open-nomad/client/client.go
2016-11-09 10:31:17 -08:00

2079 lines
59 KiB
Go

package client
import (
"archive/tar"
"errors"
"fmt"
"io"
"io/ioutil"
"log"
"net"
"os"
"path/filepath"
"strconv"
"strings"
"sync"
"time"
"github.com/armon/go-metrics"
consulapi "github.com/hashicorp/consul/api"
"github.com/hashicorp/consul/lib"
"github.com/hashicorp/go-multierror"
nomadapi "github.com/hashicorp/nomad/api"
"github.com/hashicorp/nomad/client/allocdir"
"github.com/hashicorp/nomad/client/config"
"github.com/hashicorp/nomad/client/driver"
"github.com/hashicorp/nomad/client/fingerprint"
"github.com/hashicorp/nomad/client/stats"
"github.com/hashicorp/nomad/client/vaultclient"
"github.com/hashicorp/nomad/command/agent/consul"
"github.com/hashicorp/nomad/helper/tlsutil"
"github.com/hashicorp/nomad/nomad"
"github.com/hashicorp/nomad/nomad/structs"
vaultapi "github.com/hashicorp/vault/api"
"github.com/mitchellh/hashstructure"
)
const (
// clientRPCCache controls how long we keep an idle connection
// open to a server
clientRPCCache = 5 * time.Minute
// clientMaxStreams controsl how many idle streams we keep
// open to a server
clientMaxStreams = 2
// datacenterQueryLimit searches through up to this many adjacent
// datacenters looking for the Nomad server service.
datacenterQueryLimit = 9
// consulReaperIntv is the interval at which the Consul reaper will
// run.
consulReaperIntv = 5 * time.Second
// registerRetryIntv is minimum interval on which we retry
// registration. We pick a value between this and 2x this.
registerRetryIntv = 15 * time.Second
// getAllocRetryIntv is minimum interval on which we retry
// to fetch allocations. We pick a value between this and 2x this.
getAllocRetryIntv = 30 * time.Second
// devModeRetryIntv is the retry interval used for development
devModeRetryIntv = time.Second
// stateSnapshotIntv is how often the client snapshots state
stateSnapshotIntv = 60 * time.Second
// initialHeartbeatStagger is used to stagger the interval between
// starting and the intial heartbeat. After the intial heartbeat,
// we switch to using the TTL specified by the servers.
initialHeartbeatStagger = 10 * time.Second
// nodeUpdateRetryIntv is how often the client checks for updates to the
// node attributes or meta map.
nodeUpdateRetryIntv = 5 * time.Second
// allocSyncIntv is the batching period of allocation updates before they
// are synced with the server.
allocSyncIntv = 200 * time.Millisecond
// allocSyncRetryIntv is the interval on which we retry updating
// the status of the allocation
allocSyncRetryIntv = 5 * time.Second
)
// ClientStatsReporter exposes all the APIs related to resource usage of a Nomad
// Client
type ClientStatsReporter interface {
// GetAllocStats returns the AllocStatsReporter for the passed allocation.
// If it does not exist an error is reported.
GetAllocStats(allocID string) (AllocStatsReporter, error)
// LatestHostStats returns the latest resource usage stats for the host
LatestHostStats() *stats.HostStats
}
// Client is used to implement the client interaction with Nomad. Clients
// are expected to register as a schedulable node to the servers, and to
// run allocations as determined by the servers.
type Client struct {
config *config.Config
start time.Time
// configCopy is a copy that should be passed to alloc-runners.
configCopy *config.Config
configLock sync.RWMutex
logger *log.Logger
connPool *nomad.ConnPool
// servers is the (optionally prioritized) list of nomad servers
servers *serverlist
// heartbeat related times for tracking how often to heartbeat
lastHeartbeat time.Time
heartbeatTTL time.Duration
heartbeatLock sync.Mutex
// triggerDiscoveryCh triggers Consul discovery; see triggerDiscovery
triggerDiscoveryCh chan struct{}
// discovered will be ticked whenever Consul discovery completes
// succesfully
serversDiscoveredCh chan struct{}
// allocs is the current set of allocations
allocs map[string]*AllocRunner
allocLock sync.RWMutex
// blockedAllocations are allocations which are blocked because their
// chained allocations haven't finished running
blockedAllocations map[string]*structs.Allocation
blockedAllocsLock sync.RWMutex
// allocUpdates stores allocations that need to be synced to the server.
allocUpdates chan *structs.Allocation
// consulSyncer advertises this Nomad Agent with Consul
consulSyncer *consul.Syncer
// HostStatsCollector collects host resource usage stats
hostStatsCollector *stats.HostStatsCollector
resourceUsage *stats.HostStats
resourceUsageLock sync.RWMutex
shutdown bool
shutdownCh chan struct{}
shutdownLock sync.Mutex
// vaultClient is used to interact with Vault for token and secret renewals
vaultClient vaultclient.VaultClient
// migratingAllocs is the set of allocs whose data migration is in flight
migratingAllocs map[string]chan struct{}
migratingAllocsLock sync.Mutex
}
var (
// noServersErr is returned by the RPC method when the client has no
// configured servers. This is used to trigger Consul discovery if
// enabled.
noServersErr = errors.New("no servers")
)
// NewClient is used to create a new client from the given configuration
func NewClient(cfg *config.Config, consulSyncer *consul.Syncer, logger *log.Logger) (*Client, error) {
// Create the tls wrapper
var tlsWrap tlsutil.RegionWrapper
if cfg.TLSConfig.EnableRPC {
tw, err := cfg.TLSConfiguration().OutgoingTLSWrapper()
if err != nil {
return nil, err
}
tlsWrap = tw
}
// Create the client
c := &Client{
config: cfg,
consulSyncer: consulSyncer,
start: time.Now(),
connPool: nomad.NewPool(cfg.LogOutput, clientRPCCache, clientMaxStreams, tlsWrap),
logger: logger,
hostStatsCollector: stats.NewHostStatsCollector(),
allocs: make(map[string]*AllocRunner),
blockedAllocations: make(map[string]*structs.Allocation),
allocUpdates: make(chan *structs.Allocation, 64),
shutdownCh: make(chan struct{}),
migratingAllocs: make(map[string]chan struct{}),
servers: newServerList(),
triggerDiscoveryCh: make(chan struct{}),
serversDiscoveredCh: make(chan struct{}),
}
// Initialize the client
if err := c.init(); err != nil {
return nil, fmt.Errorf("failed to initialize client: %v", err)
}
// Setup the node
if err := c.setupNode(); err != nil {
return nil, fmt.Errorf("node setup failed: %v", err)
}
// Fingerprint the node
if err := c.fingerprint(); err != nil {
return nil, fmt.Errorf("fingerprinting failed: %v", err)
}
// Scan for drivers
if err := c.setupDrivers(); err != nil {
return nil, fmt.Errorf("driver setup failed: %v", err)
}
// Setup the reserved resources
c.reservePorts()
// Store the config copy before restoring state but after it has been
// initialized.
c.configLock.Lock()
c.configCopy = c.config.Copy()
c.configLock.Unlock()
// Set the preconfigured list of static servers
c.configLock.RLock()
if len(c.configCopy.Servers) > 0 {
if err := c.SetServers(c.configCopy.Servers); err != nil {
logger.Printf("[WARN] client: None of the configured servers are valid: %v", err)
}
}
c.configLock.RUnlock()
// Setup Consul discovery if enabled
if c.configCopy.ConsulConfig.ClientAutoJoin {
go c.consulDiscovery()
if len(c.servers.all()) == 0 {
// No configured servers; trigger discovery manually
c.triggerDiscoveryCh <- struct{}{}
}
}
// Start Consul reaper
go c.consulReaper()
// Setup the vault client for token and secret renewals
if err := c.setupVaultClient(); err != nil {
return nil, fmt.Errorf("failed to setup vault client: %v", err)
}
// Restore the state
if err := c.restoreState(); err != nil {
return nil, fmt.Errorf("failed to restore state: %v", err)
}
// Register and then start heartbeating to the servers.
