open-nomad/client/task_runner.go

1307 lines
38 KiB
Go

package client
import (
"crypto/md5"
"encoding/hex"
"fmt"
"io/ioutil"
"log"
"os"
"path/filepath"
"strings"
"sync"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/consul-template/signals"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/client/config"
"github.com/hashicorp/nomad/client/driver"
"github.com/hashicorp/nomad/client/getter"
"github.com/hashicorp/nomad/client/vaultclient"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/nomad/client/driver/env"
dstructs "github.com/hashicorp/nomad/client/driver/structs"
cstructs "github.com/hashicorp/nomad/client/structs"
)
const (
// killBackoffBaseline is the baseline time for exponential backoff while
// killing a task.
killBackoffBaseline = 5 * time.Second
// killBackoffLimit is the limit of the exponential backoff for killing
// the task.
killBackoffLimit = 2 * time.Minute
// killFailureLimit is how many times we will attempt to kill a task before
// giving up and potentially leaking resources.
killFailureLimit = 5
// vaultBackoffBaseline is the baseline time for exponential backoff when
// attempting to retrieve a Vault token
vaultBackoffBaseline = 5 * time.Second
// vaultBackoffLimit is the limit of the exponential backoff when attempting
// to retrieve a Vault token
vaultBackoffLimit = 3 * time.Minute
// vaultTokenFile is the name of the file holding the Vault token inside the
// task's secret directory
vaultTokenFile = "vault_token"
)
// TaskRunner is used to wrap a task within an allocation and provide the execution context.
type TaskRunner struct {
config *config.Config
updater TaskStateUpdater
logger *log.Logger
ctx *driver.ExecContext
alloc *structs.Allocation
restartTracker *RestartTracker
// running marks whether the task is running
running bool
runningLock sync.Mutex
resourceUsage *cstructs.TaskResourceUsage
resourceUsageLock sync.RWMutex
task *structs.Task
taskDir string
// taskEnv is the environment variables of the task
taskEnv *env.TaskEnvironment
taskEnvLock sync.Mutex
// updateCh is used to receive updated versions of the allocation
updateCh chan *structs.Allocation
handle driver.DriverHandle
handleLock sync.Mutex
// artifactsDownloaded tracks whether the tasks artifacts have been
// downloaded
artifactsDownloaded bool
// vaultFuture is the means to wait for and get a Vault token
vaultFuture *tokenFuture
// recoveredVaultToken is the token that was recovered through a restore
recoveredVaultToken string
// vaultClient is used to retrieve and renew any needed Vault token
vaultClient vaultclient.VaultClient
// templateManager is used to manage any consul-templates this task may have
templateManager *TaskTemplateManager
// startCh is used to trigger the start of the task
startCh chan struct{}
// unblockCh is used to unblock the starting of the task
unblockCh chan struct{}
unblocked bool
unblockLock sync.Mutex
// restartCh is used to restart a task
restartCh chan *structs.TaskEvent
// signalCh is used to send a signal to a task
signalCh chan SignalEvent
destroy bool
destroyCh chan struct{}
destroyLock sync.Mutex
destroyEvent *structs.TaskEvent
// waitCh closing marks the run loop as having exited
waitCh chan struct{}
// serialize SaveState calls
persistLock sync.Mutex
}
// taskRunnerState is used to snapshot the state of the task runner
type taskRunnerState struct {
Version string
Task *structs.Task
HandleID string
ArtifactDownloaded bool
}
// TaskStateUpdater is used to signal that tasks state has changed.
type TaskStateUpdater func(taskName, state string, event *structs.TaskEvent)
// SignalEvent is a tuple of the signal and the event generating it
type SignalEvent struct {
// s is the signal to be sent
s os.Signal
// e is the task event generating the signal
e *structs.TaskEvent
// result should be used to send back the result of the signal
result chan<- error
}
// NewTaskRunner is used to create a new task context
func NewTaskRunner(logger *log.Logger, config *config.Config,
updater TaskStateUpdater, ctx *driver.ExecContext,
alloc *structs.Allocation, task *structs.Task,
vaultClient vaultclient.VaultClient) *TaskRunner {
// Merge in the task resources
task.Resources = alloc.TaskResources[task.Name]
// Build the restart tracker.
