
tr.logger.Warn("couldn't find task to kill", "task_id", handle.ID())
return nil, nil
}
// Calculate the new backoff
backoff := (1 << (2 * uint64(i))) * killBackoffBaseline
if backoff > killBackoffLimit {
backoff = killBackoffLimit
}
tr.logger.Error("failed to kill task", "backoff", backoff, "error", err)
select {
case result := <-resultCh:
return result, nil
case <-time.After(backoff):
}
} else {
// Kill was successful
return nil, nil
}
}
return nil, err
}
// persistLocalState persists local state to disk synchronously.
func (tr *TaskRunner) persistLocalState() error {
tr.stateLock.RLock()
defer tr.stateLock.RUnlock()
return tr.stateDB.PutTaskRunnerLocalState(tr.allocID, tr.taskName, tr.localState)
}
// buildTaskConfig builds a drivers.TaskConfig with an unique ID for the task.
// The ID is unique for every invocation, it is built from the alloc ID, task
// name and 8 random characters.
func (tr *TaskRunner) buildTaskConfig() *drivers.TaskConfig {
task := tr.Task()
alloc := tr.Alloc()
invocationid := uuid.Generate()[:8]
taskResources := tr.taskResources
ports := tr.Alloc().AllocatedResources.Shared.Ports
env := tr.envBuilder.Build()
tr.networkIsolationLock.Lock()
defer tr.networkIsolationLock.Unlock()
var dns *drivers.DNSConfig
if alloc.AllocatedResources != nil && len(alloc.AllocatedResources.Shared.Networks) > 0 {
allocDNS := alloc.AllocatedResources.Shared.Networks[0].DNS
if allocDNS != nil {
interpolatedNetworks := taskenv.InterpolateNetworks(env, alloc.AllocatedResources.Shared.Networks)
dns = &drivers.DNSConfig{
Servers: interpolatedNetworks[0].DNS.Servers,
Searches: interpolatedNetworks[0].DNS.Searches,
Options: interpolatedNetworks[0].DNS.Options,
}
}
}
memoryLimit := taskResources.Memory.MemoryMB
if max := taskResources.Memory.MemoryMaxMB; max > memoryLimit {
memoryLimit = max
}
cpusetCpus := make([]string, len(taskResources.Cpu.ReservedCores))
for i, v := range taskResources.Cpu.ReservedCores {
cpusetCpus[i] = fmt.Sprintf("%d", v)
}
return &drivers.TaskConfig{
ID: fmt.Sprintf("%s/%s/%s", alloc.ID, task.Name, invocationid),
Name: task.Name,
JobName: alloc.Job.Name,
JobID: alloc.Job.ID,
TaskGroupName: alloc.TaskGroup,
Namespace: alloc.Namespace,
NodeName: alloc.NodeName,
NodeID: alloc.NodeID,
ParentJobID: alloc.Job.ParentID,
Resources: &drivers.Resources{
NomadResources: taskResources,
LinuxResources: &drivers.LinuxResources{
MemoryLimitBytes: memoryLimit * 1024 * 1024,
CPUShares: taskResources.Cpu.CpuShares,
CpusetCpus: strings.Join(cpusetCpus, ","),
PercentTicks: float64(taskResources.Cpu.CpuShares) / float64(tr.clientConfig.Node.NodeResources.Cpu.CpuShares),
},
Ports: &ports,
},
Devices: tr.hookResources.getDevices(),
Mounts: tr.hookResources.getMounts(),
Env: env.Map(),
DeviceEnv: env.DeviceEnv(),
User: task.User,
AllocDir: tr.taskDir.AllocDir,
StdoutPath: tr.logmonHookConfig.stdoutFifo,
StderrPath: tr.logmonHookConfig.stderrFifo,
AllocID: tr.allocID,
NetworkIsolation: tr.networkIsolationSpec,
DNS: dns,
}
}
// Restore task runner state. Called by AllocRunner.Restore after NewTaskRunner
// but before Run so no locks need to be acquired.
func (tr *TaskRunner) Restore() error {
ls, ts, err := tr.stateDB.GetTaskRunnerState(tr.allocID, tr.taskName)
if err != nil {
return err
}
if ls != nil {
ls.Canonicalize()
tr.localState = ls
}
if ts != nil {
ts.Canonicalize()
tr.state = ts
}
// If a TaskHandle was persisted, ensure it is valid or destroy it.
if taskHandle := tr.localState.TaskHandle; taskHandle != nil {
//TODO if RecoverTask returned the DriverNetwork we wouldn't
// have to persist it at all!
restored := tr.restoreHandle(taskHandle, tr.localState.DriverNetwork)
// If the handle could not be restored, the alloc is
// non-terminal, and the task isn't a system job: wait until
// servers have been contacted before running. #1795
if restored {
return nil
}
alloc := tr.Alloc()
if tr.state.State == structs.TaskStateDead || alloc.TerminalStatus() || alloc.Job.Type == structs.JobTypeSystem {
return nil
}
tr.logger.Trace("failed to reattach to task; will not run until server is contacted")
tr.waitOnServers = true
ev := structs.NewTaskEvent(structs.TaskRestoreFailed).