go c.registerAndHeartbeat()
// Begin periodic snapshotting of state.
go c.periodicSnapshot()
// Begin syncing allocations to the server
go c.allocSync()
// Start the client!
go c.run()
// Start collecting stats
go c.collectHostStats()
c.logger.Printf("[INFO] client: Node ID %q", c.Node().ID)
return c, nil
}
// init is used to initialize the client and perform any setup
// needed before we begin starting its various components.
func (c *Client) init() error {
// Ensure the state dir exists if we have one
if c.config.StateDir != "" {
if err := os.MkdirAll(c.config.StateDir, 0700); err != nil {
return fmt.Errorf("failed creating state dir: %s", err)
}
} else {
// Othewise make a temp directory to use.
p, err := ioutil.TempDir("", "NomadClient")
if err != nil {
return fmt.Errorf("failed creating temporary directory for the StateDir: %v", err)
}
p, err = filepath.EvalSymlinks(p)
if err != nil {
return fmt.Errorf("failed to find temporary directory for the StateDir: %v", err)
}
c.config.StateDir = p
}
c.logger.Printf("[INFO] client: using state directory %v", c.config.StateDir)
// Ensure the alloc dir exists if we have one
if c.config.AllocDir != "" {
if err := os.MkdirAll(c.config.AllocDir, 0755); err != nil {
return fmt.Errorf("failed creating alloc dir: %s", err)
}
} else {
// Othewise make a temp directory to use.
p, err := ioutil.TempDir("", "NomadClient")
if err != nil {
return fmt.Errorf("failed creating temporary directory for the AllocDir: %v", err)
}
p, err = filepath.EvalSymlinks(p)
if err != nil {
return fmt.Errorf("failed to find temporary directory for the AllocDir: %v", err)
}
c.config.AllocDir = p
}
c.logger.Printf("[INFO] client: using alloc directory %v", c.config.AllocDir)
return nil
}
// Leave is used to prepare the client to leave the cluster
func (c *Client) Leave() error {
// TODO
return nil
}
// Datacenter returns the datacenter for the given client
func (c *Client) Datacenter() string {
c.configLock.RLock()
dc := c.configCopy.Node.Datacenter
c.configLock.RUnlock()
return dc
}
// Region returns the region for the given client
func (c *Client) Region() string {
return c.config.Region
}
// RPCMajorVersion returns the structs.ApiMajorVersion supported by the
// client.
func (c *Client) RPCMajorVersion() int {
return structs.ApiMajorVersion
}
// RPCMinorVersion returns the structs.ApiMinorVersion supported by the
// client.
func (c *Client) RPCMinorVersion() int {
return structs.ApiMinorVersion
}
// Shutdown is used to tear down the client
func (c *Client) Shutdown() error {
c.logger.Printf("[INFO] client: shutting down")
c.shutdownLock.Lock()
defer c.shutdownLock.Unlock()
if c.shutdown {
return nil
}
// Stop renewing tokens and secrets
if c.vaultClient != nil {
c.vaultClient.Stop()
}
// Destroy all the running allocations.
if c.config.DevMode {
c.allocLock.Lock()
for _, ar := range c.allocs {
ar.Destroy()
<-ar.WaitCh()
}
c.allocLock.Unlock()
}
c.shutdown = true
close(c.shutdownCh)
c.connPool.Shutdown()
return c.saveState()
}
// RPC is used to forward an RPC call to a nomad server, or fail if no servers.
func (c *Client) RPC(method string, args interface{}, reply interface{}) error {
// Invoke the RPCHandler if it exists
if c.config.RPCHandler != nil {
return c.config.RPCHandler.RPC(method, args, reply)
}
servers := c.servers.all()
if len(servers) == 0 {
return noServersErr
}
var mErr multierror.Error
for _, s := range servers {
// Make the RPC request
if err := c.connPool.RPC(c.Region(), s.addr, c.RPCMajorVersion(), method, args, reply); err != nil {
errmsg := fmt.Errorf("RPC failed to server %s: %v", s.addr, err)
mErr.Errors = append(mErr.Errors, errmsg)
c.logger.Printf("[DEBUG] client: %v", errmsg)
c.servers.failed(s)
continue
}
c.servers.good(s)
return nil
}
return mErr.ErrorOrNil()
}
// Stats is used to return statistics for debugging and insight
// for various sub-systems
func (c *Client) Stats() map[string]map[string]string {
c.allocLock.RLock()
numAllocs := len(c.allocs)
c.allocLock.RUnlock()
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
stats := map[string]map[string]string{
"client": map[string]string{
"node_id": c.Node().ID,
"known_servers": c.servers.all().String(),
"num_allocations": strconv.Itoa(numAllocs),
"last_heartbeat": fmt.Sprintf("%v", time.Since(c.lastHeartbeat)),
"heartbeat_ttl": fmt.Sprintf("%v", c.heartbeatTTL),
},
"runtime": nomad.RuntimeStats(),
}
return stats
}
// Node returns the locally registered node
func (c *Client) Node() *structs.Node {
c.configLock.RLock()
defer c.configLock.RUnlock()
return c.config.Node
}
// StatsReporter exposes the various APIs related resource usage of a Nomad
// client
func (c *Client) StatsReporter() ClientStatsReporter {
return c
}
func (c *Client) GetAllocStats(allocID string) (AllocStatsReporter, error) {
c.allocLock.RLock()
defer c.allocLock.RUnlock()
ar, ok := c.allocs[allocID]
if !ok {
return nil, fmt.Errorf("unknown allocation ID %q", allocID)
}
return ar.StatsReporter(), nil
}
// HostStats returns all the stats related to a Nomad client
func (c *Client) LatestHostStats() *stats.HostStats {
c.resourceUsageLock.RLock()
defer c.resourceUsageLock.RUnlock()
return c.resourceUsage
}
// GetAllocFS returns the AllocFS interface for the alloc dir of an allocation
func (c *Client) GetAllocFS(allocID string) (allocdir.AllocDirFS, error) {
c.allocLock.RLock()
defer c.allocLock.RUnlock()
ar, ok := c.allocs[allocID]
if !ok {
return nil, fmt.Errorf("alloc not found")
}
return ar.GetAllocDir(), nil
}
// GetServers returns the list of nomad servers this client is aware of.
func (c *Client) GetServers() []string {
endpoints := c.servers.all()
res := make([]string, len(endpoints))
for i := range endpoints {
res[i] = endpoints[i].addr.String()
}
return res
}
// SetServers sets a new list of nomad servers to connect to. As long as one
// server is resolvable no error is returned.
