open-nomad/scheduler/generic_sched.go

620 lines
20 KiB
Go

package scheduler
import (
"fmt"
"time"
log "github.com/hashicorp/go-hclog"
memdb "github.com/hashicorp/go-memdb"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// maxServiceScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for services.
maxServiceScheduleAttempts = 5
// maxBatchScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for batch.
maxBatchScheduleAttempts = 2
// allocNotNeeded is the status used when a job no longer requires an allocation
allocNotNeeded = "alloc not needed due to job update"
// allocMigrating is the status used when we must migrate an allocation
allocMigrating = "alloc is being migrated"
// allocUpdating is the status used when a job requires an update
allocUpdating = "alloc is being updated due to job update"
// allocLost is the status used when an allocation is lost
allocLost = "alloc is lost since its node is down"
// allocInPlace is the status used when speculating on an in-place update
allocInPlace = "alloc updating in-place"
// allocNodeTainted is the status used when stopping an alloc because it's
// node is tainted.
allocNodeTainted = "alloc not needed as node is tainted"
// blockedEvalMaxPlanDesc is the description used for blocked evals that are
// a result of hitting the max number of plan attempts
blockedEvalMaxPlanDesc = "created due to placement conflicts"
// blockedEvalFailedPlacements is the description used for blocked evals
// that are a result of failing to place all allocations.
blockedEvalFailedPlacements = "created to place remaining allocations"
// reschedulingFollowupEvalDesc is the description used when creating follow
// up evals for delayed rescheduling
reschedulingFollowupEvalDesc = "created for delayed rescheduling"
// maxPastRescheduleEvents is the maximum number of past reschedule event
// that we track when unlimited rescheduling is enabled
maxPastRescheduleEvents = 5
)
// SetStatusError is used to set the status of the evaluation to the given error
type SetStatusError struct {
Err error
EvalStatus string
}
func (s *SetStatusError) Error() string {
return s.Err.Error()
}
// GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is
// designed for long-lived services, and as such spends more time attempting
// to make a high quality placement. This is the primary scheduler for
// most workloads. It also supports a 'batch' mode to optimize for fast decision
// making at the cost of quality.
type GenericScheduler struct {
logger log.Logger
state State
planner Planner
batch bool
eval *structs.Evaluation
job *structs.Job
plan *structs.Plan
planResult *structs.PlanResult
ctx *EvalContext
stack *GenericStack
followUpEvals []*structs.Evaluation
deployment *structs.Deployment
blocked *structs.Evaluation
failedTGAllocs map[string]*structs.AllocMetric
queuedAllocs map[string]int
}
// NewServiceScheduler is a factory function to instantiate a new service scheduler
func NewServiceScheduler(logger log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger.Named("service_sched"),
state: state,
planner: planner,
batch: false,
}
return s
}
// NewBatchScheduler is a factory function to instantiate a new batch scheduler
func NewBatchScheduler(logger log.Logger, state State, planner Planner) Scheduler {
s := &GenericScheduler{
logger: logger.Named("batch_sched"),
state: state,
planner: planner,
batch: true,
}
return s
}
// Process is used to handle a single evaluation
func (s *GenericScheduler) Process(eval *structs.Evaluation) error {
// Store the evaluation
s.eval = eval
// Update our logger with the eval's information
s.logger = s.logger.With("eval_id", eval.ID, "job_id", eval.JobID, "namespace", eval.Namespace)
// Verify the evaluation trigger reason is understood
switch eval.TriggeredBy {
case structs.EvalTriggerJobRegister, structs.EvalTriggerJobDeregister,
structs.EvalTriggerNodeDrain, structs.EvalTriggerNodeUpdate,
structs.EvalTriggerRollingUpdate, structs.EvalTriggerQueuedAllocs,
structs.EvalTriggerPeriodicJob, structs.EvalTriggerMaxPlans,
structs.EvalTriggerDeploymentWatcher, structs.EvalTriggerRetryFailedAlloc,
structs.EvalTriggerFailedFollowUp:
default:
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
eval.TriggeredBy)
return setStatus(s.logger, s.planner, s.eval, nil, s.blocked,
s.failedTGAllocs, structs.EvalStatusFailed, desc, s.queuedAllocs,
s.deployment.GetID())
}
// Retry up to the maxScheduleAttempts and reset if progress is made.
