open-nomad/client/client.go

1440 lines
42 KiB
Go

package client
import (
"fmt"
"io/ioutil"
"log"
"net"
"os"
"path/filepath"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/armon/go-metrics"
consulapi "github.com/hashicorp/consul/api"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/client/allocdir"
"github.com/hashicorp/nomad/client/config"
"github.com/hashicorp/nomad/client/driver"
"github.com/hashicorp/nomad/client/fingerprint"
"github.com/hashicorp/nomad/client/rpcproxy"
"github.com/hashicorp/nomad/client/stats"
"github.com/hashicorp/nomad/command/agent/consul"
"github.com/hashicorp/nomad/nomad"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/mitchellh/hashstructure"
)
const (
// clientRPCCache controls how long we keep an idle connection
// open to a server
clientRPCCache = 5 * time.Minute
// clientMaxStreams controsl how many idle streams we keep
// open to a server
clientMaxStreams = 2
// datacenterQueryLimit searches through up to this many adjacent
// datacenters looking for the Nomad server service.
datacenterQueryLimit = 9
// registerRetryIntv is minimum interval on which we retry
// registration. We pick a value between this and 2x this.
registerRetryIntv = 15 * time.Second
// getAllocRetryIntv is minimum interval on which we retry
// to fetch allocations. We pick a value between this and 2x this.
getAllocRetryIntv = 30 * time.Second
// devModeRetryIntv is the retry interval used for development
devModeRetryIntv = time.Second
// stateSnapshotIntv is how often the client snapshots state
stateSnapshotIntv = 60 * time.Second
// registerErrGrace is the grace period where we don't log about
// register errors after start. This is to improve the user experience
// in dev mode where the leader isn't elected for a few seconds.
registerErrGrace = 10 * time.Second
// initialHeartbeatStagger is used to stagger the interval between
// starting and the intial heartbeat. After the intial heartbeat,
// we switch to using the TTL specified by the servers.
initialHeartbeatStagger = 10 * time.Second
// nodeUpdateRetryIntv is how often the client checks for updates to the
// node attributes or meta map.
nodeUpdateRetryIntv = 5 * time.Second
// allocSyncIntv is the batching period of allocation updates before they
// are synced with the server.
allocSyncIntv = 200 * time.Millisecond
// allocSyncRetryIntv is the interval on which we retry updating
// the status of the allocation
allocSyncRetryIntv = 5 * time.Second
)
// ClientStatsReporter exposes all the APIs related to resource usage of a Nomad
// Client
type ClientStatsReporter interface {
// GetAllocStats returns the AllocStatsReporter for the passed allocation.
// If it does not exist an error is reported.
GetAllocStats(allocID string) (AllocStatsReporter, error)
// LatestHostStats returns the latest resource usage stats for the host
LatestHostStats() *stats.HostStats
}
// Client is used to implement the client interaction with Nomad. Clients
// are expected to register as a schedulable node to the servers, and to
// run allocations as determined by the servers.
type Client struct {
config *config.Config
start time.Time
// configCopy is a copy that should be passed to alloc-runners.
configCopy *config.Config
configLock sync.RWMutex
logger *log.Logger
rpcProxy *rpcproxy.RPCProxy
connPool *nomad.ConnPool
// lastHeartbeatFromQuorum is an atomic int32 acting as a bool. When
// true, the last heartbeat message had a leader. When false (0),
// the last heartbeat did not include the RPC address of the leader,
// indicating that the server is in the minority or middle of an
// election.
lastHeartbeatFromQuorum int32
// consulPullHeartbeatDeadline is the deadline at which this Nomad
// Agent will begin polling Consul for a list of Nomad Servers. When
// Nomad Clients are heartbeating successfully with Nomad Servers,
// Nomad Clients do not poll Consul to populate their backup server
// list.
consulPullHeartbeatDeadline time.Time
lastHeartbeat time.Time
heartbeatTTL time.Duration
heartbeatLock sync.Mutex
// allocs is the current set of allocations
allocs map[string]*AllocRunner
allocLock sync.RWMutex
// allocUpdates stores allocations that need to be synced to the server.
allocUpdates chan *structs.Allocation
// consulSyncer advertises this Nomad Agent with Consul
consulSyncer *consul.Syncer
// HostStatsCollector collects host resource usage stats
hostStatsCollector *stats.HostStatsCollector
resourceUsage *stats.HostStats
resourceUsageLock sync.RWMutex
shutdown bool
shutdownCh chan struct{}
shutdownLock sync.Mutex
}
// NewClient is used to create a new client from the given configuration
func NewClient(cfg *config.Config, consulSyncer *consul.Syncer, logger *log.Logger) (*Client, error) {
// Create the client
c := &Client{
config: cfg,
consulSyncer: consulSyncer,
start: time.Now(),
connPool: nomad.NewPool(cfg.LogOutput, clientRPCCache, clientMaxStreams, nil),
logger: logger,
hostStatsCollector: stats.NewHostStatsCollector(),
allocs: make(map[string]*AllocRunner),
allocUpdates: make(chan *structs.Allocation, 64),
shutdownCh: make(chan struct{}),
}
// Initialize the client
if err := c.init(); err != nil {
return nil, fmt.Errorf("failed to initialize client: %v", err)
}
// Setup the node
if err := c.setupNode(); err != nil {
return nil, fmt.Errorf("node setup failed: %v", err)
}
// Fingerprint the node
if err := c.fingerprint(); err != nil {
return nil, fmt.Errorf("fingerprinting failed: %v", err)
}
// Scan for drivers
if err := c.setupDrivers(); err != nil {
return nil, fmt.Errorf("driver setup failed: %v", err)
}
// Setup the reserved resources
c.reservePorts()
// Store the config copy before restoring state but after it has been
// initialized.