func (c *Client) SetServers(servers []string) error {
endpoints := make([]*endpoint, 0, len(servers))
var merr multierror.Error
for _, s := range servers {
addr, err := resolveServer(s)
if err != nil {
c.logger.Printf("[DEBUG] client: ignoring server %s due to resolution error: %v", s, err)
merr.Errors = append(merr.Errors, err)
continue
}
// Valid endpoint, append it without a priority as this API
// doesn't support different priorities for different servers
endpoints = append(endpoints, &endpoint{name: s, addr: addr})
}
// Only return errors if no servers are valid
if len(endpoints) == 0 {
if len(merr.Errors) > 0 {
return merr.ErrorOrNil()
}
return noServersErr
}
c.servers.set(endpoints)
return nil
}
// restoreState is used to restore our state from the data dir
func (c *Client) restoreState() error {
if c.config.DevMode {
return nil
}
// Scan the directory
list, err := ioutil.ReadDir(filepath.Join(c.config.StateDir, "alloc"))
if err != nil && os.IsNotExist(err) {
return nil
} else if err != nil {
return fmt.Errorf("failed to list alloc state: %v", err)
}
// Load each alloc back
var mErr multierror.Error
for _, entry := range list {
id := entry.Name()
alloc := &structs.Allocation{ID: id}
c.configLock.RLock()
ar := NewAllocRunner(c.logger, c.configCopy, c.updateAllocStatus, alloc, c.vaultClient)
c.configLock.RUnlock()
c.allocLock.Lock()
c.allocs[id] = ar
c.allocLock.Unlock()
if err := ar.RestoreState(); err != nil {
c.logger.Printf("[ERR] client: failed to restore state for alloc %s: %v", id, err)
mErr.Errors = append(mErr.Errors, err)
} else {
go ar.Run()
}
}
return mErr.ErrorOrNil()
}
// saveState is used to snapshot our state into the data dir
func (c *Client) saveState() error {
if c.config.DevMode {
return nil
}
var mErr multierror.Error
for id, ar := range c.getAllocRunners() {
if err := ar.SaveState(); err != nil {
c.logger.Printf("[ERR] client: failed to save state for alloc %s: %v",
id, err)
mErr.Errors = append(mErr.Errors, err)
}
}
return mErr.ErrorOrNil()
}
// getAllocRunners returns a snapshot of the current set of alloc runners.
func (c *Client) getAllocRunners() map[string]*AllocRunner {
c.allocLock.RLock()
defer c.allocLock.RUnlock()
runners := make(map[string]*AllocRunner, len(c.allocs))
for id, ar := range c.allocs {
runners[id] = ar
}
return runners
}
// nodeIDs restores the nodes persistent unique ID and SecretID or generates new
// ones
func (c *Client) nodeID() (id string, secret string, err error) {
// Do not persist in dev mode
if c.config.DevMode {
return structs.GenerateUUID(), structs.GenerateUUID(), nil
}
// Attempt to read existing ID
idPath := filepath.Join(c.config.StateDir, "client-id")
idBuf, err := ioutil.ReadFile(idPath)
if err != nil && !os.IsNotExist(err) {
return "", "", err
}
// Attempt to read existing secret ID
secretPath := filepath.Join(c.config.StateDir, "secret-id")
secretBuf, err := ioutil.ReadFile(secretPath)
if err != nil && !os.IsNotExist(err) {
return "", "", err
}
// Use existing ID if any
if len(idBuf) != 0 {
id = string(idBuf)
} else {
// Generate new ID
id = structs.GenerateUUID()
// Persist the ID
if err := ioutil.WriteFile(idPath, []byte(id), 0700); err != nil {
return "", "", err
}
}
if len(secretBuf) != 0 {
secret = string(secretBuf)
} else {
// Generate new ID
secret = structs.GenerateUUID()
// Persist the ID
if err := ioutil.WriteFile(secretPath, []byte(secret), 0700); err != nil {
return "", "", err
}
}
return id, secret, nil
}
// setupNode is used to setup the initial node
func (c *Client) setupNode() error {
node := c.config.Node
if node == nil {
node = &structs.Node{}
c.config.Node = node
}
// Generate an iD for the node
id, secretID, err := c.nodeID()
if err != nil {
return fmt.Errorf("node ID setup failed: %v", err)
}
node.ID = id
node.SecretID = secretID
if node.Attributes == nil {
node.Attributes = make(map[string]string)
}
if node.Links == nil {
node.Links = make(map[string]string)
}
if node.Meta == nil {
node.Meta = make(map[string]string)
}
if node.Resources == nil {
node.Resources = &structs.Resources{}
}
if node.Reserved == nil {
node.Reserved = &structs.Resources{}
}
if node.Datacenter == "" {
node.Datacenter = "dc1"
}
if node.Name == "" {
node.Name, _ = os.Hostname()
}
if node.Name == "" {
node.Name = node.ID
}
node.Status = structs.NodeStatusInit
return nil
}
// reservePorts is used to reserve ports on the fingerprinted network devices.
func (c *Client) reservePorts() {
c.configLock.RLock()
defer c.configLock.RUnlock()
global := c.config.GloballyReservedPorts
if len(global) == 0 {
return
}
node := c.config.Node
networks := node.Resources.Networks
reservedIndex := make(map[string]*structs.NetworkResource, len(networks))
for _, resNet := range node.Reserved.Networks {
reservedIndex[resNet.IP] = resNet
}
// Go through each network device and reserve ports on it.
for _, net := range networks {
res, ok := reservedIndex[net.IP]
if !ok {
res = net.Copy()
res.MBits = 0
reservedIndex[net.IP] = res
}
for _, portVal := range global {
p := structs.Port{Value: portVal}
res.ReservedPorts = append(res.ReservedPorts, p)
}
}
// Clear the reserved networks.
if node.Reserved == nil {
node.Reserved = new(structs.Resources)
} else {
node.Reserved.Networks = nil
}
// Restore the reserved networks
for _, net := range reservedIndex {
node.Reserved.Networks = append(node.Reserved.Networks, net)
}
}
// fingerprint is used to fingerprint the client and setup the node
func (c *Client) fingerprint() error {
whitelist := c.config.ReadStringListToMap("fingerprint.whitelist")
whitelistEnabled := len(whitelist) > 0
blacklist := c.config.ReadStringListToMap("fingerprint.blacklist")
c.logger.Printf("[DEBUG] client: built-in fingerprints: %v", fingerprint.BuiltinFingerprints())
var applied []string
var skipped []string
for _, name := range fingerprint.BuiltinFingerprints() {
// Skip modules that are not in the whitelist if it is enabled.
if _, ok := whitelist[name]; whitelistEnabled && !ok {
skipped = append(skipped, name)
continue
}
// Skip modules that are in the blacklist
if _, ok := blacklist[name]; ok {
skipped = append(skipped, name)
continue
}
f, err := fingerprint.NewFingerprint(name, c.logger)
if err != nil {
return err
}
c.configLock.Lock()
applies, err := f.Fingerprint(c.config, c.config.Node)
c.configLock.Unlock()
if err != nil {
return err
}
if applies {
applied = append(applied, name)
}
p, period := f.Periodic()
if p {
// TODO: If more periodic fingerprinters are added, then
// fingerprintPeriodic should be used to handle all the periodic
// fingerprinters by using a priority queue.
go c.fingerprintPeriodic(name, f, period)
}
}
c.logger.Printf("[DEBUG] client: applied fingerprints %v", applied)
if len(skipped) != 0 {
c.logger.Printf("[DEBUG] client: fingerprint modules skipped due to white/blacklist: %v", skipped)
}
return nil
}
// fingerprintPeriodic runs a fingerprinter at the specified duration.
func (c *Client) fingerprintPeriodic(name string, f fingerprint.Fingerprint, d time.Duration) {
c.logger.Printf("[DEBUG] client: fingerprinting %v every %v", name, d)
for {
select {
case <-time.After(d):
c.configLock.Lock()
if _, err := f.Fingerprint(c.config, c.config.Node); err != nil {
c.logger.Printf("[DEBUG] client: periodic fingerprinting for %v failed: %v", name, err)
}
c.configLock.Unlock()
case <-c.shutdownCh:
return
}
}
}
// setupDrivers is used to find the available drivers
func (c *Client) setupDrivers() error {
// Build the white/blacklists of drivers.
whitelist := c.config.ReadStringListToMap("driver.whitelist")
whitelistEnabled := len(whitelist) > 0
blacklist := c.config.ReadStringListToMap("driver.blacklist")
var avail []string
var skipped []string
driverCtx := driver.NewDriverContext("", c.config, c.config.Node, c.logger, nil)
for name := range driver.BuiltinDrivers {
// Skip fingerprinting drivers that are not in the whitelist if it is
// enabled.