progress := func() bool { return progressMade(s.planResult) }
limit := maxServiceScheduleAttempts
if s.batch {
limit = maxBatchScheduleAttempts
}
if err := retryMax(limit, s.process, progress); err != nil {
if statusErr, ok := err.(*SetStatusError); ok {
// Scheduling was tried but made no forward progress so create a
// blocked eval to retry once resources become available.
var mErr multierror.Error
if err := s.createBlockedEval(true); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
if err := setStatus(s.logger, s.planner, s.eval, nil, s.blocked,
s.failedTGAllocs, statusErr.EvalStatus, err.Error(),
s.queuedAllocs, s.deployment.GetID()); err != nil {
mErr.Errors = append(mErr.Errors, err)
}
return mErr.ErrorOrNil()
}
return err
}
// If the current evaluation is a blocked evaluation and we didn't place
// everything, do not update the status to complete.
if s.eval.Status == structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 {
e := s.ctx.Eligibility()
newEval := s.eval.Copy()
newEval.EscapedComputedClass = e.HasEscaped()
newEval.ClassEligibility = e.GetClasses()
newEval.QuotaLimitReached = e.QuotaLimitReached()
return s.planner.ReblockEval(newEval)
}
// Update the status to complete
return setStatus(s.logger, s.planner, s.eval, nil, s.blocked,
s.failedTGAllocs, structs.EvalStatusComplete, "", s.queuedAllocs,
s.deployment.GetID())
}
// createBlockedEval creates a blocked eval and submits it to the planner. If
// failure is set to true, the eval's trigger reason reflects that.
func (s *GenericScheduler) createBlockedEval(planFailure bool) error {
e := s.ctx.Eligibility()
escaped := e.HasEscaped()
// Only store the eligible classes if the eval hasn't escaped.
var classEligibility map[string]bool
if !escaped {
classEligibility = e.GetClasses()
}
s.blocked = s.eval.CreateBlockedEval(classEligibility, escaped, e.QuotaLimitReached())
if planFailure {
s.blocked.TriggeredBy = structs.EvalTriggerMaxPlans
s.blocked.StatusDescription = blockedEvalMaxPlanDesc
} else {
s.blocked.StatusDescription = blockedEvalFailedPlacements
}
return s.planner.CreateEval(s.blocked)
}
// process is wrapped in retryMax to iteratively run the handler until we have no
// further work or we've made the maximum number of attempts.
func (s *GenericScheduler) process() (bool, error) {
// Lookup the Job by ID
var err error
ws := memdb.NewWatchSet()
s.job, err = s.state.JobByID(ws, s.eval.Namespace, s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job %q: %v", s.eval.JobID, err)
}
numTaskGroups := 0
stopped := s.job.Stopped()
if !stopped {
numTaskGroups = len(s.job.TaskGroups)
}
s.queuedAllocs = make(map[string]int, numTaskGroups)
s.followUpEvals = nil
// Create a plan
s.plan = s.eval.MakePlan(s.job)
if !s.batch {
// Get any existing deployment
s.deployment, err = s.state.LatestDeploymentByJobID(ws, s.eval.Namespace, s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job deployment %q: %v", s.eval.JobID, err)
}
}
// Reset the failed allocations
s.failedTGAllocs = nil
// Create an evaluation context
s.ctx = NewEvalContext(s.state, s.plan, s.logger)
// Construct the placement stack
s.stack = NewGenericStack(s.batch, s.ctx)
if !s.job.Stopped() {
s.stack.SetJob(s.job)
}
// Compute the target job allocations
if err := s.computeJobAllocs(); err != nil {
s.logger.Error("failed to compute job allocations", "error", err)
return false, err
}
// If there are failed allocations, we need to create a blocked evaluation
// to place the failed allocations when resources become available. If the
// current evaluation is already a blocked eval, we reuse it.