SetDisplayMessage("failed to restore task; will not run until server is contacted")
tr.UpdateState(structs.TaskStatePending, ev)
}
return nil
}
// restoreHandle ensures a TaskHandle is valid by calling Driver.RecoverTask
// and sets the driver handle. If the TaskHandle is not valid, DestroyTask is
// called.
func (tr *TaskRunner) restoreHandle(taskHandle *drivers.TaskHandle, net *drivers.DriverNetwork) (success bool) {
// Ensure handle is well-formed
if taskHandle.Config == nil {
return true
}
if err := tr.driver.RecoverTask(taskHandle); err != nil {
if tr.TaskState().State != structs.TaskStateRunning {
// RecoverTask should fail if the Task wasn't running
return true
}
tr.logger.Error("error recovering task; cleaning up",
"error", err, "task_id", taskHandle.Config.ID)
// Try to cleanup any existing task state in the plugin before restarting
if err := tr.driver.DestroyTask(taskHandle.Config.ID, true); err != nil {
// Ignore ErrTaskNotFound errors as ideally
// this task has already been stopped and
// therefore doesn't exist.
if err != drivers.ErrTaskNotFound {
tr.logger.Warn("error destroying unrecoverable task",
"error", err, "task_id", taskHandle.Config.ID)
}
}
return false
}
// Update driver handle on task runner
tr.setDriverHandle(NewDriverHandle(tr.driver, taskHandle.Config.ID, tr.Task(), tr.clientConfig.MaxKillTimeout, net))
return true
}
// UpdateState sets the task runners allocation state and triggers a server
// update.
func (tr *TaskRunner) UpdateState(state string, event *structs.TaskEvent) {
tr.stateLock.Lock()
defer tr.stateLock.Unlock()
tr.logger.Trace("setting task state", "state", state)
if event != nil {
// Append the event
tr.appendEvent(event)
}
// Update the state
if err := tr.updateStateImpl(state); err != nil {
// Only log the error as we persistence errors should not
// affect task state.
tr.logger.Error("error persisting task state", "error", err, "event", event, "state", state)
}
// Store task handle for remote tasks
if tr.driverCapabilities != nil && tr.driverCapabilities.RemoteTasks {
tr.logger.Trace("storing remote task handle state")
tr.localState.TaskHandle.Store(tr.state)
}
// Notify the alloc runner of the transition
tr.stateUpdater.TaskStateUpdated()
}
// updateStateImpl updates the in-memory task state and persists to disk.
func (tr *TaskRunner) updateStateImpl(state string) error {
// Update the task state
oldState := tr.state.State
taskState := tr.state
taskState.State = state
// Handle the state transition.
switch state {
case structs.TaskStateRunning:
// Capture the start time if it is just starting
if oldState != structs.TaskStateRunning {
taskState.StartedAt = time.Now().UTC()
metrics.IncrCounterWithLabels([]string{"client", "allocs", "running"}, 1, tr.baseLabels)
}
case structs.TaskStateDead:
// Capture the finished time if not already set
if taskState.FinishedAt.IsZero() {
taskState.FinishedAt = time.Now().UTC()
}
// Emitting metrics to indicate task complete and failures
if taskState.Failed {
metrics.IncrCounterWithLabels([]string{"client", "allocs", "failed"}, 1, tr.baseLabels)
} else {
metrics.IncrCounterWithLabels([]string{"client", "allocs", "complete"}, 1, tr.baseLabels)
}
}
// Persist the state and event
return tr.stateDB.PutTaskState(tr.allocID, tr.taskName, taskState)
}
// EmitEvent appends a new TaskEvent to this task's TaskState. The actual
// TaskState.State (pending, running, dead) is not changed. Use UpdateState to
// transition states.
// Events are persisted locally and sent to the server, but errors are simply
// logged. Use AppendEvent to simply add a new event.
func (tr *TaskRunner) EmitEvent(event *structs.TaskEvent) {
tr.stateLock.Lock()
defer tr.stateLock.Unlock()
tr.appendEvent(event)
if err := tr.stateDB.PutTaskState(tr.allocID, tr.taskName, tr.state); err != nil {
// Only a warning because the next event/state-transition will
// try to persist it again.
tr.logger.Warn("error persisting event", "error", err, "event", event)
}
// Notify the alloc runner of the event
tr.stateUpdater.TaskStateUpdated()
}
// AppendEvent appends a new TaskEvent to this task's TaskState. The actual
// TaskState.State (pending, running, dead) is not changed. Use UpdateState to
// transition states.