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if tg == nil {
logger.Printf("[ERR] client: alloc '%s' for missing task group '%s'", alloc.ID, alloc.TaskGroup)
return nil
}
restartTracker := newRestartTracker(tg.RestartPolicy, alloc.Job.Type)
// Get the task directory
taskDir, ok := ctx.AllocDir.TaskDirs[task.Name]
if !ok {
logger.Printf("[ERR] client: task directory for alloc %q task %q couldn't be found", alloc.ID, task.Name)
return nil
}
tc := &TaskRunner{
config: config,
updater: updater,
logger: logger,
restartTracker: restartTracker,
ctx: ctx,
alloc: alloc,
task: task,
taskDir: taskDir,
vaultClient: vaultClient,
vaultFuture: NewTokenFuture().Set(""),
updateCh: make(chan *structs.Allocation, 64),
destroyCh: make(chan struct{}),
waitCh: make(chan struct{}),
startCh: make(chan struct{}, 1),
unblockCh: make(chan struct{}),
restartCh: make(chan *structs.TaskEvent),
signalCh: make(chan SignalEvent),
}
return tc
}
// MarkReceived marks the task as received.
func (r *TaskRunner) MarkReceived() {
r.updater(r.task.Name, structs.TaskStatePending, structs.NewTaskEvent(structs.TaskReceived))
}
// WaitCh returns a channel to wait for termination
func (r *TaskRunner) WaitCh() <-chan struct{} {
return r.waitCh
}
// stateFilePath returns the path to our state file
func (r *TaskRunner) stateFilePath() string {
// Get the MD5 of the task name
hashVal := md5.Sum([]byte(r.task.Name))
hashHex := hex.EncodeToString(hashVal[:])
dirName := fmt.Sprintf("task-%s", hashHex)
// Generate the path
path := filepath.Join(r.config.StateDir, "alloc", r.alloc.ID,
dirName, "state.json")
return path
}
// RestoreState is used to restore our state
func (r *TaskRunner) RestoreState() error {
// Load the snapshot
var snap taskRunnerState
if err := restoreState(r.stateFilePath(), &snap); err != nil {
return err
}
// Restore fields
if snap.Task == nil {
return fmt.Errorf("task runner snapshot include nil Task")
} else {
r.task = snap.Task
}
r.artifactsDownloaded = snap.ArtifactDownloaded
if err := r.setTaskEnv(); err != nil {
return fmt.Errorf("client: failed to create task environment for task %q in allocation %q: %v",
r.task.Name, r.alloc.ID, err)
}
if r.task.Vault != nil {
secretDir, err := r.ctx.AllocDir.GetSecretDir(r.task.Name)
if err != nil {
return fmt.Errorf("failed to determine task %s secret dir in alloc %q: %v", r.task.Name, r.alloc.ID, err)
}
// Read the token from the secret directory
tokenPath := filepath.Join(secretDir, vaultTokenFile)
data, err := ioutil.ReadFile(tokenPath)
if err != nil {
if !os.IsNotExist(err) {
return fmt.Errorf("failed to read token for task %q in alloc %q: %v", r.task.Name, r.alloc.ID, err)
}
// Token file doesn't exist
} else {
// Store the recovered token
r.recoveredVaultToken = string(data)
}
}
// Restore the driver
if snap.HandleID != "" {
driver, err := r.createDriver()
if err != nil {
return err
}
handle, err := driver.Open(r.ctx, snap.HandleID)
// In the case it fails, we relaunch the task in the Run() method.
if err != nil {
r.logger.Printf("[ERR] client: failed to open handle to task '%s' for alloc '%s': %v",
r.task.Name, r.alloc.ID, err)
return nil
}
r.handleLock.Lock()
r.handle = handle
r.handleLock.Unlock()
r.runningLock.Lock()
r.running = true
r.runningLock.Unlock()
}
return nil
}
// SaveState is used to snapshot our state
func (r *TaskRunner) SaveState() error {
r.persistLock.Lock()
defer r.persistLock.Unlock()
snap := taskRunnerState{
Task: r.task,
Version: r.config.Version,
ArtifactDownloaded: r.artifactsDownloaded,
}
r.handleLock.Lock()
if r.handle != nil {
snap.HandleID = r.handle.ID()
}
r.handleLock.Unlock()
return persistState(r.stateFilePath(), &snap)
}
// DestroyState is used to cleanup after ourselves
func (r *TaskRunner) DestroyState() error {
return os.RemoveAll(r.stateFilePath())
}
// setState is used to update the state of the task runner
func (r *TaskRunner) setState(state string, event *structs.TaskEvent) {
// Persist our state to disk.
if err := r.SaveState(); err != nil {
r.logger.Printf("[ERR] client: failed to save state of Task Runner for task %q: %v", r.task.Name, err)
}
// Indicate the task has been updated.
r.updater(r.task.Name, state, event)
}
// setTaskEnv sets the task environment. It returns an error if it could not be
// created.