c.configLock.Lock()
c.configCopy = c.config.Copy()
c.configLock.Unlock()
// Create the RPC Proxy and bootstrap with the preconfigured list of
// static servers
c.configLock.RLock()
c.rpcProxy = rpcproxy.NewRPCProxy(c.logger, c.shutdownCh, c, c.connPool)
for _, serverAddr := range c.configCopy.Servers {
c.rpcProxy.AddPrimaryServer(serverAddr)
}
c.configLock.RUnlock()
// Restore the state
if err := c.restoreState(); err != nil {
return nil, fmt.Errorf("failed to restore state: %v", err)
}
// Setup the Consul syncer
if err := c.setupConsulSyncer(); err != nil {
return nil, fmt.Errorf("failed to create client Consul syncer: %v")
}
// Register and then start heartbeating to the servers.
go c.registerAndHeartbeat()
// Begin periodic snapshotting of state.
go c.periodicSnapshot()
// Begin syncing allocations to the server
go c.allocSync()
// Start the client!
go c.run()
// Start collecting stats
go c.collectHostStats()
// Start the RPCProxy maintenance task. This task periodically
// shuffles the list of Nomad Server Endpoints this Client will use
// when communicating with Nomad Servers via RPC. This is done in
// order to prevent server fixation in stable Nomad clusters. This
// task actively populates the active list of Nomad Server Endpoints
// from information from the Nomad Client heartbeats. If a heartbeat
// times out and there are no Nomad servers available, this data is
// populated by periodically polling Consul, if available.
go c.rpcProxy.Run()
return c, nil
}
// init is used to initialize the client and perform any setup
// needed before we begin starting its various components.
func (c *Client) init() error {
// Ensure the state dir exists if we have one
if c.config.StateDir != "" {
if err := os.MkdirAll(c.config.StateDir, 0700); err != nil {
return fmt.Errorf("failed creating state dir: %s", err)
}
} else {
// Othewise make a temp directory to use.
p, err := ioutil.TempDir("", "NomadClient")
if err != nil {
return fmt.Errorf("failed creating temporary directory for the StateDir: %v", err)
}
c.config.StateDir = p
}
c.logger.Printf("[INFO] client: using state directory %v", c.config.StateDir)
// Ensure the alloc dir exists if we have one
if c.config.AllocDir != "" {
if err := os.MkdirAll(c.config.AllocDir, 0755); err != nil {
return fmt.Errorf("failed creating alloc dir: %s", err)
}
} else {
// Othewise make a temp directory to use.
p, err := ioutil.TempDir("", "NomadClient")
if err != nil {
return fmt.Errorf("failed creating temporary directory for the AllocDir: %v", err)
}
c.config.AllocDir = p
}
c.logger.Printf("[INFO] client: using alloc directory %v", c.config.AllocDir)
return nil
}
// Leave is used to prepare the client to leave the cluster
func (c *Client) Leave() error {
// TODO
return nil
}
// Datacenter returns the datacenter for the given client
func (c *Client) Datacenter() string {
c.configLock.RLock()
dc := c.configCopy.Node.Datacenter
c.configLock.RUnlock()
return dc
}
// Region returns the region for the given client
func (c *Client) Region() string {
return c.config.Region
}
// RPCMajorVersion returns the structs.ApiMajorVersion supported by the
// client.
func (c *Client) RPCMajorVersion() int {
return structs.ApiMajorVersion
}
// RPCMinorVersion returns the structs.ApiMinorVersion supported by the
// client.
func (c *Client) RPCMinorVersion() int {
return structs.ApiMinorVersion
}
// Shutdown is used to tear down the client
func (c *Client) Shutdown() error {
c.logger.Printf("[INFO] client: shutting down")
c.shutdownLock.Lock()
defer c.shutdownLock.Unlock()
if c.shutdown {
return nil
}
// Destroy all the running allocations.