// Events are persisted locally and errors are simply logged. Use EmitEvent
// also update AllocRunner.
func (tr *TaskRunner) AppendEvent(event *structs.TaskEvent) {
tr.stateLock.Lock()
defer tr.stateLock.Unlock()
tr.appendEvent(event)
if err := tr.stateDB.PutTaskState(tr.allocID, tr.taskName, tr.state); err != nil {
// Only a warning because the next event/state-transition will
// try to persist it again.
tr.logger.Warn("error persisting event", "error", err, "event", event)
}
}
// appendEvent to task's event slice. Caller must acquire stateLock.
func (tr *TaskRunner) appendEvent(event *structs.TaskEvent) error {
// Ensure the event is populated with human readable strings
event.PopulateEventDisplayMessage()
// Propagate failure from event to task state
if event.FailsTask {
tr.state.Failed = true
}
// XXX This seems like a super awkward spot for this? Why not shouldRestart?
// Update restart metrics
if event.Type == structs.TaskRestarting {
metrics.IncrCounterWithLabels([]string{"client", "allocs", "restart"}, 1, tr.baseLabels)
tr.state.Restarts++
tr.state.LastRestart = time.Unix(0, event.Time)
}
tr.logger.Info("Task event", "type", event.Type, "msg", event.DisplayMessage, "failed", event.FailsTask)
// Append event to slice
appendTaskEvent(tr.state, event, tr.maxEvents)
return nil
}
// WaitCh is closed when TaskRunner.Run exits.
func (tr *TaskRunner) WaitCh() <-chan struct{} {
return tr.waitCh
}
// Update the running allocation with a new version received from the server.
// Calls Update hooks asynchronously with Run.
//
// This method is safe for calling concurrently with Run and does not modify
// the passed in allocation.
func (tr *TaskRunner) Update(update *structs.Allocation) {
task := update.LookupTask(tr.taskName)
if task == nil {
// This should not happen and likely indicates a bug in the
// server or client.
tr.logger.Error("allocation update is missing task; killing",
"group", update.TaskGroup)
te := structs.NewTaskEvent(structs.TaskKilled).
SetKillReason("update missing task").
SetFailsTask()
tr.Kill(context.Background(), te)
return
}
// Update tr.alloc
tr.setAlloc(update, task)
// Trigger update hooks if not terminal
if !update.TerminalStatus() {
tr.triggerUpdateHooks()
}
}
// SetNetworkIsolation is called by the PreRun allocation hook after configuring
// the network isolation for the allocation
func (tr *TaskRunner) SetNetworkIsolation(n *drivers.NetworkIsolationSpec) {
tr.networkIsolationLock.Lock()
tr.networkIsolationSpec = n
tr.networkIsolationLock.Unlock()
}
// triggerUpdate if there isn't already an update pending. Should be called
// instead of calling updateHooks directly to serialize runs of update hooks.
// TaskRunner state should be updated prior to triggering update hooks.
//
// Does not block.
func (tr *TaskRunner) triggerUpdateHooks() {
select {
case tr.triggerUpdateCh <- struct{}{}:
default:
// already an update hook pending
}
}
// Shutdown TaskRunner gracefully without affecting the state of the task.
// Shutdown blocks until the main Run loop exits.
func (tr *TaskRunner) Shutdown() {
tr.logger.Trace("shutting down")
tr.shutdownCtxCancel()
<-tr.WaitCh()
// Run shutdown hooks to cleanup
tr.shutdownHooks()
// Persist once more
tr.persistLocalState()
}
// LatestResourceUsage returns the last resource utilization datapoint
// collected. May return nil if the task is not running or no resource
// utilization has been collected yet.
func (tr *TaskRunner) LatestResourceUsage() *cstructs.TaskResourceUsage {
tr.resourceUsageLock.Lock()
ru := tr.resourceUsage
tr.resourceUsageLock.Unlock()
// Look up device statistics lazily when fetched, as currently we do not emit any stats for them yet
if ru != nil && tr.deviceStatsReporter != nil {
deviceResources := tr.taskResources.Devices
ru.ResourceUsage.DeviceStats = tr.deviceStatsReporter.LatestDeviceResourceStats(deviceResources)
}
return ru
}
// UpdateStats updates and emits the latest stats from the driver.
func (tr *TaskRunner) UpdateStats(ru *cstructs.TaskResourceUsage) {
tr.resourceUsageLock.Lock()
tr.resourceUsage = ru
tr.resourceUsageLock.Unlock()
if ru != nil {
tr.emitStats(ru)
}
}
// TODO Remove Backwardscompat or use tr.Alloc()?