func (r *TaskRunner) setTaskEnv() error {
r.taskEnvLock.Lock()
defer r.taskEnvLock.Unlock()
taskEnv, err := driver.GetTaskEnv(r.ctx.AllocDir, r.config.Node, r.task.Copy(), r.alloc, r.vaultFuture.Get())
if err != nil {
return err
}
r.taskEnv = taskEnv
return nil
}
// getTaskEnv returns the task environment
func (r *TaskRunner) getTaskEnv() *env.TaskEnvironment {
r.taskEnvLock.Lock()
defer r.taskEnvLock.Unlock()
return r.taskEnv
}
// createDriver makes a driver for the task
func (r *TaskRunner) createDriver() (driver.Driver, error) {
env := r.getTaskEnv()
if env == nil {
return nil, fmt.Errorf("task environment not made for task %q in allocation %q", r.task.Name, r.alloc.ID)
}
driverCtx := driver.NewDriverContext(r.task.Name, r.config, r.config.Node, r.logger, env)
driver, err := driver.NewDriver(r.task.Driver, driverCtx)
if err != nil {
return nil, fmt.Errorf("failed to create driver '%s' for alloc %s: %v",
r.task.Driver, r.alloc.ID, err)
}
return driver, err
}
// Run is a long running routine used to manage the task
func (r *TaskRunner) Run() {
defer close(r.waitCh)
r.logger.Printf("[DEBUG] client: starting task context for '%s' (alloc '%s')",
r.task.Name, r.alloc.ID)
// Create the initial environment, this will be recreated if a Vault token
// is needed
if err := r.setTaskEnv(); err != nil {
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err))
return
}
if err := r.validateTask(); err != nil {
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskFailedValidation).SetValidationError(err).SetFailsTask())
return
}
// If there is no Vault policy leave the static future created in
// NewTaskRunner
if r.task.Vault != nil {
// Start the go-routine to get a Vault token
r.vaultFuture.Clear()
go r.vaultManager(r.recoveredVaultToken)
}
// Start the run loop
r.run()
// Do any cleanup necessary
r.postrun()
return
}
// validateTask validates the fields of the task and returns an error if the
// task is invalid.
func (r *TaskRunner) validateTask() error {
var mErr multierror.Error
// Validate the user.
unallowedUsers := r.config.ReadStringListToMapDefault("user.blacklist", config.DefaultUserBlacklist)
checkDrivers := r.config.ReadStringListToMapDefault("user.checked_drivers", config.DefaultUserCheckedDrivers)
if _, driverMatch := checkDrivers[r.task.Driver]; driverMatch {
if _, unallowed := unallowedUsers[r.task.User]; unallowed {
mErr.Errors = append(mErr.Errors, fmt.Errorf("running as user %q is disallowed", r.task.User))
}
}
// Validate the artifacts
for i, artifact := range r.task.Artifacts {
// Verify the artifact doesn't escape the task directory.
if err := artifact.Validate(); err != nil {
// If this error occurs there is potentially a server bug or
// mallicious, server spoofing.
r.logger.Printf("[ERR] client: allocation %q, task %v, artifact %#v (%v) fails validation: %v",
r.alloc.ID, r.task.Name, artifact, i, err)
mErr.Errors = append(mErr.Errors, fmt.Errorf("artifact (%d) failed validation: %v", i, err))
}
}
// Validate the Service names
for i, service := range r.task.Services {
name := r.taskEnv.ReplaceEnv(service.Name)
if err := service.ValidateName(name); err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("service (%d) failed validation: %v", i, err))
}
}
if len(mErr.Errors) == 1 {
return mErr.Errors[0]
}
return mErr.ErrorOrNil()
}
// tokenFuture stores the Vault token and allows consumers to block till a valid
// token exists
type tokenFuture struct {
waiting []chan struct{}
token string
set bool
m sync.Mutex
}
// NewTokenFuture returns a new token future without any token set
func NewTokenFuture() *tokenFuture {
return &tokenFuture{}
}
// Wait returns a channel that can be waited on. When this channel unblocks, a
// valid token will be available via the Get method
func (f *tokenFuture) Wait() <-chan struct{} {
f.m.Lock()
defer f.m.Unlock()
c := make(chan struct{})
if f.set {
close(c)
return c
}
f.waiting = append(f.waiting, c)
return c
}
// Set sets the token value and unblocks any caller of Wait
func (f *tokenFuture) Set(token string) *tokenFuture {
f.m.Lock()
defer f.m.Unlock()
f.set = true
f.token = token
for _, w := range f.waiting {
close(w)
}
f.waiting = nil
return f
}
// Clear clears the set vault token.
func (f *tokenFuture) Clear() *tokenFuture {
f.m.Lock()
defer f.m.Unlock()
f.token = ""
f.set = false
return f
}
// Get returns the set Vault token
func (f *tokenFuture) Get() string {
f.m.Lock()
defer f.m.Unlock()
return f.token
}
// vaultManager should be called in a go-routine and manages the derivation,
// renewal and handling of errors with the Vault token. The optional parameter
// allows setting the initial Vault token. This is useful when the Vault token
// is recovered off disk.