if c.config.DevMode {
c.allocLock.Lock()
for _, ar := range c.allocs {
ar.Destroy()
<-ar.WaitCh()
}
c.allocLock.Unlock()
}
c.shutdown = true
close(c.shutdownCh)
c.connPool.Shutdown()
return c.saveState()
}
// RPC is used to forward an RPC call to a nomad server, or fail if no servers
func (c *Client) RPC(method string, args interface{}, reply interface{}) error {
// Invoke the RPCHandler if it exists
if c.config.RPCHandler != nil {
return c.config.RPCHandler.RPC(method, args, reply)
}
// Pick a server to request from
server := c.rpcProxy.FindServer()
if server == nil {
return fmt.Errorf("no known servers")
}
// Make the RPC request
if err := c.connPool.RPC(c.Region(), server.Addr, c.RPCMajorVersion(), method, args, reply); err != nil {
c.rpcProxy.NotifyFailedServer(server)
c.logger.Printf("[ERR] client: RPC failed to server %s: %v", server.Addr, err)
return err
}
return nil
}
// Stats is used to return statistics for debugging and insight
// for various sub-systems
func (c *Client) Stats() map[string]map[string]string {
toString := func(v uint64) string {
return strconv.FormatUint(v, 10)
}
c.allocLock.RLock()
numAllocs := len(c.allocs)
c.allocLock.RUnlock()
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
stats := map[string]map[string]string{
"client": map[string]string{
"node_id": c.Node().ID,
"known_servers": toString(uint64(c.rpcProxy.NumServers())),
"num_allocations": toString(uint64(numAllocs)),
"last_heartbeat": fmt.Sprintf("%v", time.Since(c.lastHeartbeat)),
"heartbeat_ttl": fmt.Sprintf("%v", c.heartbeatTTL),
},
"runtime": nomad.RuntimeStats(),
}
return stats
}
// Node returns the locally registered node
func (c *Client) Node() *structs.Node {
c.configLock.RLock()
defer c.configLock.RUnlock()
return c.config.Node
}
// StatsReporter exposes the various APIs related resource usage of a Nomad
// client
func (c *Client) StatsReporter() ClientStatsReporter {
return c
}
func (c *Client) GetAllocStats(allocID string) (AllocStatsReporter, error) {
c.allocLock.RLock()
defer c.allocLock.RUnlock()
ar, ok := c.allocs[allocID]
if !ok {
return nil, fmt.Errorf("unknown allocation ID %q", allocID)
}
return ar.StatsReporter(), nil
}
// HostStats returns all the stats related to a Nomad client
func (c *Client) LatestHostStats() *stats.HostStats {
c.resourceUsageLock.RLock()
defer c.resourceUsageLock.RUnlock()
return c.resourceUsage
}
// GetAllocFS returns the AllocFS interface for the alloc dir of an allocation
func (c *Client) GetAllocFS(allocID string) (allocdir.AllocDirFS, error) {
c.allocLock.RLock()
defer c.allocLock.RUnlock()
ar, ok := c.allocs[allocID]
if !ok {
return nil, fmt.Errorf("alloc not found")
}
return ar.ctx.AllocDir, nil
}
// AddPrimaryServerToRPCProxy adds serverAddr to the RPC Proxy's primary
// server list.
func (c *Client) AddPrimaryServerToRPCProxy(serverAddr string) *rpcproxy.ServerEndpoint {
return c.rpcProxy.AddPrimaryServer(serverAddr)
}
// restoreState is used to restore our state from the data dir
func (c *Client) restoreState() error {
if c.config.DevMode {
return nil
}
// Scan the directory
list, err := ioutil.ReadDir(filepath.Join(c.config.StateDir, "alloc"))
if err != nil && os.IsNotExist(err) {
return nil
} else if err != nil {
return fmt.Errorf("failed to list alloc state: %v", err)
}
// Load each alloc back
var mErr multierror.Error
for _, entry := range list {
id := entry.Name()
alloc := &structs.Allocation{ID: id}
c.configLock.RLock()
ar := NewAllocRunner(c.logger, c.configCopy, c.updateAllocStatus, alloc)
c.configLock.RUnlock()
c.allocLock.Lock()
c.allocs[id] = ar
c.allocLock.Unlock()
if err := ar.RestoreState(); err != nil {
c.logger.Printf("[ERR] client: failed to restore state for alloc %s: %v", id, err)
mErr.Errors = append(mErr.Errors, err)
} else {
go ar.Run()
}
}
return mErr.ErrorOrNil()
}
// saveState is used to snapshot our state into the data dir
func (c *Client) saveState() error {
if c.config.DevMode {
return nil
}
var mErr multierror.Error
for id, ar := range c.getAllocRunners() {
if err := ar.SaveState(); err != nil {
c.logger.Printf("[ERR] client: failed to save state for alloc %s: %v",
id, err)
mErr.Errors = append(mErr.Errors, err)
}
}
return mErr.ErrorOrNil()
}
// getAllocRunners returns a snapshot of the current set of alloc runners.
func (c *Client) getAllocRunners() map[string]*AllocRunner {
c.allocLock.RLock()
defer c.allocLock.RUnlock()
runners := make(map[string]*AllocRunner, len(c.allocs))
for id, ar := range c.allocs {
runners[id] = ar
}
return runners
}
// nodeID restores a persistent unique ID or generates a new one
func (c *Client) nodeID() (string, error) {
// Do not persist in dev mode
if c.config.DevMode {
return structs.GenerateUUID(), nil
}
// Attempt to read existing ID
path := filepath.Join(c.config.StateDir, "client-id")
buf, err := ioutil.ReadFile(path)
if err != nil && !os.IsNotExist(err) {
return "", err
}
// Use existing ID if any
if len(buf) != 0 {
return string(buf), nil
}
// Generate new ID
id := structs.GenerateUUID()
// Persist the ID
if err := ioutil.WriteFile(path, []byte(id), 0700); err != nil {
return "", err
}
return id, nil
}
// setupNode is used to setup the initial node
func (c *Client) setupNode() error {
node := c.config.Node
if node == nil {
node = &structs.Node{}
c.config.Node = node
}
// Generate an iD for the node
var err error
node.ID, err = c.nodeID()
if err != nil {
return fmt.Errorf("node ID setup failed: %v", err)
}
if node.Attributes == nil {
node.Attributes = make(map[string]string)
}
if node.Links == nil {
node.Links = make(map[string]string)
}
if node.Meta == nil {
node.Meta = make(map[string]string)
}
if node.Resources == nil {
node.Resources = &structs.Resources{}
}
if node.Reserved == nil {
node.Reserved = &structs.Resources{}
}
if node.Datacenter == "" {
node.Datacenter = "dc1"
}
if node.Name == "" {
node.Name, _ = os.Hostname()
}
if node.Name == "" {
node.Name = node.ID
}
node.Status = structs.NodeStatusInit
return nil
}
// reservePorts is used to reserve ports on the fingerprinted network devices.