if _, ok := whitelist[name]; whitelistEnabled && !ok {
skipped = append(skipped, name)
continue
}
// Skip fingerprinting drivers that are in the blacklist
if _, ok := blacklist[name]; ok {
skipped = append(skipped, name)
continue
}
d, err := driver.NewDriver(name, driverCtx)
if err != nil {
return err
}
c.configLock.Lock()
applies, err := d.Fingerprint(c.config, c.config.Node)
c.configLock.Unlock()
if err != nil {
return err
}
if applies {
avail = append(avail, name)
}
p, period := d.Periodic()
if p {
go c.fingerprintPeriodic(name, d, period)
}
}
c.logger.Printf("[DEBUG] client: available drivers %v", avail)
if len(skipped) != 0 {
c.logger.Printf("[DEBUG] client: drivers skipped due to white/blacklist: %v", skipped)
}
return nil
}
// retryIntv calculates a retry interval value given the base
func (c *Client) retryIntv(base time.Duration) time.Duration {
if c.config.DevMode {
return devModeRetryIntv
}
return base + lib.RandomStagger(base)
}
// registerAndHeartbeat is a long lived goroutine used to register the client
// and then start heartbeatng to the server.
func (c *Client) registerAndHeartbeat() {
// Register the node
c.retryRegisterNode()
// Start watching changes for node changes
go c.watchNodeUpdates()
// Setup the heartbeat timer, for the initial registration
// we want to do this quickly. We want to do it extra quickly
// in development mode.
var heartbeat <-chan time.Time
if c.config.DevMode {
heartbeat = time.After(0)
} else {
heartbeat = time.After(lib.RandomStagger(initialHeartbeatStagger))
}
for {
select {
case <-c.serversDiscoveredCh:
case <-heartbeat:
case <-c.shutdownCh:
return
}
if err := c.updateNodeStatus(); err != nil {
// The servers have changed such that this node has not been
// registered before
if strings.Contains(err.Error(), "node not found") {
// Re-register the node
c.logger.Printf("[INFO] client: re-registering node")
c.retryRegisterNode()
heartbeat = time.After(lib.RandomStagger(initialHeartbeatStagger))
} else {
intv := c.retryIntv(registerRetryIntv)
c.logger.Printf("[ERR] client: heartbeating failed. Retrying in %v: %v", intv, err)
heartbeat = time.After(intv)
// if heartbeating fails, trigger Consul discovery
c.triggerDiscovery()
}
} else {
c.heartbeatLock.Lock()
heartbeat = time.After(c.heartbeatTTL)
c.heartbeatLock.Unlock()
}
}
}
// periodicSnapshot is a long lived goroutine used to periodically snapshot the
// state of the client
func (c *Client) periodicSnapshot() {
// Create a snapshot timer
snapshot := time.After(stateSnapshotIntv)
for {
select {
case <-snapshot:
snapshot = time.After(stateSnapshotIntv)
if err := c.saveState(); err != nil {
c.logger.Printf("[ERR] client: failed to save state: %v", err)
}
case <-c.shutdownCh:
return
}
}
}
// run is a long lived goroutine used to run the client
func (c *Client) run() {
// Watch for changes in allocations
allocUpdates := make(chan *allocUpdates, 8)
go c.watchAllocations(allocUpdates)
for {
select {
case update := <-allocUpdates:
c.runAllocs(update)
case <-c.shutdownCh:
return
}
}
}
// hasNodeChanged calculates a hash for the node attributes- and meta map.
// The new hash values are compared against the old (passed-in) hash values to
// determine if the node properties have changed. It returns the new hash values
// in case they are different from the old hash values.
func (c *Client) hasNodeChanged(oldAttrHash uint64, oldMetaHash uint64) (bool, uint64, uint64) {
c.configLock.RLock()
defer c.configLock.RUnlock()
newAttrHash, err := hashstructure.Hash(c.config.Node.Attributes, nil)
if err != nil {
c.logger.Printf("[DEBUG] client: unable to calculate node attributes hash: %v", err)
}
// Calculate node meta map hash
newMetaHash, err := hashstructure.Hash(c.config.Node.Meta, nil)
if err != nil {
c.logger.Printf("[DEBUG] client: unable to calculate node meta hash: %v", err)
}
if newAttrHash != oldAttrHash || newMetaHash != oldMetaHash {
return true, newAttrHash, newMetaHash
}
return false, oldAttrHash, oldMetaHash
}
// retryRegisterNode is used to register the node or update the registration and
// retry in case of failure.
func (c *Client) retryRegisterNode() {
for {
err := c.registerNode()
if err == nil {
// Registered!
return
}
if err == noServersErr {
c.logger.Print("[DEBUG] client: registration waiting on servers")
c.triggerDiscovery()
} else {
c.logger.Printf("[ERR] client: registration failure: %v", err)
}
select {
case <-c.serversDiscoveredCh:
case <-time.After(c.retryIntv(registerRetryIntv)):
case <-c.shutdownCh:
return
}
}
}
// registerNode is used to register the node or update the registration
func (c *Client) registerNode() error {
node := c.Node()
req := structs.NodeRegisterRequest{
Node: node,
WriteRequest: structs.WriteRequest{Region: c.Region()},
}
var resp structs.NodeUpdateResponse
if err := c.RPC("Node.Register", &req, &resp); err != nil {
return err
}
// Update the node status to ready after we register.
c.configLock.Lock()
node.Status = structs.NodeStatusReady
c.configLock.Unlock()
c.logger.Printf("[INFO] client: node registration complete")
if len(resp.EvalIDs) != 0 {
c.logger.Printf("[DEBUG] client: %d evaluations triggered by node registration", len(resp.EvalIDs))
}
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
c.lastHeartbeat = time.Now()
c.heartbeatTTL = resp.HeartbeatTTL
return nil
}
// updateNodeStatus is used to heartbeat and update the status of the node
func (c *Client) updateNodeStatus() error {
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
node := c.Node()
req := structs.NodeUpdateStatusRequest{
NodeID: node.ID,
Status: structs.NodeStatusReady,
WriteRequest: structs.WriteRequest{Region: c.Region()},
}
var resp structs.NodeUpdateResponse
if err := c.RPC("Node.UpdateStatus", &req, &resp); err != nil {
c.triggerDiscovery()
return fmt.Errorf("failed to update status: %v", err)
}
if len(resp.EvalIDs) != 0 {
c.logger.Printf("[DEBUG] client: %d evaluations triggered by node update", len(resp.EvalIDs))
}
if resp.Index != 0 {
c.logger.Printf("[DEBUG] client: state updated to %s", req.Status)
}
// Update heartbeat time and ttl
c.lastHeartbeat = time.Now()
c.heartbeatTTL = resp.HeartbeatTTL
// Convert []*NodeServerInfo to []*endpoints
localdc := c.Datacenter()
servers := make(endpoints, 0, len(resp.Servers))
for _, s := range resp.Servers {
addr, err := resolveServer(s.RPCAdvertiseAddr)
if err != nil {
continue
}
e := endpoint{name: s.RPCAdvertiseAddr, addr: addr}
if s.Datacenter != localdc {
// server is non-local; de-prioritize
e.priority = 1
}
servers = append(servers, &e)
}
if len(servers) == 0 {
return fmt.Errorf("server returned no valid servers")
}
c.servers.set(servers)
// Begin polling Consul if there is no Nomad leader. We could be
// heartbeating to a Nomad server that is in the minority of a
// partition of the Nomad server quorum, but this Nomad Agent still
// has connectivity to the existing majority of Nomad Servers, but
// only if it queries Consul.
if resp.LeaderRPCAddr == "" {
c.triggerDiscovery()
}
return nil
}
// updateAllocStatus is used to update the status of an allocation
func (c *Client) updateAllocStatus(alloc *structs.Allocation) {
// Only send the fields that are updatable by the client.