func (r *TaskRunner) vaultManager(token string) {
// updatedToken lets us store state between loops. If true, a new token
// has been retrieved and we need to apply the Vault change mode
var updatedToken bool
OUTER:
for {
// Check if we should exit
select {
case <-r.waitCh:
return
default:
}
// Clear the token
r.vaultFuture.Clear()
// Check if there already is a token which can be the case for
// restoring the TaskRunner
if token == "" {
// Get a token
var exit bool
token, exit = r.deriveVaultToken()
if exit {
// Exit the manager
return
}
// Write the token to disk
if err := r.writeToken(token); err != nil {
e := fmt.Errorf("failed to write Vault token to disk")
r.logger.Printf("[ERR] client: %v for task %v on alloc %q: %v", e, r.task.Name, r.alloc.ID, err)
r.Kill("vault", e.Error(), true)
return
}
}
// Start the renewal process
renewCh, err := r.vaultClient.RenewToken(token, 30)
// An error returned means the token is not being renewed
if err != nil {
r.logger.Printf("[ERR] client: failed to start renewal of Vault token for task %v on alloc %q: %v", r.task.Name, r.alloc.ID, err)
token = ""
goto OUTER
}
// The Vault token is valid now, so set it
r.vaultFuture.Set(token)
if updatedToken {
switch r.task.Vault.ChangeMode {
case structs.VaultChangeModeSignal:
s, err := signals.Parse(r.task.Vault.ChangeSignal)
if err != nil {
e := fmt.Errorf("failed to parse signal: %v", err)
r.logger.Printf("[ERR] client: %v", err)
r.Kill("vault", e.Error(), true)
return
}
if err := r.Signal("vault", "new Vault token acquired", s); err != nil {
r.logger.Printf("[ERR] client: failed to send signal to task %v for alloc %q: %v", r.task.Name, r.alloc.ID, err)
r.Kill("vault", fmt.Sprintf("failed to send signal to task: %v", err), true)
return
}
case structs.VaultChangeModeRestart:
r.Restart("vault", "new Vault token acquired")
case structs.VaultChangeModeNoop:
fallthrough
default:
r.logger.Printf("[ERR] client: Invalid Vault change mode: %q", r.task.Vault.ChangeMode)
}
// We have handled it
updatedToken = false
// Call the handler
r.updatedTokenHandler()
}
// Start watching for renewal errors
select {
case err := <-renewCh:
// Clear the token
token = ""
r.logger.Printf("[ERR] client: failed to renew Vault token for task %v on alloc %q: %v", r.task.Name, r.alloc.ID, err)
// Check if we have to do anything
if r.task.Vault.ChangeMode != structs.VaultChangeModeNoop {
updatedToken = true
}
case <-r.waitCh:
return
}
}
}
// deriveVaultToken derives the Vault token using exponential backoffs. It
// returns the Vault token and whether the manager should exit.
func (r *TaskRunner) deriveVaultToken() (token string, exit bool) {
attempts := 0
for {
tokens, err := r.vaultClient.DeriveToken(r.alloc, []string{r.task.Name})
if err == nil {
return tokens[r.task.Name], false
}
// Check if we can't recover from the error
if rerr, ok := err.(*structs.RecoverableError); !ok || !rerr.Recoverable {
r.logger.Printf("[ERR] client: failed to derive Vault token for task %v on alloc %q: %v",
r.task.Name, r.alloc.ID, err)
r.Kill("vault", fmt.Sprintf("failed to derive token: %v", err), true)
return "", true
}
// Handle the retry case
backoff := (1 << (2 * uint64(attempts))) * vaultBackoffBaseline
if backoff > vaultBackoffLimit {
backoff = vaultBackoffLimit
}
r.logger.Printf("[ERR] client: failed to derive Vault token for task %v on alloc %q: %v; retrying in %v",
r.task.Name, r.alloc.ID, err, backoff)
attempts++
// Wait till retrying
select {
case <-r.waitCh:
return "", true
case <-time.After(backoff):
}
}
}
// writeToken writes the given token to disk
func (r *TaskRunner) writeToken(token string) error {
// Write the token to disk
secretDir, err := r.ctx.AllocDir.GetSecretDir(r.task.Name)
if err != nil {
return fmt.Errorf("failed to determine task %s secret dir in alloc %q: %v", r.task.Name, r.alloc.ID, err)
}
// Write the token to the file system
tokenPath := filepath.Join(secretDir, vaultTokenFile)
if err := ioutil.WriteFile(tokenPath, []byte(token), 0777); err != nil {
return fmt.Errorf("failed to save Vault tokens to secret dir for task %q in alloc %q: %v", r.task.Name, r.alloc.ID, err)
}
return nil
}
// updatedTokenHandler is called when a new Vault token is retrieved. Things
// that rely on the token should be updated here.