func (c *Client) reservePorts() {
c.configLock.RLock()
defer c.configLock.RUnlock()
global := c.config.GloballyReservedPorts
if len(global) == 0 {
return
}
node := c.config.Node
networks := node.Resources.Networks
reservedIndex := make(map[string]*structs.NetworkResource, len(networks))
for _, resNet := range node.Reserved.Networks {
reservedIndex[resNet.IP] = resNet
}
// Go through each network device and reserve ports on it.
for _, net := range networks {
res, ok := reservedIndex[net.IP]
if !ok {
res = net.Copy()
res.MBits = 0
reservedIndex[net.IP] = res
}
for _, portVal := range global {
p := structs.Port{Value: portVal}
res.ReservedPorts = append(res.ReservedPorts, p)
}
}
// Clear the reserved networks.
if node.Reserved == nil {
node.Reserved = new(structs.Resources)
} else {
node.Reserved.Networks = nil
}
// Restore the reserved networks
for _, net := range reservedIndex {
node.Reserved.Networks = append(node.Reserved.Networks, net)
}
}
// fingerprint is used to fingerprint the client and setup the node
func (c *Client) fingerprint() error {
whitelist := c.config.ReadStringListToMap("fingerprint.whitelist")
whitelistEnabled := len(whitelist) > 0
c.logger.Printf("[DEBUG] client: built-in fingerprints: %v", fingerprint.BuiltinFingerprints())
var applied []string
var skipped []string
for _, name := range fingerprint.BuiltinFingerprints() {
// Skip modules that are not in the whitelist if it is enabled.
if _, ok := whitelist[name]; whitelistEnabled && !ok {
skipped = append(skipped, name)
continue
}
f, err := fingerprint.NewFingerprint(name, c.logger)
if err != nil {
return err
}
c.configLock.Lock()
applies, err := f.Fingerprint(c.config, c.config.Node)
c.configLock.Unlock()
if err != nil {
return err
}
if applies {
applied = append(applied, name)
}
p, period := f.Periodic()
if p {
// TODO: If more periodic fingerprinters are added, then
// fingerprintPeriodic should be used to handle all the periodic
// fingerprinters by using a priority queue.
go c.fingerprintPeriodic(name, f, period)
}
}
c.logger.Printf("[DEBUG] client: applied fingerprints %v", applied)
if len(skipped) != 0 {
c.logger.Printf("[DEBUG] client: fingerprint modules skipped due to whitelist: %v", skipped)
}
return nil
}
// fingerprintPeriodic runs a fingerprinter at the specified duration.
func (c *Client) fingerprintPeriodic(name string, f fingerprint.Fingerprint, d time.Duration) {
c.logger.Printf("[DEBUG] client: fingerprinting %v every %v", name, d)
for {
select {
case <-time.After(d):
c.configLock.Lock()
if _, err := f.Fingerprint(c.config, c.config.Node); err != nil {
c.logger.Printf("[DEBUG] client: periodic fingerprinting for %v failed: %v", name, err)
}
c.configLock.Unlock()
case <-c.shutdownCh:
return
}
}
}
// setupDrivers is used to find the available drivers
func (c *Client) setupDrivers() error {
// Build the whitelist of drivers.
whitelist := c.config.ReadStringListToMap("driver.whitelist")
whitelistEnabled := len(whitelist) > 0
var avail []string
var skipped []string
driverCtx := driver.NewDriverContext("", c.config, c.config.Node, c.logger, nil)
for name := range driver.BuiltinDrivers {
// Skip fingerprinting drivers that are not in the whitelist if it is
// enabled.
if _, ok := whitelist[name]; whitelistEnabled && !ok {
skipped = append(skipped, name)
continue
}
d, err := driver.NewDriver(name, driverCtx)
if err != nil {
return err
}
c.configLock.Lock()
applies, err := d.Fingerprint(c.config, c.config.Node)
c.configLock.Unlock()
if err != nil {
return err
}
if applies {
avail = append(avail, name)
}
p, period := d.Periodic()
if p {
go c.fingerprintPeriodic(name, d, period)
}
}
c.logger.Printf("[DEBUG] client: available drivers %v", avail)
if len(skipped) != 0 {
c.logger.Printf("[DEBUG] client: drivers skipped due to whitelist: %v", skipped)
}
return nil
}
// retryIntv calculates a retry interval value given the base
func (c *Client) retryIntv(base time.Duration) time.Duration {
if c.config.DevMode {
return devModeRetryIntv
}
return base + lib.RandomStagger(base)
}
// registerAndHeartbeat is a long lived goroutine used to register the client
// and then start heartbeatng to the server.
func (c *Client) registerAndHeartbeat() {
// Register the node
c.retryRegisterNode()
// Start watching changes for node changes
go c.watchNodeUpdates()
// Setup the heartbeat timer, for the initial registration
// we want to do this quickly. We want to do it extra quickly
// in development mode.