stripped := new(structs.Allocation)
stripped.ID = alloc.ID
stripped.NodeID = c.Node().ID
stripped.TaskStates = alloc.TaskStates
stripped.ClientStatus = alloc.ClientStatus
stripped.ClientDescription = alloc.ClientDescription
select {
case c.allocUpdates <- stripped:
case <-c.shutdownCh:
}
}
// allocSync is a long lived function that batches allocation updates to the
// server.
func (c *Client) allocSync() {
staggered := false
syncTicker := time.NewTicker(allocSyncIntv)
updates := make(map[string]*structs.Allocation)
for {
select {
case <-c.shutdownCh:
syncTicker.Stop()
return
case alloc := <-c.allocUpdates:
// Batch the allocation updates until the timer triggers.
updates[alloc.ID] = alloc
// If this alloc was blocking another alloc and transitioned to a
// terminal state then start the blocked allocation
c.blockedAllocsLock.Lock()
if blockedAlloc, ok := c.blockedAllocations[alloc.ID]; ok && alloc.Terminated() {
var prevAllocDir *allocdir.AllocDir
if ar, ok := c.getAllocRunners()[alloc.ID]; ok {
prevAllocDir = ar.GetAllocDir()
}
if err := c.addAlloc(blockedAlloc, prevAllocDir); err != nil {
c.logger.Printf("[ERR] client: failed to add alloc which was previously blocked %q: %v",
blockedAlloc.ID, err)
}
delete(c.blockedAllocations, blockedAlloc.PreviousAllocation)
}
c.blockedAllocsLock.Unlock()
case <-syncTicker.C:
// Fast path if there are no updates
if len(updates) == 0 {
continue
}
sync := make([]*structs.Allocation, 0, len(updates))
for _, alloc := range updates {
sync = append(sync, alloc)
}
// Send to server.
args := structs.AllocUpdateRequest{
Alloc: sync,
WriteRequest: structs.WriteRequest{Region: c.Region()},
}
var resp structs.GenericResponse
if err := c.RPC("Node.UpdateAlloc", &args, &resp); err != nil {
c.logger.Printf("[ERR] client: failed to update allocations: %v", err)
syncTicker.Stop()
syncTicker = time.NewTicker(c.retryIntv(allocSyncRetryIntv))
staggered = true
} else {
updates = make(map[string]*structs.Allocation)
if staggered {
syncTicker.Stop()
syncTicker = time.NewTicker(allocSyncIntv)
staggered = false
}
}
}
}
}
// allocUpdates holds the results of receiving updated allocations from the
// servers.
type allocUpdates struct {
// pulled is the set of allocations that were downloaded from the servers.
pulled map[string]*structs.Allocation
// filtered is the set of allocations that were not pulled because their
// AllocModifyIndex didn't change.
filtered map[string]struct{}
}
// watchAllocations is used to scan for updates to allocations
func (c *Client) watchAllocations(updates chan *allocUpdates) {
// The request and response for getting the map of allocations that should
// be running on the Node to their AllocModifyIndex which is incremented
// when the allocation is updated by the servers.
n := c.Node()
req := structs.NodeSpecificRequest{
NodeID: n.ID,
SecretID: n.SecretID,
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: true,
},
}
var resp structs.NodeClientAllocsResponse
// The request and response for pulling down the set of allocations that are
// new, or updated server side.
allocsReq := structs.AllocsGetRequest{
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: true,
},
}
var allocsResp structs.AllocsGetResponse
for {
// Get the allocation modify index map, blocking for updates. We will
// use this to determine exactly what allocations need to be downloaded
// in full.
resp = structs.NodeClientAllocsResponse{}
err := c.RPC("Node.GetClientAllocs", &req, &resp)
if err != nil {
// Shutdown often causes EOF errors, so check for shutdown first
select {
case <-c.shutdownCh:
return
default:
}
// COMPAT: Remove in 0.6. This is to allow the case in which the
// servers are not fully upgraded before the clients register. This
// can cause the SecretID to be lost
if strings.Contains(err.Error(), "node secret ID does not match") {
c.logger.Printf("[DEBUG] client: re-registering node as there was a secret ID mismatch: %v", err)
c.retryRegisterNode()
} else if err != noServersErr {
c.logger.Printf("[ERR] client: failed to query for node allocations: %v", err)
}
retry := c.retryIntv(getAllocRetryIntv)
select {
case <-c.serversDiscoveredCh:
continue
case <-time.After(retry):
continue
case <-c.shutdownCh:
return
}
}
// Check for shutdown
select {
case <-c.shutdownCh:
return
default:
}
// Filter all allocations whose AllocModifyIndex was not incremented.
// These are the allocations who have either not been updated, or whose
// updates are a result of the client sending an update for the alloc.
// This lets us reduce the network traffic to the server as we don't
// need to pull all the allocations.
var pull []string
filtered := make(map[string]struct{})
runners := c.getAllocRunners()
for allocID, modifyIndex := range resp.Allocs {
// Pull the allocation if we don't have an alloc runner for the
// allocation or if the alloc runner requires an updated allocation.
runner, ok := runners[allocID]
if !ok || runner.shouldUpdate(modifyIndex) {
pull = append(pull, allocID)
} else {
filtered[allocID] = struct{}{}
}
}
c.logger.Printf("[DEBUG] client: updated allocations at index %d (pulled %d) (filtered %d)",
resp.Index, len(pull), len(filtered))
// Pull the allocations that passed filtering.
allocsResp.Allocs = nil
if len(pull) != 0 {
// Pull the allocations that need to be updated.
allocsReq.AllocIDs = pull
allocsResp = structs.AllocsGetResponse{}
if err := c.RPC("Alloc.GetAllocs", &allocsReq, &allocsResp); err != nil {
c.logger.Printf("[ERR] client: failed to query updated allocations: %v", err)
retry := c.retryIntv(getAllocRetryIntv)
select {
case <-c.serversDiscoveredCh:
continue
case <-time.After(retry):
continue
case <-c.shutdownCh:
return
}
}
// Check for shutdown
select {
case <-c.shutdownCh:
return
default:
}
}
// Update the query index.
if resp.Index > req.MinQueryIndex {
req.MinQueryIndex = resp.Index
}
// Push the updates.
pulled := make(map[string]*structs.Allocation, len(allocsResp.Allocs))
for _, alloc := range allocsResp.Allocs {
pulled[alloc.ID] = alloc
}
update := &allocUpdates{
filtered: filtered,
pulled: pulled,
}
select {
case updates <- update:
case <-c.shutdownCh:
return
}
}
}
// watchNodeUpdates periodically checks for changes to the node attributes or meta map
func (c *Client) watchNodeUpdates() {
c.logger.Printf("[DEBUG] client: periodically checking for node changes at duration %v", nodeUpdateRetryIntv)
// Initialize the hashes
_, attrHash, metaHash := c.hasNodeChanged(0, 0)
var changed bool
for {
select {
case <-time.After(c.retryIntv(nodeUpdateRetryIntv)):
changed, attrHash, metaHash = c.hasNodeChanged(attrHash, metaHash)
if changed {
c.logger.Printf("[DEBUG] client: state changed, updating node.")