func (r *TaskRunner) updatedTokenHandler() {
// Update the tasks environment
if err := r.setTaskEnv(); err != nil {
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask())
return
}
if r.templateManager != nil {
r.templateManager.Stop()
// Create a new templateManager
var err error
r.templateManager, err = NewTaskTemplateManager(r, r.task.Templates,
r.config, r.vaultFuture.Get(), r.taskDir, r.getTaskEnv())
if err != nil {
err := fmt.Errorf("failed to build task's template manager: %v", err)
r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask())
r.logger.Printf("[ERR] client: alloc %q, task %q %v", r.alloc.ID, r.task.Name, err)
r.Kill("vault", err.Error(), true)
return
}
}
}
// prestart handles life-cycle tasks that occur before the task has started.
func (r *TaskRunner) prestart(resultCh chan bool) {
if r.task.Vault != nil {
// Wait for the token
r.logger.Printf("[DEBUG] client: waiting for Vault token for task %v in alloc %q", r.task.Name, r.alloc.ID)
tokenCh := r.vaultFuture.Wait()
select {
case <-tokenCh:
case <-r.waitCh:
resultCh <- false
return
}
r.logger.Printf("[DEBUG] client: retrieved Vault token for task %v in alloc %q", r.task.Name, r.alloc.ID)
}
if err := r.setTaskEnv(); err != nil {
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask())
resultCh <- false
return
}
for {
// Download the task's artifacts
if !r.artifactsDownloaded && len(r.task.Artifacts) > 0 {
r.setState(structs.TaskStatePending, structs.NewTaskEvent(structs.TaskDownloadingArtifacts))
for _, artifact := range r.task.Artifacts {
if err := getter.GetArtifact(r.getTaskEnv(), artifact, r.taskDir); err != nil {
wrapped := fmt.Errorf("failed to download artifact %q: %v", artifact.GetterSource, err)
r.setState(structs.TaskStatePending,
structs.NewTaskEvent(structs.TaskArtifactDownloadFailed).SetDownloadError(wrapped))
r.restartTracker.SetStartError(structs.NewRecoverableError(wrapped, true))
goto RESTART
}
}
r.artifactsDownloaded = true
}
// We don't have to wait for any template
if len(r.task.Templates) == 0 {
// Send the start signal
select {
case r.startCh <- struct{}{}:
default:
}
resultCh <- true
return
}
// Build the template manager
if r.templateManager == nil {
var err error
r.templateManager, err = NewTaskTemplateManager(r, r.task.Templates,
r.config, r.vaultFuture.Get(), r.taskDir, r.getTaskEnv())
if err != nil {
err := fmt.Errorf("failed to build task's template manager: %v", err)
r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask())
r.logger.Printf("[ERR] client: alloc %q, task %q %v", r.alloc.ID, r.task.Name, err)
resultCh <- false
return
}
}
// Block for consul-template
// TODO Hooks should register themselves as blocking and then we can
// perioidcally enumerate what we are still blocked on
select {
case <-r.unblockCh:
// Send the start signal
select {
case r.startCh <- struct{}{}:
default:
}
resultCh <- true
return
case <-r.waitCh:
// The run loop has exited so exit too
resultCh <- false
return
}
RESTART:
restart := r.shouldRestart()
if !restart {
resultCh <- false
return
}
}
}
// postrun is used to do any cleanup that is necessary after exiting the runloop
func (r *TaskRunner) postrun() {
// Stop the template manager
if r.templateManager != nil {
r.templateManager.Stop()
}
}
// run is the main run loop that handles starting the application, destroying
// it, restarts and signals.
func (r *TaskRunner) run() {
// Predeclare things so we can jump to the RESTART
var stopCollection chan struct{}
var handleWaitCh chan *dstructs.WaitResult
for {
// Do the prestart activities
prestartResultCh := make(chan bool, 1)
go r.prestart(prestartResultCh)
WAIT:
for {
select {
case success := <-prestartResultCh:
if !success {
r.setState(structs.TaskStateDead, nil)
return
}
case <-r.startCh:
// Start the task if not yet started or it is being forced. This logic
// is necessary because in the case of a restore the handle already
// exists.
r.handleLock.Lock()
handleEmpty := r.handle == nil
r.handleLock.Unlock()
if handleEmpty {
startErr := r.startTask()
r.restartTracker.SetStartError(startErr)
if startErr != nil {
r.setState("", structs.NewTaskEvent(structs.TaskDriverFailure).SetDriverError(startErr))
goto RESTART
}
// Mark the task as started
r.setState(structs.TaskStateRunning, structs.NewTaskEvent(structs.TaskStarted))
r.runningLock.Lock()
r.running = true
r.runningLock.Unlock()
}
if stopCollection == nil {
stopCollection = make(chan struct{})
go r.collectResourceUsageStats(stopCollection)
}
handleWaitCh = r.handle.WaitCh()
case waitRes := <-handleWaitCh:
if waitRes == nil {
panic("nil wait")
}
r.runningLock.Lock()
r.running = false
r.runningLock.Unlock()
// Stop collection of the task's resource usage
close(stopCollection)
// Log whether the task was successful or not.