func (tr *TaskRunner) setGaugeForMemory(ru *cstructs.TaskResourceUsage) {
alloc := tr.Alloc()
var allocatedMem float32
var allocatedMemMax float32
if taskRes := alloc.AllocatedResources.Tasks[tr.taskName]; taskRes != nil {
// Convert to bytes to match other memory metrics
allocatedMem = float32(taskRes.Memory.MemoryMB) * 1024 * 1024
allocatedMemMax = float32(taskRes.Memory.MemoryMaxMB) * 1024 * 1024
}
ms := ru.ResourceUsage.MemoryStats
publishMetric := func(v uint64, reported, measured string) {
if v != 0 || slices.Contains(ms.Measured, measured) {
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", reported},
float32(v), tr.baseLabels)
}
}
publishMetric(ms.RSS, "rss", "RSS")
publishMetric(ms.Cache, "cache", "Cache")
publishMetric(ms.Swap, "swap", "Swap")
publishMetric(ms.MappedFile, "mapped_file", "Mapped File")
publishMetric(ms.Usage, "usage", "Usage")
publishMetric(ms.MaxUsage, "max_usage", "Max Usage")
publishMetric(ms.KernelUsage, "kernel_usage", "Kernel Usage")
publishMetric(ms.KernelMaxUsage, "kernel_max_usage", "Kernel Max Usage")
if allocatedMem > 0 {
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", "allocated"},
allocatedMem, tr.baseLabels)
}
if allocatedMemMax > 0 {
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", "max_allocated"},
allocatedMemMax, tr.baseLabels)
}
}
// TODO Remove Backwardscompat or use tr.Alloc()?
func (tr *TaskRunner) setGaugeForCPU(ru *cstructs.TaskResourceUsage) {
alloc := tr.Alloc()
var allocatedCPU float32
if taskRes := alloc.AllocatedResources.Tasks[tr.taskName]; taskRes != nil {
allocatedCPU = float32(taskRes.Cpu.CpuShares)
}
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "total_percent"},
float32(ru.ResourceUsage.CpuStats.Percent), tr.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "system"},
float32(ru.ResourceUsage.CpuStats.SystemMode), tr.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "user"},
float32(ru.ResourceUsage.CpuStats.UserMode), tr.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "throttled_time"},
float32(ru.ResourceUsage.CpuStats.ThrottledTime), tr.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "throttled_periods"},
float32(ru.ResourceUsage.CpuStats.ThrottledPeriods), tr.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "total_ticks"},
float32(ru.ResourceUsage.CpuStats.TotalTicks), tr.baseLabels)
metrics.IncrCounterWithLabels([]string{"client", "allocs", "cpu", "total_ticks_count"},
float32(ru.ResourceUsage.CpuStats.TotalTicks), tr.baseLabels)
if allocatedCPU > 0 {
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "allocated"},
allocatedCPU, tr.baseLabels)
}
}
// emitStats emits resource usage stats of tasks to remote metrics collector
// sinks
func (tr *TaskRunner) emitStats(ru *cstructs.TaskResourceUsage) {
if !tr.clientConfig.PublishAllocationMetrics {
return
}
if ru.ResourceUsage.MemoryStats != nil {
tr.setGaugeForMemory(ru)
} else {
tr.logger.Debug("Skipping memory stats for allocation", "reason", "MemoryStats is nil")
}
if ru.ResourceUsage.CpuStats != nil {
tr.setGaugeForCPU(ru)
} else {
tr.logger.Debug("Skipping cpu stats for allocation", "reason", "CpuStats is nil")
}
}
// appendTaskEvent updates the task status by appending the new event.
func appendTaskEvent(state *structs.TaskState, event *structs.TaskEvent, capacity int) {
if state.Events == nil {
state.Events = make([]*structs.TaskEvent, 1, capacity)
state.Events[0] = event
return
}
// If we hit capacity, then shift it.
if len(state.Events) == capacity {
old := state.Events
state.Events = make([]*structs.TaskEvent, 0, capacity)
state.Events = append(state.Events, old[1:]...)
}
state.Events = append(state.Events, event)
}
func (tr *TaskRunner) TaskExecHandler() drivermanager.TaskExecHandler {
// Check it is running
handle := tr.getDriverHandle()
if handle == nil {
return nil
}
return handle.ExecStreaming
}
func (tr *TaskRunner) DriverCapabilities() (*drivers.Capabilities, error) {
return tr.driver.Capabilities()
}
// shutdownDelayCancel is used for testing only and cancels the
// shutdownDelayCtx
func (tr *TaskRunner) shutdownDelayCancel() {
tr.shutdownDelayCancelFn()
}