// Update the config copy.
c.configLock.Lock()
node := c.config.Node.Copy()
c.configCopy.Node = node
c.configLock.Unlock()
c.retryRegisterNode()
}
case <-c.shutdownCh:
return
}
}
}
// runAllocs is invoked when we get an updated set of allocations
func (c *Client) runAllocs(update *allocUpdates) {
// Get the existing allocs
c.allocLock.RLock()
exist := make([]*structs.Allocation, 0, len(c.allocs))
for _, ar := range c.allocs {
exist = append(exist, ar.alloc)
}
c.allocLock.RUnlock()
// Diff the existing and updated allocations
diff := diffAllocs(exist, update)
c.logger.Printf("[DEBUG] client: %#v", diff)
// Remove the old allocations
for _, remove := range diff.removed {
if err := c.removeAlloc(remove); err != nil {
c.logger.Printf("[ERR] client: failed to remove alloc '%s': %v",
remove.ID, err)
}
}
// Update the existing allocations
for _, update := range diff.updated {
if err := c.updateAlloc(update.exist, update.updated); err != nil {
c.logger.Printf("[ERR] client: failed to update alloc '%s': %v",
update.exist.ID, err)
}
// See if the updated alloc is getting migrated
c.migratingAllocsLock.Lock()
ch, ok := c.migratingAllocs[update.updated.ID]
c.migratingAllocsLock.Unlock()
if ok {
// Stopping the migration if the allocation doesn't need any
// migration
if !update.updated.ShouldMigrate() {
close(ch)
}
}
}
// Start the new allocations
for _, add := range diff.added {
// If the allocation is chained and the previous allocation hasn't
// terminated yet, then add the alloc to the blocked queue.
ar, ok := c.getAllocRunners()[add.PreviousAllocation]
if ok && !ar.Alloc().Terminated() {
c.logger.Printf("[DEBUG] client: added alloc %q to blocked queue", add.ID)
c.blockedAllocsLock.Lock()
c.blockedAllocations[add.PreviousAllocation] = add
c.blockedAllocsLock.Unlock()
continue
}
// This means the allocation has a previous allocation on another node
// so we will block for the previous allocation to complete
if add.PreviousAllocation != "" && !ok {
c.migratingAllocsLock.Lock()
c.migratingAllocs[add.ID] = make(chan struct{})
c.migratingAllocsLock.Unlock()
go c.blockForRemoteAlloc(add)
continue
}
// Setting the previous allocdir if the allocation had a terminal
// previous allocation
var prevAllocDir *allocdir.AllocDir
tg := add.Job.LookupTaskGroup(add.TaskGroup)
if tg != nil && tg.EphemeralDisk.Sticky == true && ar != nil {
prevAllocDir = ar.GetAllocDir()
}
if err := c.addAlloc(add, prevAllocDir); err != nil {
c.logger.Printf("[ERR] client: failed to add alloc '%s': %v",
add.ID, err)
}
}
// Persist our state
if err := c.saveState(); err != nil {
c.logger.Printf("[ERR] client: failed to save state: %v", err)
}
}
// blockForRemoteAlloc blocks until the previous allocation of an allocation has
// been terminated and migrates the snapshot data
func (c *Client) blockForRemoteAlloc(alloc *structs.Allocation) {
// Removing the allocation from the set of allocs which are currently
// undergoing migration
defer func() {
c.migratingAllocsLock.Lock()
delete(c.migratingAllocs, alloc.ID)
c.migratingAllocsLock.Unlock()
}()
// prevAllocDir is the allocation directory of the previous allocation
var prevAllocDir *allocdir.AllocDir
// If the allocation is not sticky then we won't wait for the previous
// allocation to be terminal
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if tg == nil {
c.logger.Printf("[ERR] client: task group %q not found in job %q", tg.Name, alloc.Job.ID)
goto ADDALLOC
}
// Wait for the remote previous alloc to be terminal if the alloc is sticky
if tg.EphemeralDisk.Sticky {
c.logger.Printf("[DEBUG] client: blocking alloc %q for previous allocation %q", alloc.ID, alloc.PreviousAllocation)
// Block until the previous allocation migrates to terminal state
prevAlloc, err := c.waitForAllocTerminal(alloc.PreviousAllocation)
if err != nil {
c.logger.Printf("[ERR] client: error waiting for allocation %q: %v",
alloc.PreviousAllocation, err)
}
// Migrate the data from the remote node
prevAllocDir, err = c.migrateRemoteAllocDir(prevAlloc, alloc.ID)
if err != nil {
c.logger.Printf("[ERR] client: error migrating data from remote alloc %q: %v",
alloc.PreviousAllocation, err)
}
}
ADDALLOC:
// Add the allocation
if err := c.addAlloc(alloc, prevAllocDir); err != nil {
c.logger.Printf("[ERR] client: error adding alloc: %v", err)
}
}
// waitForAllocTerminal waits for an allocation with the given alloc id to
// transition to terminal state and blocks the caller until then.
func (c *Client) waitForAllocTerminal(allocID string) (*structs.Allocation, error) {
req := structs.AllocSpecificRequest{
AllocID: allocID,
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: true,
},
}
for {
resp := structs.SingleAllocResponse{}
err := c.RPC("Alloc.GetAlloc", &req, &resp)
if err != nil {
c.logger.Printf("[ERR] client: failed to query allocation %q: %v", allocID, err)
retry := c.retryIntv(getAllocRetryIntv)
select {
case <-time.After(retry):
continue
case <-c.shutdownCh:
return nil, fmt.Errorf("aborting because client is shutting down")
}
}
if resp.Alloc == nil {
return nil, nil
}
if resp.Alloc.Terminated() {
return resp.Alloc, nil
}
// Update the query index.
if resp.Index > req.MinQueryIndex {
req.MinQueryIndex = resp.Index
}
}
}
// migrateRemoteAllocDir migrates the allocation directory from a remote node to
// the current node
func (c *Client) migrateRemoteAllocDir(alloc *structs.Allocation, allocID string) (*allocdir.AllocDir, error) {
if alloc == nil {
return nil, nil
}
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if tg == nil {
return nil, fmt.Errorf("Task Group %q not found in job %q", tg.Name, alloc.Job.ID)
}
// Skip migration of data if the ephemeral disk is not sticky or
// migration is turned off.