r.restartTracker.SetWaitResult(waitRes)
r.setState("", r.waitErrorToEvent(waitRes))
if !waitRes.Successful() {
r.logger.Printf("[INFO] client: task %q for alloc %q failed: %v", r.task.Name, r.alloc.ID, waitRes)
} else {
r.logger.Printf("[INFO] client: task %q for alloc %q completed successfully", r.task.Name, r.alloc.ID)
}
break WAIT
case update := <-r.updateCh:
if err := r.handleUpdate(update); err != nil {
r.logger.Printf("[ERR] client: update to task %q failed: %v", r.task.Name, err)
}
case se := <-r.signalCh:
r.logger.Printf("[DEBUG] client: task being signalled with %v: %s", se.s, se.e.TaskSignalReason)
r.setState(structs.TaskStateRunning, se.e)
res := r.handle.Signal(se.s)
se.result <- res
case event := <-r.restartCh:
r.logger.Printf("[DEBUG] client: task being restarted: %s", event.RestartReason)
r.setState(structs.TaskStateRunning, event)
r.killTask(nil)
close(stopCollection)
if handleWaitCh != nil {
<-handleWaitCh
}
// Since the restart isn't from a failure, restart immediately
// and don't count against the restart policy
r.restartTracker.SetRestartTriggered()
break WAIT
case <-r.destroyCh:
r.runningLock.Lock()
running := r.running
r.runningLock.Unlock()
if !running {
r.setState(structs.TaskStateDead, r.destroyEvent)
return
}
// Store the task event that provides context on the task
// destroy. The Killed event is set from the alloc_runner and
// doesn't add detail
var killEvent *structs.TaskEvent
if r.destroyEvent.Type != structs.TaskKilled {
if r.destroyEvent.Type == structs.TaskKilling {
killEvent = r.destroyEvent
} else {
r.setState(structs.TaskStateRunning, r.destroyEvent)
}
}
r.killTask(killEvent)
close(stopCollection)
r.setState(structs.TaskStateDead, nil)
return
}
}
RESTART:
restart := r.shouldRestart()
if !restart {
r.setState(structs.TaskStateDead, nil)
return
}
// Clear the handle so a new driver will be created.
r.handleLock.Lock()
r.handle = nil
handleWaitCh = nil
stopCollection = nil
r.handleLock.Unlock()
}
}
// shouldRestart returns if the task should restart. If the return value is
// true, the task's restart policy has already been considered and any wait time
// between restarts has been applied.
func (r *TaskRunner) shouldRestart() bool {
state, when := r.restartTracker.GetState()
reason := r.restartTracker.GetReason()
switch state {
case structs.TaskNotRestarting, structs.TaskTerminated:
r.logger.Printf("[INFO] client: Not restarting task: %v for alloc: %v ", r.task.Name, r.alloc.ID)
if state == structs.TaskNotRestarting {
r.setState(structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskNotRestarting).
SetRestartReason(reason).SetFailsTask())
}
return false
case structs.TaskRestarting:
r.logger.Printf("[INFO] client: Restarting task %q for alloc %q in %v", r.task.Name, r.alloc.ID, when)
r.setState(structs.TaskStatePending,
structs.NewTaskEvent(structs.TaskRestarting).
SetRestartDelay(when).
SetRestartReason(reason))
default:
r.logger.Printf("[ERR] client: restart tracker returned unknown state: %q", state)
return false
}
// Sleep but watch for destroy events.
select {
case <-time.After(when):
case <-r.destroyCh:
}
// Destroyed while we were waiting to restart, so abort.
r.destroyLock.Lock()
destroyed := r.destroy
r.destroyLock.Unlock()
if destroyed {
r.logger.Printf("[DEBUG] client: Not restarting task: %v because it has been destroyed", r.task.Name)
r.setState(structs.TaskStateDead, r.destroyEvent)
return false
}
return true
}
// killTask kills the running task. A killing event can optionally be passed and
// this event is used to mark the task as being killed. It provides a means to
// store extra information.
func (r *TaskRunner) killTask(killingEvent *structs.TaskEvent) {
r.runningLock.Lock()
running := r.running
r.runningLock.Unlock()
if !running {
return
}
// Get the kill timeout
timeout := driver.GetKillTimeout(r.task.KillTimeout, r.config.MaxKillTimeout)
// Build the event
var event *structs.TaskEvent
if killingEvent != nil {
event = killingEvent
event.Type = structs.TaskKilling
} else {
event = structs.NewTaskEvent(structs.TaskKilling)
}
event.SetKillTimeout(timeout)
// Mark that we received the kill event
r.setState(structs.TaskStateRunning, event)
// Kill the task using an exponential backoff in-case of failures.
destroySuccess, err := r.handleDestroy()
if !destroySuccess {
// We couldn't successfully destroy the resource created.