if s.eval.Status != structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 && s.blocked == nil {
if err := s.createBlockedEval(false); err != nil {
s.logger.Error("failed to make blocked eval", "error", err)
return false, err
}
s.logger.Debug("failed to place all allocations, blocked eval created", "blocked_eval_id", s.blocked.ID)
}
// If the plan is a no-op, we can bail. If AnnotatePlan is set submit the plan
// anyways to get the annotations.
if s.plan.IsNoOp() && !s.eval.AnnotatePlan {
return true, nil
}
// Create follow up evals for any delayed reschedule eligible allocations
if len(s.followUpEvals) > 0 {
for _, eval := range s.followUpEvals {
eval.PreviousEval = s.eval.ID
// TODO(preetha) this should be batching evals before inserting them
if err := s.planner.CreateEval(eval); err != nil {
s.logger.Error("failed to make next eval for rescheduling", "error", err)
return false, err
}
s.logger.Debug("found reschedulable allocs, followup eval created", "followup_eval_id", eval.ID)
}
}
// Submit the plan and store the results.
result, newState, err := s.planner.SubmitPlan(s.plan)
s.planResult = result
if err != nil {
return false, err
}
// Decrement the number of allocations pending per task group based on the
// number of allocations successfully placed
adjustQueuedAllocations(s.logger, result, s.queuedAllocs)
// If we got a state refresh, try again since we have stale data
if newState != nil {
s.logger.Debug("refresh forced")
s.state = newState
return false, nil
}
// Try again if the plan was not fully committed, potential conflict
fullCommit, expected, actual := result.FullCommit(s.plan)
if !fullCommit {
s.logger.Debug("plan didn't fully commit", "attempted", expected, "placed", actual)
if newState == nil {
return false, fmt.Errorf("missing state refresh after partial commit")
}
return false, nil
}
// Success!
return true, nil
}
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *GenericScheduler) computeJobAllocs() error {
// Lookup the allocations by JobID
ws := memdb.NewWatchSet()
allocs, err := s.state.AllocsByJob(ws, s.eval.Namespace, s.eval.JobID, true)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v",
s.eval.JobID, err)
}
// Determine the tainted nodes containing job allocs
tainted, err := taintedNodes(s.state, allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
s.eval.JobID, err)
}
// Update the allocations which are in pending/running state on tainted
// nodes to lost
updateNonTerminalAllocsToLost(s.plan, tainted, allocs)
reconciler := NewAllocReconciler(s.logger,
genericAllocUpdateFn(s.ctx, s.stack, s.eval.ID),
s.batch, s.eval.JobID, s.job, s.deployment, allocs, tainted, s.eval.ID)
results := reconciler.Compute()
s.logger.Debug("reconciled current state with desired state", "results", log.Fmt("%#v", results))
if s.eval.AnnotatePlan {
s.plan.Annotations = &structs.PlanAnnotations{
DesiredTGUpdates: results.desiredTGUpdates,
}
}
// Add the deployment changes to the plan
s.plan.Deployment = results.deployment
s.plan.DeploymentUpdates = results.deploymentUpdates
// Store all the follow up evaluations from rescheduled allocations
if len(results.desiredFollowupEvals) > 0 {
for _, evals := range results.desiredFollowupEvals {
s.followUpEvals = append(s.followUpEvals, evals...)
}
}
// Update the stored deployment
if results.deployment != nil {
s.deployment = results.deployment
}
// Handle the stop
for _, stop := range results.stop {
s.plan.AppendUpdate(stop.alloc, structs.AllocDesiredStatusStop, stop.statusDescription, stop.clientStatus)
}
// Handle the in-place updates
for _, update := range results.inplaceUpdate {
if update.DeploymentID != s.deployment.GetID() {
update.DeploymentID = s.deployment.GetID()
update.DeploymentStatus = nil
}
s.ctx.Plan().AppendAlloc(update)
}
// Handle the annotation updates
for _, update := range results.attributeUpdates {
s.ctx.Plan().AppendAlloc(update)
}
// Nothing remaining to do if placement is not required
if len(results.place)+len(results.destructiveUpdate) == 0 {
// If the job has been purged we don't have access to the job. Otherwise
// set the queued allocs to zero. This is true if the job is being
// stopped as well.