var heartbeat <-chan time.Time
if c.config.DevMode {
heartbeat = time.After(0)
} else {
heartbeat = time.After(lib.RandomStagger(initialHeartbeatStagger))
}
for {
select {
case <-heartbeat:
if err := c.updateNodeStatus(); err != nil {
heartbeat = time.After(c.retryIntv(registerRetryIntv))
} else {
c.heartbeatLock.Lock()
heartbeat = time.After(c.heartbeatTTL)
c.heartbeatLock.Unlock()
}
case <-c.shutdownCh:
return
}
}
}
// periodicSnapshot is a long lived goroutine used to periodically snapshot the
// state of the client
func (c *Client) periodicSnapshot() {
// Create a snapshot timer
snapshot := time.After(stateSnapshotIntv)
for {
select {
case <-snapshot:
snapshot = time.After(stateSnapshotIntv)
if err := c.saveState(); err != nil {
c.logger.Printf("[ERR] client: failed to save state: %v", err)
}
case <-c.shutdownCh:
return
}
}
}
// run is a long lived goroutine used to run the client
func (c *Client) run() {
// Watch for changes in allocations
allocUpdates := make(chan *allocUpdates, 8)
go c.watchAllocations(allocUpdates)
for {
select {
case update := <-allocUpdates:
c.runAllocs(update)
case <-c.shutdownCh:
return
}
}
}
// hasNodeChanged calculates a hash for the node attributes- and meta map.
// The new hash values are compared against the old (passed-in) hash values to
// determine if the node properties have changed. It returns the new hash values
// in case they are different from the old hash values.
func (c *Client) hasNodeChanged(oldAttrHash uint64, oldMetaHash uint64) (bool, uint64, uint64) {
c.configLock.RLock()
defer c.configLock.RUnlock()
newAttrHash, err := hashstructure.Hash(c.config.Node.Attributes, nil)
if err != nil {
c.logger.Printf("[DEBUG] client: unable to calculate node attributes hash: %v", err)
}
// Calculate node meta map hash
newMetaHash, err := hashstructure.Hash(c.config.Node.Meta, nil)
if err != nil {
c.logger.Printf("[DEBUG] client: unable to calculate node meta hash: %v", err)
}
if newAttrHash != oldAttrHash || newMetaHash != oldMetaHash {
return true, newAttrHash, newMetaHash
}
return false, oldAttrHash, oldMetaHash
}
// retryRegisterNode is used to register the node or update the registration and
// retry in case of failure.
func (c *Client) retryRegisterNode() {
// Register the client
for {
if err := c.registerNode(); err == nil {
break
}
select {
case <-time.After(c.retryIntv(registerRetryIntv)):
case <-c.shutdownCh:
return
}
}
}
// registerNode is used to register the node or update the registration
func (c *Client) registerNode() error {
node := c.Node()
req := structs.NodeRegisterRequest{
Node: node,
WriteRequest: structs.WriteRequest{Region: c.Region()},
}
var resp structs.NodeUpdateResponse
err := c.RPC("Node.Register", &req, &resp)
if err != nil {
if time.Since(c.start) > registerErrGrace {
c.logger.Printf("[ERR] client: failed to register node: %v", err)
}
return err
}
// Update the node status to ready after we register.
c.configLock.Lock()
node.Status = structs.NodeStatusReady
c.configLock.Unlock()
c.logger.Printf("[DEBUG] client: node registration complete")
if len(resp.EvalIDs) != 0 {
c.logger.Printf("[DEBUG] client: %d evaluations triggered by node registration", len(resp.EvalIDs))
}
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
c.lastHeartbeat = time.Now()
c.heartbeatTTL = resp.HeartbeatTTL
return nil
}
// updateNodeStatus is used to heartbeat and update the status of the node
func (c *Client) updateNodeStatus() error {
node := c.Node()
req := structs.NodeUpdateStatusRequest{
NodeID: node.ID,
Status: structs.NodeStatusReady,
WriteRequest: structs.WriteRequest{Region: c.Region()},
}
var resp structs.NodeUpdateResponse
err := c.RPC("Node.UpdateStatus", &req, &resp)
if err != nil {
c.logger.Printf("[ERR] client: failed to update status: %v", err)
return err
}
if len(resp.EvalIDs) != 0 {
c.logger.Printf("[DEBUG] client: %d evaluations triggered by node update", len(resp.EvalIDs))
}
if resp.Index != 0 {
c.logger.Printf("[DEBUG] client: state updated to %s", req.Status)
}
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
c.lastHeartbeat = time.Now()
c.heartbeatTTL = resp.HeartbeatTTL
if err := c.rpcProxy.RefreshServerLists(resp.Servers, resp.NumNodes, resp.LeaderRPCAddr); err != nil {
return err
}
// Begin polling Consul if there is no Nomad leader. We could be
// heartbeating to a Nomad server that is in the minority of a
// partition of the Nomad server quorum, but this Nomad Agent still
// has connectivity to the existing majority of Nomad Servers, but
// only if it queries Consul.
if resp.LeaderRPCAddr == "" {
atomic.CompareAndSwapInt32(&c.lastHeartbeatFromQuorum, 1, 0)
return nil
}
const heartbeatFallbackFactor = 3
atomic.CompareAndSwapInt32(&c.lastHeartbeatFromQuorum, 0, 1)
c.consulPullHeartbeatDeadline = time.Now().Add(heartbeatFallbackFactor * resp.HeartbeatTTL)
return nil
}
// updateAllocStatus is used to update the status of an allocation
func (c *Client) updateAllocStatus(alloc *structs.Allocation) {
// Only send the fields that are updatable by the client.