r.logger.Printf("[ERR] client: failed to kill task %q. Resources may have been leaked: %v", r.task.Name, err)
}
r.runningLock.Lock()
r.running = false
r.runningLock.Unlock()
// Store that the task has been destroyed and any associated error.
r.setState("", structs.NewTaskEvent(structs.TaskKilled).SetKillError(err))
}
// startTask creates the driver and starts the task.
func (r *TaskRunner) startTask() error {
// Create a driver
driver, err := r.createDriver()
if err != nil {
return fmt.Errorf("failed to create driver of task '%s' for alloc '%s': %v",
r.task.Name, r.alloc.ID, err)
}
// Start the job
handle, err := driver.Start(r.ctx, r.task)
if err != nil {
wrapped := fmt.Errorf("failed to start task '%s' for alloc '%s': %v",
r.task.Name, r.alloc.ID, err)
r.logger.Printf("[INFO] client: %v", wrapped)
if rerr, ok := err.(*structs.RecoverableError); ok {
return structs.NewRecoverableError(wrapped, rerr.Recoverable)
}
return wrapped
}
r.handleLock.Lock()
r.handle = handle
r.handleLock.Unlock()
return nil
}
// collectResourceUsageStats starts collecting resource usage stats of a Task.
// Collection ends when the passed channel is closed
func (r *TaskRunner) collectResourceUsageStats(stopCollection <-chan struct{}) {
// start collecting the stats right away and then start collecting every
// collection interval
next := time.NewTimer(0)
defer next.Stop()
for {
select {
case <-next.C:
next.Reset(r.config.StatsCollectionInterval)
if r.handle == nil {
continue
}
ru, err := r.handle.Stats()
if err != nil {
// We do not log when the plugin is shutdown as this is simply a
// race between the stopCollection channel being closed and calling
// Stats on the handle.
if !strings.Contains(err.Error(), "connection is shut down") {
r.logger.Printf("[WARN] client: error fetching stats of task %v: %v", r.task.Name, err)
}
continue
}
r.resourceUsageLock.Lock()
r.resourceUsage = ru
r.resourceUsageLock.Unlock()
if ru != nil {
r.emitStats(ru)
}
case <-stopCollection:
return
}
}
}
// LatestResourceUsage returns the last resource utilization datapoint collected
func (r *TaskRunner) LatestResourceUsage() *cstructs.TaskResourceUsage {
r.resourceUsageLock.RLock()
defer r.resourceUsageLock.RUnlock()
r.runningLock.Lock()
defer r.runningLock.Unlock()
// If the task is not running there can be no latest resource
if !r.running {
return nil
}
return r.resourceUsage
}
// handleUpdate takes an updated allocation and updates internal state to
// reflect the new config for the task.
func (r *TaskRunner) handleUpdate(update *structs.Allocation) error {
// Extract the task group from the alloc.
tg := update.Job.LookupTaskGroup(update.TaskGroup)
if tg == nil {
return fmt.Errorf("alloc '%s' missing task group '%s'", update.ID, update.TaskGroup)
}
// Extract the task.
var updatedTask *structs.Task
for _, t := range tg.Tasks {
if t.Name == r.task.Name {
updatedTask = t.Copy()
}
}
if updatedTask == nil {
return fmt.Errorf("task group %q doesn't contain task %q", tg.Name, r.task.Name)
}
// Merge in the task resources
updatedTask.Resources = update.TaskResources[updatedTask.Name]
// Update will update resources and store the new kill timeout.
var mErr multierror.Error
r.handleLock.Lock()
if r.handle != nil {
if err := r.handle.Update(updatedTask); err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("updating task resources failed: %v", err))
}
}
r.handleLock.Unlock()
// Update the restart policy.
if r.restartTracker != nil {
r.restartTracker.SetPolicy(tg.RestartPolicy)
}
// Store the updated alloc.
r.alloc = update
r.task = updatedTask
return mErr.ErrorOrNil()
}
// handleDestroy kills the task handle. In the case that killing fails,
// handleDestroy will retry with an exponential backoff and will give up at a
// given limit. It returns whether the task was destroyed and the error
// associated with the last kill attempt.
func (r *TaskRunner) handleDestroy() (destroyed bool, err error) {
// Cap the number of times we attempt to kill the task.