if s.job != nil {
for _, tg := range s.job.TaskGroups {
s.queuedAllocs[tg.Name] = 0
}
}
return nil
}
// Record the number of allocations that needs to be placed per Task Group
for _, place := range results.place {
s.queuedAllocs[place.taskGroup.Name] += 1
}
for _, destructive := range results.destructiveUpdate {
s.queuedAllocs[destructive.placeTaskGroup.Name] += 1
}
// Compute the placements
place := make([]placementResult, 0, len(results.place))
for _, p := range results.place {
place = append(place, p)
}
destructive := make([]placementResult, 0, len(results.destructiveUpdate))
for _, p := range results.destructiveUpdate {
destructive = append(destructive, p)
}
return s.computePlacements(destructive, place)
}
// computePlacements computes placements for allocations. It is given the set of
// destructive updates to place and the set of new placements to place.
func (s *GenericScheduler) computePlacements(destructive, place []placementResult) error {
// Get the base nodes
nodes, byDC, err := readyNodesInDCs(s.state, s.job.Datacenters)
if err != nil {
return err
}
var deploymentID string
if s.deployment != nil && s.deployment.Active() {
deploymentID = s.deployment.ID
}
// Update the set of placement nodes
s.stack.SetNodes(nodes)
// Capture current time to use as the start time for any rescheduled allocations
now := time.Now()
// Have to handle destructive changes first as we need to discount their
// resources. To understand this imagine the resources were reduced and the
// count was scaled up.
for _, results := range [][]placementResult{destructive, place} {
for _, missing := range results {
// Get the task group
tg := missing.TaskGroup()
// Check if this task group has already failed
if metric, ok := s.failedTGAllocs[tg.Name]; ok {
metric.CoalescedFailures += 1
continue
}
// Find the preferred node
preferredNode, err := s.findPreferredNode(missing)
if err != nil {
return err
}
// Check if we should stop the previous allocation upon successful
// placement of its replacement. This allow atomic placements/stops. We
// stop the allocation before trying to find a replacement because this
// frees the resources currently used by the previous allocation.
stopPrevAlloc, stopPrevAllocDesc := missing.StopPreviousAlloc()
prevAllocation := missing.PreviousAllocation()
if stopPrevAlloc {
s.plan.AppendUpdate(prevAllocation, structs.AllocDesiredStatusStop, stopPrevAllocDesc, "")
}
// Compute penalty nodes for rescheduled allocs
selectOptions := getSelectOptions(prevAllocation, preferredNode)
option, _ := s.stack.Select(tg, selectOptions)
// Store the available nodes by datacenter
s.ctx.Metrics().NodesAvailable = byDC
// Compute top K scoring node metadata
s.ctx.Metrics().PopulateScoreMetaData()
// Set fields based on if we found an allocation option
if option != nil {
// Create an allocation for this
alloc := &structs.Allocation{
ID: uuid.Generate(),
Namespace: s.job.Namespace,
EvalID: s.eval.ID,
Name: missing.Name(),
JobID: s.job.ID,
TaskGroup: tg.Name,
Metrics: s.ctx.Metrics(),
NodeID: option.Node.ID,
DeploymentID: deploymentID,
TaskResources: option.TaskResources,
DesiredStatus: structs.AllocDesiredStatusRun,
ClientStatus: structs.AllocClientStatusPending,
SharedResources: &structs.Resources{
DiskMB: tg.EphemeralDisk.SizeMB,
},
}
// If the new allocation is replacing an older allocation then we
// set the record the older allocation id so that they are chained
if prevAllocation != nil {
alloc.PreviousAllocation = prevAllocation.ID
if missing.IsRescheduling() {
updateRescheduleTracker(alloc, prevAllocation, now)
}
}
// If we are placing a canary and we found a match, add the canary
// to the deployment state object and mark it as a canary.