stripped := new(structs.Allocation)
stripped.ID = alloc.ID
stripped.NodeID = c.Node().ID
stripped.TaskStates = alloc.TaskStates
stripped.ClientStatus = alloc.ClientStatus
stripped.ClientDescription = alloc.ClientDescription
select {
case c.allocUpdates <- stripped:
case <-c.shutdownCh:
}
}
// allocSync is a long lived function that batches allocation updates to the
// server.
func (c *Client) allocSync() {
staggered := false
syncTicker := time.NewTicker(allocSyncIntv)
updates := make(map[string]*structs.Allocation)
for {
select {
case <-c.shutdownCh:
syncTicker.Stop()
return
case alloc := <-c.allocUpdates:
// Batch the allocation updates until the timer triggers.
updates[alloc.ID] = alloc
case <-syncTicker.C:
// Fast path if there are no updates
if len(updates) == 0 {
continue
}
sync := make([]*structs.Allocation, 0, len(updates))
for _, alloc := range updates {
sync = append(sync, alloc)
}
// Send to server.
args := structs.AllocUpdateRequest{
Alloc: sync,
WriteRequest: structs.WriteRequest{Region: c.Region()},
}
var resp structs.GenericResponse
if err := c.RPC("Node.UpdateAlloc", &args, &resp); err != nil {
c.logger.Printf("[ERR] client: failed to update allocations: %v", err)
syncTicker.Stop()
syncTicker = time.NewTicker(c.retryIntv(allocSyncRetryIntv))
staggered = true
} else {
updates = make(map[string]*structs.Allocation)
if staggered {
syncTicker.Stop()
syncTicker = time.NewTicker(allocSyncIntv)
staggered = false
}
}
}
}
}
// allocUpdates holds the results of receiving updated allocations from the
// servers.
type allocUpdates struct {
// pulled is the set of allocations that were downloaded from the servers.
pulled map[string]*structs.Allocation
// filtered is the set of allocations that were not pulled because their
// AllocModifyIndex didn't change.
filtered map[string]struct{}
}
// watchAllocations is used to scan for updates to allocations
func (c *Client) watchAllocations(updates chan *allocUpdates) {
// The request and response for getting the map of allocations that should
// be running on the Node to their AllocModifyIndex which is incremented
// when the allocation is updated by the servers.
req := structs.NodeSpecificRequest{
NodeID: c.Node().ID,
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: true,
},
}
var resp structs.NodeClientAllocsResponse
// The request and response for pulling down the set of allocations that are
// new, or updated server side.
allocsReq := structs.AllocsGetRequest{
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: true,
},
}
var allocsResp structs.AllocsGetResponse
for {
// Get the allocation modify index map, blocking for updates. We will
// use this to determine exactly what allocations need to be downloaded
// in full.
resp = structs.NodeClientAllocsResponse{}
err := c.RPC("Node.GetClientAllocs", &req, &resp)
if err != nil {
c.logger.Printf("[ERR] client: failed to query for node allocations: %v", err)
retry := c.retryIntv(getAllocRetryIntv)
select {
case <-time.After(retry):
continue
case <-c.shutdownCh:
return
}
}
// Check for shutdown
select {
case <-c.shutdownCh:
return
default:
}
// Filter all allocations whose AllocModifyIndex was not incremented.
// These are the allocations who have either not been updated, or whose
// updates are a result of the client sending an update for the alloc.
// This lets us reduce the network traffic to the server as we don't
// need to pull all the allocations.
var pull []string
filtered := make(map[string]struct{})
runners := c.getAllocRunners()
for allocID, modifyIndex := range resp.Allocs {
// Pull the allocation if we don't have an alloc runner for the
// allocation or if the alloc runner requires an updated allocation.
runner, ok := runners[allocID]
if !ok || runner.shouldUpdate(modifyIndex) {
pull = append(pull, allocID)
} else {
filtered[allocID] = struct{}{}
}
}
c.logger.Printf("[DEBUG] client: updated allocations at index %d (pulled %d) (filtered %d)",
resp.Index, len(pull), len(filtered))
// Pull the allocations that passed filtering.
allocsResp.Allocs = nil
if len(pull) != 0 {
// Pull the allocations that need to be updated.
allocsReq.AllocIDs = pull
allocsResp = structs.AllocsGetResponse{}
if err := c.RPC("Alloc.GetAllocs", &allocsReq, &allocsResp); err != nil {
c.logger.Printf("[ERR] client: failed to query updated allocations: %v", err)
retry := c.retryIntv(getAllocRetryIntv)
select {
case <-time.After(retry):
continue
case <-c.shutdownCh:
return
}
}
// Check for shutdown
select {
case <-c.shutdownCh:
return
default:
}
}
// Update the query index.
if resp.Index > req.MinQueryIndex {
req.MinQueryIndex = resp.Index
}
// Push the updates.
pulled := make(map[string]*structs.Allocation, len(allocsResp.Allocs))
for _, alloc := range allocsResp.Allocs {
pulled[alloc.ID] = alloc
}
update := &allocUpdates{
filtered: filtered,
pulled: pulled,
}
select {
case updates <- update:
case <-c.shutdownCh:
return
}
}
}
// watchNodeUpdates periodically checks for changes to the node attributes or meta map
func (c *Client) watchNodeUpdates() {
c.logger.Printf("[DEBUG] client: periodically checking for node changes at duration %v", nodeUpdateRetryIntv)
// Initialize the hashes
_, attrHash, metaHash := c.hasNodeChanged(0, 0)
var changed bool
for {
select {
case <-time.After(c.retryIntv(nodeUpdateRetryIntv)):
changed, attrHash, metaHash = c.hasNodeChanged(attrHash, metaHash)
if changed {
c.logger.Printf("[DEBUG] client: state changed, updating node.")