if !tg.EphemeralDisk.Sticky || !tg.EphemeralDisk.Migrate {
return nil, nil
}
node, err := c.getNode(alloc.NodeID)
// If the node is down then skip migrating the data
if err != nil {
return nil, fmt.Errorf("error retreiving node %v: %v", alloc.NodeID, err)
}
// Check if node is nil
if node == nil {
return nil, fmt.Errorf("node %q doesn't exist", alloc.NodeID)
}
// skip migration if the remote node is down
if node.Status == structs.NodeStatusDown {
c.logger.Printf("[INFO] client: not migrating data from alloc %q since node %q is down", alloc.ID, alloc.NodeID)
return nil, nil
}
// Create the previous alloc dir
pathToAllocDir := filepath.Join(c.config.AllocDir, alloc.ID)
if err := os.MkdirAll(pathToAllocDir, 0777); err != nil {
c.logger.Printf("[ERR] client: error creating previous allocation dir: %v", err)
}
// Get the snapshot
scheme := "http"
if node.TLSEnabled {
scheme = "https"
}
// Create an API client
apiConfig := nomadapi.DefaultConfig()
apiConfig.Address = fmt.Sprintf("%s://%s", scheme, node.HTTPAddr)
apiConfig.TLSConfig = &nomadapi.TLSConfig{
CACert: c.config.TLSConfig.CAFile,
ClientCert: c.config.TLSConfig.CertFile,
ClientKey: c.config.TLSConfig.KeyFile,
}
apiClient, err := nomadapi.NewClient(apiConfig)
if err != nil {
return nil, err
}
url := fmt.Sprintf("/v1/client/allocation/%v/snapshot", alloc.ID)
resp, err := apiClient.Raw().Response(url, nil)
if err != nil {
os.RemoveAll(pathToAllocDir)
c.logger.Printf("[ERR] client: error getting snapshot: %v", err)
return nil, fmt.Errorf("error getting snapshot for alloc %v: %v", alloc.ID, err)
}
tr := tar.NewReader(resp)
defer resp.Close()
buf := make([]byte, 1024)
stopMigrating, ok := c.migratingAllocs[allocID]
if !ok {
os.RemoveAll(pathToAllocDir)
return nil, fmt.Errorf("couldn't find a migration validity notifier for alloc: %v", alloc.ID)
}
for {
// See if the alloc still needs migration
select {
case <-stopMigrating:
os.RemoveAll(pathToAllocDir)
c.logger.Printf("[INFO] client: stopping migration of allocdir for alloc: %v", alloc.ID)
return nil, nil
case <-c.shutdownCh:
os.RemoveAll(pathToAllocDir)
c.logger.Printf("[INFO] client: stopping migration of alloc %q since client is shutting down", alloc.ID)
return nil, nil
default:
}
// Get the next header
hdr, err := tr.Next()
// If the snapshot has ended then we create the previous
// allocdir
if err == io.EOF {
prevAllocDir := allocdir.NewAllocDir(pathToAllocDir)
return prevAllocDir, nil
}
// If there is an error then we avoid creating the alloc dir
if err != nil {
os.RemoveAll(pathToAllocDir)
return nil, fmt.Errorf("error creating alloc dir for alloc %q: %v", alloc.ID, err)
}
// If the header is for a directory we create the directory
if hdr.Typeflag == tar.TypeDir {
os.MkdirAll(filepath.Join(pathToAllocDir, hdr.Name), 0777)
continue
}
// If the header is a file, we write to a file
if hdr.Typeflag == tar.TypeReg {
f, err := os.Create(filepath.Join(pathToAllocDir, hdr.Name))
if err != nil {
c.logger.Printf("[ERR] client: error creating file: %v", err)
continue
}
// We write in chunks of 32 bytes so that we can test if
// the client is still alive
for {
if c.shutdown {
f.Close()
os.RemoveAll(pathToAllocDir)
c.logger.Printf("[INFO] client: stopping migration of alloc %q because client is shutting down", alloc.ID)
return nil, nil
}
n, err := tr.Read(buf)
if err != nil {
f.Close()
if err != io.EOF {
return nil, fmt.Errorf("error reading snapshot: %v", err)
}
break
}
if _, err := f.Write(buf[:n]); err != nil {
f.Close()
os.RemoveAll(pathToAllocDir)
return nil, fmt.Errorf("error writing to file %q: %v", f.Name(), err)
}
}
}
}
}
// getNode gets the node from the server with the given Node ID
func (c *Client) getNode(nodeID string) (*structs.Node, error) {
req := structs.NodeSpecificRequest{
NodeID: nodeID,
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: true,
},
}
resp := structs.SingleNodeResponse{}
for {
err := c.RPC("Node.GetNode", &req, &resp)
if err != nil {
c.logger.Printf("[ERR] client: failed to query node info %q: %v", nodeID, err)
retry := c.retryIntv(getAllocRetryIntv)
select {
case <-time.After(retry):
continue
case <-c.shutdownCh:
return nil, fmt.Errorf("aborting because client is shutting down")
}
}
break
}
return resp.Node, nil
}
// removeAlloc is invoked when we should remove an allocation
func (c *Client) removeAlloc(alloc *structs.Allocation) error {
c.allocLock.Lock()
ar, ok := c.allocs[alloc.ID]
if !ok {
c.allocLock.Unlock()
c.logger.Printf("[WARN] client: missing context for alloc '%s'", alloc.ID)
return nil
}
delete(c.allocs, alloc.ID)
c.allocLock.Unlock()
ar.Destroy()
return nil
}
// updateAlloc is invoked when we should update an allocation
func (c *Client) updateAlloc(exist, update *structs.Allocation) error {
c.allocLock.RLock()
ar, ok := c.allocs[exist.ID]
c.allocLock.RUnlock()
if !ok {
c.logger.Printf("[WARN] client: missing context for alloc '%s'", exist.ID)
return nil
}
ar.Update(update)
return nil
}
// addAlloc is invoked when we should add an allocation
func (c *Client) addAlloc(alloc *structs.Allocation, prevAllocDir *allocdir.AllocDir) error {
c.configLock.RLock()
ar := NewAllocRunner(c.logger, c.configCopy, c.updateAllocStatus, alloc, c.vaultClient)
ar.SetPreviousAllocDir(prevAllocDir)
c.configLock.RUnlock()
go ar.Run()
// Store the alloc runner.
c.allocLock.Lock()
c.allocs[alloc.ID] = ar
c.allocLock.Unlock()
return nil
}
// setupVaultClient creates an object to periodically renew tokens and secrets
// with vault.
func (c *Client) setupVaultClient() error {
var err error
if c.vaultClient, err =
vaultclient.NewVaultClient(c.config.VaultConfig, c.logger, c.deriveToken); err != nil {
return err
}
if c.vaultClient == nil {
c.logger.Printf("[ERR] client: failed to create vault client")
return fmt.Errorf("failed to create vault client")
}
// Start renewing tokens and secrets
c.vaultClient.Start()
return nil
}
// deriveToken takes in an allocation and a set of tasks and derives vault
// tokens for each of the tasks, unwraps all of them using the supplied vault
// client and returns a map of unwrapped tokens, indexed by the task name.
func (c *Client) deriveToken(alloc *structs.Allocation, taskNames []string, vclient *vaultapi.Client) (map[string]string, error) {
if alloc == nil {
return nil, fmt.Errorf("nil allocation")
}
if taskNames == nil || len(taskNames) == 0 {
return nil, fmt.Errorf("missing task names")
}
group := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if group == nil {
return nil, fmt.Errorf("group name in allocation is not present in job")
}
verifiedTasks := []string{}
found := false
// Check if the given task names actually exist in the allocation
for _, taskName := range taskNames {
found = false
for _, task := range group.Tasks {
if task.Name == taskName {
found = true
}
}
if !found {
c.logger.Printf("[ERR] task %q not found in the allocation", taskName)
return nil, fmt.Errorf("task %q not found in the allocaition", taskName)
}
verifiedTasks = append(verifiedTasks, taskName)
}
// DeriveVaultToken of nomad server can take in a set of tasks and
// creates tokens for all the tasks.
req := &structs.DeriveVaultTokenRequest{
NodeID: c.Node().ID,
SecretID: c.Node().SecretID,
AllocID: alloc.ID,
Tasks: verifiedTasks,
QueryOptions: structs.QueryOptions{
Region: c.Region(),
AllowStale: true,
},
}
// Derive the tokens
var resp structs.DeriveVaultTokenResponse
if err := c.RPC("Node.DeriveVaultToken", &req, &resp); err != nil {
c.logger.Printf("[ERR] client.vault: DeriveVaultToken RPC failed: %v", err)
return nil, fmt.Errorf("DeriveVaultToken RPC failed: %v", err)
}
if resp.Error != nil {
c.logger.Printf("[ERR] client.vault: failed to derive vault tokens: %v", resp.Error)
return nil, resp.Error
}
if resp.Tasks == nil {
c.logger.Printf("[ERR] client.vault: failed to derive vault token: invalid response")
return nil, fmt.Errorf("failed to derive vault tokens: invalid response")
}
unwrappedTokens := make(map[string]string)
// Retrieve the wrapped tokens from the response and unwrap it
for _, taskName := range verifiedTasks {
// Get the wrapped token
wrappedToken, ok := resp.Tasks[taskName]
if !ok {
c.logger.Printf("[ERR] client.vault: wrapped token missing for task %q", taskName)
return nil, fmt.Errorf("wrapped token missing for task %q", taskName)
}
// Unwrap the vault token
unwrapResp, err := vclient.Logical().Unwrap(wrappedToken)
if err != nil {
return nil, fmt.Errorf("failed to unwrap the token for task %q: %v", taskName, err)
}
if unwrapResp == nil || unwrapResp.Auth == nil || unwrapResp.Auth.ClientToken == "" {
return nil, fmt.Errorf("failed to unwrap the token for task %q", taskName)
}
// Append the unwrapped token to the return value
unwrappedTokens[taskName] = unwrapResp.Auth.ClientToken
}
return unwrappedTokens, nil
}
// triggerDiscovery causes a Consul discovery to begin (if one hasn't alread)
func (c *Client) triggerDiscovery() {
select {
case c.triggerDiscoveryCh <- struct{}{}:
// Discovery goroutine was released to execute
default:
// Discovery goroutine was already running
}
}
// consulDiscovery waits for the signal to attempt server discovery via Consul.