if missing.Canary() {
if state, ok := s.deployment.TaskGroups[tg.Name]; ok {
state.PlacedCanaries = append(state.PlacedCanaries, alloc.ID)
}
alloc.DeploymentStatus = &structs.AllocDeploymentStatus{
Canary: true,
}
}
// Track the placement
s.plan.AppendAlloc(alloc)
} else {
// Lazy initialize the failed map
if s.failedTGAllocs == nil {
s.failedTGAllocs = make(map[string]*structs.AllocMetric)
}
// Track the fact that we didn't find a placement
s.failedTGAllocs[tg.Name] = s.ctx.Metrics()
// If we weren't able to find a replacement for the allocation, back
// out the fact that we asked to stop the allocation.
if stopPrevAlloc {
s.plan.PopUpdate(prevAllocation)
}
}
}
}
return nil
}
// getSelectOptions sets up preferred nodes and penalty nodes
func getSelectOptions(prevAllocation *structs.Allocation, preferredNode *structs.Node) *SelectOptions {
selectOptions := &SelectOptions{}
if prevAllocation != nil {
penaltyNodes := make(map[string]struct{})
penaltyNodes[prevAllocation.NodeID] = struct{}{}
if prevAllocation.RescheduleTracker != nil {
for _, reschedEvent := range prevAllocation.RescheduleTracker.Events {
penaltyNodes[reschedEvent.PrevNodeID] = struct{}{}
}
}
selectOptions.PenaltyNodeIDs = penaltyNodes
}
if preferredNode != nil {
selectOptions.PreferredNodes = []*structs.Node{preferredNode}
}
return selectOptions
}
// updateRescheduleTracker carries over previous restart attempts and adds the most recent restart
func updateRescheduleTracker(alloc *structs.Allocation, prev *structs.Allocation, now time.Time) {
reschedPolicy := prev.ReschedulePolicy()
var rescheduleEvents []*structs.RescheduleEvent
if prev.RescheduleTracker != nil {
var interval time.Duration
if reschedPolicy != nil {
interval = reschedPolicy.Interval
}
// If attempts is set copy all events in the interval range
if reschedPolicy.Attempts > 0 {
for _, reschedEvent := range prev.RescheduleTracker.Events {
timeDiff := now.UnixNano() - reschedEvent.RescheduleTime
// Only copy over events that are within restart interval
// This keeps the list of events small in cases where there's a long chain of old restart events
if interval > 0 && timeDiff <= interval.Nanoseconds() {
rescheduleEvents = append(rescheduleEvents, reschedEvent.Copy())
}
}
} else {
// Only copy the last n if unlimited is set
start := 0
if len(prev.RescheduleTracker.Events) > maxPastRescheduleEvents {
start = len(prev.RescheduleTracker.Events) - maxPastRescheduleEvents
}
for i := start; i < len(prev.RescheduleTracker.Events); i++ {
reschedEvent := prev.RescheduleTracker.Events[i]
rescheduleEvents = append(rescheduleEvents, reschedEvent.Copy())
}
}
}
nextDelay := prev.NextDelay()
rescheduleEvent := structs.NewRescheduleEvent(now.UnixNano(), prev.ID, prev.NodeID, nextDelay)
rescheduleEvents = append(rescheduleEvents, rescheduleEvent)
alloc.RescheduleTracker = &structs.RescheduleTracker{Events: rescheduleEvents}
}
// findPreferredNode finds the preferred node for an allocation
func (s *GenericScheduler) findPreferredNode(place placementResult) (*structs.Node, error) {
if prev := place.PreviousAllocation(); prev != nil && place.TaskGroup().EphemeralDisk.Sticky == true {
var preferredNode *structs.Node
ws := memdb.NewWatchSet()
preferredNode, err := s.state.NodeByID(ws, prev.NodeID)
if err != nil {
return nil, err
}
if preferredNode != nil && preferredNode.Ready() {
return preferredNode, nil
}
}
return nil, nil
}