// Update the config copy.
c.configLock.Lock()
node := c.config.Node.Copy()
c.configCopy.Node = node
c.configLock.Unlock()
c.retryRegisterNode()
}
case <-c.shutdownCh:
return
}
}
}
// runAllocs is invoked when we get an updated set of allocations
func (c *Client) runAllocs(update *allocUpdates) {
// Get the existing allocs
c.allocLock.RLock()
exist := make([]*structs.Allocation, 0, len(c.allocs))
for _, ar := range c.allocs {
exist = append(exist, ar.alloc)
}
c.allocLock.RUnlock()
// Diff the existing and updated allocations
diff := diffAllocs(exist, update)
c.logger.Printf("[DEBUG] client: %#v", diff)
// Remove the old allocations
for _, remove := range diff.removed {
if err := c.removeAlloc(remove); err != nil {
c.logger.Printf("[ERR] client: failed to remove alloc '%s': %v",
remove.ID, err)
}
}
// Update the existing allocations
for _, update := range diff.updated {
if err := c.updateAlloc(update.exist, update.updated); err != nil {
c.logger.Printf("[ERR] client: failed to update alloc '%s': %v",
update.exist.ID, err)
}
}
// Start the new allocations
for _, add := range diff.added {
if err := c.addAlloc(add); err != nil {
c.logger.Printf("[ERR] client: failed to add alloc '%s': %v",
add.ID, err)
}
}
// Persist our state
if err := c.saveState(); err != nil {
c.logger.Printf("[ERR] client: failed to save state: %v", err)
}
}
// removeAlloc is invoked when we should remove an allocation
func (c *Client) removeAlloc(alloc *structs.Allocation) error {
c.allocLock.Lock()
ar, ok := c.allocs[alloc.ID]
if !ok {
c.allocLock.Unlock()
c.logger.Printf("[WARN] client: missing context for alloc '%s'", alloc.ID)
return nil
}
delete(c.allocs, alloc.ID)
c.allocLock.Unlock()
ar.Destroy()
return nil
}
// updateAlloc is invoked when we should update an allocation
func (c *Client) updateAlloc(exist, update *structs.Allocation) error {
c.allocLock.RLock()
ar, ok := c.allocs[exist.ID]
c.allocLock.RUnlock()
if !ok {
c.logger.Printf("[WARN] client: missing context for alloc '%s'", exist.ID)
return nil
}
ar.Update(update)
return nil
}
// addAlloc is invoked when we should add an allocation
func (c *Client) addAlloc(alloc *structs.Allocation) error {
c.configLock.RLock()
ar := NewAllocRunner(c.logger, c.configCopy, c.updateAllocStatus, alloc)
c.configLock.RUnlock()
go ar.Run()
// Store the alloc runner.
c.allocLock.Lock()
c.allocs[alloc.ID] = ar
c.allocLock.Unlock()
return nil
}
// setupConsulSyncer creates Client-mode consul.Syncer which periodically
// executes callbacks on a fixed interval.
//
// TODO(sean@): this could eventually be moved to a priority queue and give
// each task an interval, but that is not necessary at this time.
func (c *Client) setupConsulSyncer() error {
// The bootstrapFn callback handler is used to periodically poll
// Consul to look up the Nomad Servers in Consul. In the event the
// heartbeat deadline has been exceeded and this Client is orphaned
// from its servers, periodically poll Consul to reattach this Client
// to its cluster and automatically recover from a detached state.
bootstrapFn := func() error {
now := time.Now()
c.heartbeatLock.Lock()
// If the last heartbeat didn't contain a leader, give the
// Nomad server this Agent is talking to one more attempt at
// providing a heartbeat that does contain a leader.
if atomic.LoadInt32(&c.lastHeartbeatFromQuorum) == 1 && now.Before(c.consulPullHeartbeatDeadline) {
c.heartbeatLock.Unlock()
return nil
}
c.heartbeatLock.Unlock()
consulCatalog := c.consulSyncer.ConsulClient().Catalog()
dcs, err := consulCatalog.Datacenters()
if err != nil {
return fmt.Errorf("client.consul: unable to query Consul datacenters: %v", err)
}
if len(dcs) > 2 {
// Query the local DC first, then shuffle the
// remaining DCs. Future heartbeats will cause Nomad
// Clients to fixate on their local datacenter so
// it's okay to talk with remote DCs. If the no
// Nomad servers are available within
// datacenterQueryLimit, the next heartbeat will pick
// a new set of servers so it's okay.