for i := 0; i < killFailureLimit; i++ {
if err = r.handle.Kill(); err != nil {
// Calculate the new backoff
backoff := (1 << (2 * uint64(i))) * killBackoffBaseline
if backoff > killBackoffLimit {
backoff = killBackoffLimit
}
r.logger.Printf("[ERR] client: failed to kill task '%s' for alloc %q. Retrying in %v: %v",
r.task.Name, r.alloc.ID, backoff, err)
time.Sleep(time.Duration(backoff))
} else {
// Kill was successful
return true, nil
}
}
return
}
// Restart will restart the task
func (r *TaskRunner) Restart(source, reason string) {
reasonStr := fmt.Sprintf("%s: %s", source, reason)
event := structs.NewTaskEvent(structs.TaskRestartSignal).SetRestartReason(reasonStr)
r.logger.Printf("[DEBUG] client: restarting task %v for alloc %q: %v",
r.task.Name, r.alloc.ID, reasonStr)
r.runningLock.Lock()
running := r.running
r.runningLock.Unlock()
// Drop the restart event
if !running {
r.logger.Printf("[DEBUG] client: skipping restart since task isn't running")
return
}
select {
case r.restartCh <- event:
case <-r.waitCh:
}
}
// Signal will send a signal to the task
func (r *TaskRunner) Signal(source, reason string, s os.Signal) error {
reasonStr := fmt.Sprintf("%s: %s", source, reason)
event := structs.NewTaskEvent(structs.TaskSignaling).SetTaskSignal(s).SetTaskSignalReason(reasonStr)
r.logger.Printf("[DEBUG] client: sending signal %v to task %v for alloc %q", s, r.task.Name, r.alloc.ID)
r.runningLock.Lock()
running := r.running
r.runningLock.Unlock()
// Drop the restart event
if !running {
r.logger.Printf("[DEBUG] client: skipping signal since task isn't running")
return nil
}
resCh := make(chan error)
se := SignalEvent{
s: s,
e: event,
result: resCh,
}
select {
case r.signalCh <- se:
case <-r.waitCh:
}
return <-resCh
}
// Kill will kill a task and store the error, no longer restarting the task. If
// fail is set, the task is marked as having failed.
func (r *TaskRunner) Kill(source, reason string, fail bool) {
reasonStr := fmt.Sprintf("%s: %s", source, reason)
event := structs.NewTaskEvent(structs.TaskKilling).SetKillReason(reasonStr)
if fail {
event.SetFailsTask()
}
r.logger.Printf("[DEBUG] client: killing task %v for alloc %q: %v", r.task.Name, r.alloc.ID, reasonStr)
r.Destroy(event)
}
// UnblockStart unblocks the starting of the task. It currently assumes only
// consul-template will unblock
func (r *TaskRunner) UnblockStart(source string) {
r.unblockLock.Lock()
defer r.unblockLock.Unlock()
if r.unblocked {
return
}
r.logger.Printf("[DEBUG] client: unblocking task %v for alloc %q: %v", r.task.Name, r.alloc.ID, source)
r.unblocked = true
close(r.unblockCh)
}
// Helper function for converting a WaitResult into a TaskTerminated event.
func (r *TaskRunner) waitErrorToEvent(res *dstructs.WaitResult) *structs.TaskEvent {
return structs.NewTaskEvent(structs.TaskTerminated).
SetExitCode(res.ExitCode).
SetSignal(res.Signal).
SetExitMessage(res.Err)
}
// Update is used to update the task of the context
func (r *TaskRunner) Update(update *structs.Allocation) {
select {
case r.updateCh <- update:
default:
r.logger.Printf("[ERR] client: dropping task update '%s' (alloc '%s')",
r.task.Name, r.alloc.ID)
}
}
// Destroy is used to indicate that the task context should be destroyed. The
// event parameter provides a context for the destroy.
func (r *TaskRunner) Destroy(event *structs.TaskEvent) {
r.destroyLock.Lock()
defer r.destroyLock.Unlock()
if r.destroy {
return
}
r.destroy = true
r.destroyEvent = event
close(r.destroyCh)
}
// emitStats emits resource usage stats of tasks to remote metrics collector
// sinks
func (r *TaskRunner) emitStats(ru *cstructs.TaskResourceUsage) {
if ru.ResourceUsage.MemoryStats != nil && r.config.PublishAllocationMetrics {
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "rss"}, float32(ru.ResourceUsage.MemoryStats.RSS))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "cache"}, float32(ru.ResourceUsage.MemoryStats.Cache))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "swap"}, float32(ru.ResourceUsage.MemoryStats.Swap))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "max_usage"}, float32(ru.ResourceUsage.MemoryStats.MaxUsage))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "kernel_usage"}, float32(ru.ResourceUsage.MemoryStats.KernelUsage))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "kernel_max_usage"}, float32(ru.ResourceUsage.MemoryStats.KernelMaxUsage))
}
if ru.ResourceUsage.CpuStats != nil && r.config.PublishAllocationMetrics {
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "total_percent"}, float32(ru.ResourceUsage.CpuStats.Percent))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "system"}, float32(ru.ResourceUsage.CpuStats.SystemMode))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "user"}, float32(ru.ResourceUsage.CpuStats.UserMode))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "throttled_time"}, float32(ru.ResourceUsage.CpuStats.ThrottledTime))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "throttled_periods"}, float32(ru.ResourceUsage.CpuStats.ThrottledPeriods))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "total_ticks"}, float32(ru.ResourceUsage.CpuStats.TotalTicks))
}
}