// It's intended to be started in a goroutine. See triggerDiscovery() for
// causing consul discovery from other code locations.
func (c *Client) consulDiscovery() {
for {
select {
case <-c.triggerDiscoveryCh:
if err := c.consulDiscoveryImpl(); err != nil {
c.logger.Printf("[ERR] client.consul: error discovering nomad servers: %v", err)
}
case <-c.shutdownCh:
return
}
}
}
func (c *Client) consulDiscoveryImpl() error {
// Acquire heartbeat lock to prevent heartbeat from running
// concurrently with discovery. Concurrent execution is safe, however
// discovery is usually triggered when heartbeating has failed so
// there's no point in allowing it.
c.heartbeatLock.Lock()
defer c.heartbeatLock.Unlock()
consulCatalog := c.consulSyncer.ConsulClient().Catalog()
dcs, err := consulCatalog.Datacenters()
if err != nil {
return fmt.Errorf("client.consul: unable to query Consul datacenters: %v", err)
}
if len(dcs) > 2 {
// Query the local DC first, then shuffle the
// remaining DCs. Future heartbeats will cause Nomad
// Clients to fixate on their local datacenter so
// it's okay to talk with remote DCs. If the no
// Nomad servers are available within
// datacenterQueryLimit, the next heartbeat will pick
// a new set of servers so it's okay.
shuffleStrings(dcs[1:])
dcs = dcs[0:lib.MinInt(len(dcs), datacenterQueryLimit)]
}
// Query for servers in this client's region only
region := c.Region()
rpcargs := structs.GenericRequest{
QueryOptions: structs.QueryOptions{
Region: region,
},
}
serviceName := c.configCopy.ConsulConfig.ServerServiceName
var mErr multierror.Error
var servers endpoints
c.logger.Printf("[DEBUG] client.consul: bootstrap contacting following Consul DCs: %+q", dcs)
DISCOLOOP:
for _, dc := range dcs {
consulOpts := &consulapi.QueryOptions{
AllowStale: true,
Datacenter: dc,
Near: "_agent",
WaitTime: consul.DefaultQueryWaitDuration,
}
consulServices, _, err := consulCatalog.Service(serviceName, consul.ServiceTagRPC, consulOpts)
if err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("unable to query service %+q from Consul datacenter %+q: %v", serviceName, dc, err))
continue
}
for _, s := range consulServices {
port := strconv.Itoa(s.ServicePort)
addrstr := s.ServiceAddress
if addrstr == "" {
addrstr = s.Address
}
addr, err := net.ResolveTCPAddr("tcp", net.JoinHostPort(addrstr, port))
if err != nil {
mErr.Errors = append(mErr.Errors, err)
continue
}
var peers []string
if err := c.connPool.RPC(region, addr, c.RPCMajorVersion(), "Status.Peers", rpcargs, &peers); err != nil {
mErr.Errors = append(mErr.Errors, err)
continue
}
// Successfully received the Server peers list of the correct
// region
for _, p := range peers {
addr, err := net.ResolveTCPAddr("tcp", p)
if err != nil {
mErr.Errors = append(mErr.Errors, err)
}
servers = append(servers, &endpoint{name: p, addr: addr})
}
if len(servers) > 0 {
break DISCOLOOP
}
}
}
if len(servers) == 0 {
if len(mErr.Errors) > 0 {
return mErr.ErrorOrNil()
}
return fmt.Errorf("no Nomad Servers advertising service %q in Consul datacenters: %+q", serviceName, dcs)
}
c.logger.Printf("[INFO] client.consul: discovered following Servers: %s", servers)
c.servers.set(servers)
// Notify waiting rpc calls. If a goroutine just failed an RPC call and
// isn't receiving on this chan yet they'll still retry eventually.
// This is a shortcircuit for the longer retry intervals.
for {
select {
case c.serversDiscoveredCh <- struct{}{}:
default:
return nil
}
}
}
// consulReaper periodically reaps unmatched domains from Consul. Intended to
// be called in its own goroutine. See consulReaperIntv for interval.
func (c *Client) consulReaper() {
ticker := time.NewTicker(consulReaperIntv)
defer ticker.Stop()
lastok := true
for {
select {
case <-ticker.C:
if err := c.consulReaperImpl(); err != nil {
if lastok {
c.logger.Printf("[ERR] client.consul: error reaping services in consul: %v", err)
lastok = false
}
} else {
lastok = true
}
case <-c.shutdownCh:
return
}
}
}
// consulReaperImpl reaps unmatched domains from Consul.
func (c *Client) consulReaperImpl() error {
const estInitialExecutorDomains = 8
// Create the domains to keep and add the server and client
domains := make([]consul.ServiceDomain, 2, estInitialExecutorDomains)
domains[0] = consul.ServerDomain
domains[1] = consul.ClientDomain
for allocID, ar := range c.getAllocRunners() {
ar.taskStatusLock.RLock()
taskStates := copyTaskStates(ar.taskStates)
ar.taskStatusLock.RUnlock()
for taskName, taskState := range taskStates {
// Only keep running tasks
if taskState.State == structs.TaskStateRunning {
d := consul.NewExecutorDomain(allocID, taskName)
domains = append(domains, d)
}
}
}
return c.consulSyncer.ReapUnmatched(domains)
}
// collectHostStats collects host resource usage stats periodically
func (c *Client) collectHostStats() {
// Start collecting host stats right away and then keep collecting every
// collection interval
next := time.NewTimer(0)
defer next.Stop()
for {
select {
case <-next.C:
ru, err := c.hostStatsCollector.Collect()
next.Reset(c.config.StatsCollectionInterval)
if err != nil {
c.logger.Printf("[WARN] client: error fetching host resource usage stats: %v", err)
continue
}
c.resourceUsageLock.Lock()
c.resourceUsage = ru
c.resourceUsageLock.Unlock()
// Publish Node metrics if operator has opted in
if c.config.PublishNodeMetrics {
c.emitStats(ru)
}
case <-c.shutdownCh:
return
}
}
}
// emitStats pushes host resource usage stats to remote metrics collection sinks
func (c *Client) emitStats(hStats *stats.HostStats) {
nodeID := c.Node().ID
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "total"}, float32(hStats.Memory.Total))
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "available"}, float32(hStats.Memory.Available))
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "used"}, float32(hStats.Memory.Used))
metrics.SetGauge([]string{"client", "host", "memory", nodeID, "free"}, float32(hStats.Memory.Free))
metrics.SetGauge([]string{"uptime"}, float32(hStats.Uptime))
for _, cpu := range hStats.CPU {
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "total"}, float32(cpu.Total))
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "user"}, float32(cpu.User))
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "idle"}, float32(cpu.Idle))
metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "system"}, float32(cpu.System))
}
for _, disk := range hStats.DiskStats {
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "size"}, float32(disk.Size))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "used"}, float32(disk.Used))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "available"}, float32(disk.Available))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "used_percent"}, float32(disk.UsedPercent))
metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "inodes_percent"}, float32(disk.InodesUsedPercent))
}
}
// resolveServer given a sever's address as a string, return it's resolved
// net.Addr or an error.
func resolveServer(s string) (net.Addr, error) {
const defaultClientPort = "4647" // default client RPC port
host, port, err := net.SplitHostPort(s)
if err != nil {
if strings.Contains(err.Error(), "missing port") {
host = s
port = defaultClientPort
} else {
return nil, err
}
}
return net.ResolveTCPAddr("tcp", net.JoinHostPort(host, port))
}