shuffleStrings(dcs[1:])
dcs = dcs[0:lib.MinInt(len(dcs), datacenterQueryLimit)]
}
// Forward RPCs to our region
nomadRPCArgs := structs.GenericRequest{
QueryOptions: structs.QueryOptions{
Region: c.Region(),
},
}
nomadServerServiceName := c.config.ConsulConfig.ServerServiceName
var mErr multierror.Error
const defaultMaxNumNomadServers = 8
nomadServerServices := make([]string, 0, defaultMaxNumNomadServers)
c.logger.Printf("[DEBUG] client.consul: bootstrap contacting following Consul DCs: %+q", dcs)
for _, dc := range dcs {
consulOpts := &consulapi.QueryOptions{
AllowStale: true,
Datacenter: dc,
Near: "_agent",
WaitTime: consul.DefaultQueryWaitDuration,
}
consulServices, _, err := consulCatalog.Service(nomadServerServiceName, consul.ServiceTagRPC, consulOpts)
if err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("unable to query service %+q from Consul datacenter %+q: %v", nomadServerServiceName, dc, err))
continue
}
for _, s := range consulServices {
port := strconv.FormatInt(int64(s.ServicePort), 10)
addr := s.ServiceAddress
if addr == "" {
addr = s.Address
}
serverAddr := net.JoinHostPort(addr, port)
serverEndpoint, err := rpcproxy.NewServerEndpoint(serverAddr)
if err != nil {
mErr.Errors = append(mErr.Errors, err)
continue
}
var peers []string
if err := c.connPool.RPC(c.Region(), serverEndpoint.Addr, c.RPCMajorVersion(), "Status.Peers", nomadRPCArgs, &peers); err != nil {
mErr.Errors = append(mErr.Errors, err)
continue
}
// Successfully received the Server peers list of the correct
// region
if len(peers) != 0 {
nomadServerServices = append(nomadServerServices, peers...)
break
}
}
// Break if at least one Nomad Server was successfully pinged
if len(nomadServerServices) > 0 {
break
}
}
if len(nomadServerServices) == 0 {
if len(mErr.Errors) > 0 {
return mErr.ErrorOrNil()
}
return fmt.Errorf("no Nomad Servers advertising service %q in Consul datacenters: %q", nomadServerServiceName, dcs)
}
// Log the servers we are adding
c.logger.Printf("[DEBUG] client.consul: bootstrap adding following Servers: %q", nomadServerServices)
c.heartbeatLock.Lock()
if atomic.LoadInt32(&c.lastHeartbeatFromQuorum) == 1 && now.Before(c.consulPullHeartbeatDeadline) {
c.heartbeatLock.Unlock()
// Common, healthy path
if err := c.rpcProxy.SetBackupServers(nomadServerServices); err != nil {
return fmt.Errorf("client.consul: unable to set backup servers: %v", err)
}
} else {
c.heartbeatLock.Unlock()
// If this Client is talking with a Server that
// doesn't have a leader, and we have exceeded the
// consulPullHeartbeatDeadline, change the call from
// SetBackupServers() to calling AddPrimaryServer()
// in order to allow the Clients to randomly begin
// considering all known Nomad servers and
// eventually, hopefully, find their way to a Nomad
// Server that has quorum (assuming Consul has a
// server list that is in the majority).
for _, s := range nomadServerServices {
c.rpcProxy.AddPrimaryServer(s)
}
}
return nil
}
if c.config.ConsulConfig.ClientAutoJoin {
c.consulSyncer.AddPeriodicHandler("Nomad Client Fallback Server Handler", bootstrapFn)
}
consulServicesReaperFn := func() error {
const estInitialExecutorDomains = 8
// Create the domains to keep and add the server and client
domains := make([]consul.ServiceDomain, 2, estInitialExecutorDomains)
domains[0] = consul.ServerDomain
domains[1] = consul.ClientDomain
for allocID, ar := range c.getAllocRunners() {
ar.taskStatusLock.RLock()
taskStates := copyTaskStates(ar.taskStates)
ar.taskStatusLock.RUnlock()
for taskName, taskState := range taskStates {
// Only keep running tasks
if taskState.State == structs.TaskStateRunning {
d := consul.NewExecutorDomain(allocID, taskName)
domains = append(domains, d)
}
}
}
return c.consulSyncer.ReapUnmatched(domains)
}
if c.config.ConsulConfig.AutoAdvertise {
c.consulSyncer.AddPeriodicHandler("Nomad Client Services Sync Handler", consulServicesReaperFn)
}
return nil
}
// collectHostStats collects host resource usage stats periodically
func (c *Client) collectHostStats() {
// Start collecting host stats right away and then keep collecting every
// collection interval
next := time.NewTimer(0)
defer next.Stop()
for {
select {
case <-next.C:
ru, err := c.hostStatsCollector.Collect()
next.Reset(c.config.StatsCollectionInterval)
if err != nil {
c.logger.Printf("[WARN] client: error fetching host resource usage stats: %v", err)
continue
}
c.resourceUsageLock.Lock()
c.resourceUsage = ru
c.resourceUsageLock.Unlock()
c.emitStats(ru)
case <-c.shutdownCh:
return
}
}
}
// emitStats pushes host resource usage stats to remote metrics collection sinks
func (c *Client) emitStats(hStats *stats.HostStats) {
nodeID, err := c.nodeID()
if err != nil {
return
}
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "total"}, float32(hStats.Memory.Total))
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "available"}, float32(hStats.Memory.Available))
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "used"}, float32(hStats.Memory.Used))
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "free"}, float32(hStats.Memory.Free))
metrics.SetGauge([]string{"uptime"}, float32(hStats.Uptime))
for _, cpu := range hStats.CPU {
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "total"}, float32(cpu.Total))
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "user"}, float32(cpu.User))
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "idle"}, float32(cpu.Idle))
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "system"}, float32(cpu.System))
}
for _, disk := range hStats.DiskStats {
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "size"}, float32(disk.Size))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "used"}, float32(disk.Used))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "available"}, float32(disk.Available))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "used_percent"}, float32(disk.UsedPercent))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "inodes_percent"}, float32(disk.InodesUsedPercent))
}
}
// RPCProxy returns the Client's RPCProxy instance
func (c *Client) RPCProxy() *rpcproxy.RPCProxy {
return c.rpcProxy
}