open-nomad/nomad/plan_apply.go

259 lines
6.7 KiB
Go

package nomad
import (
"fmt"
"github.com/hashicorp/nomad/nomad/structs"
)
// planApply is a long lived goroutine that reads plan allocations from
// the plan queue, determines if they can be applied safely and applies
// them via Raft.
func (s *Server) planApply() {
for {
// Pull the next pending plan, exit if we are no longer leader
pending, err := s.planQueue.Dequeue(0)
if err != nil {
return
}
// Evaluate the plan
result, err := s.evaluatePlan(pending.plan)
if err != nil {
s.logger.Printf("[ERR] nomad: failed to evaluate plan: %v", err)
pending.respond(nil, err)
continue
}
// Apply the plan if there is anything to do
if len(result.NodeEvict) != 0 || len(result.NodeAllocation) != 0 {
allocIndex, err := s.applyPlan(result)
if err != nil {
s.logger.Printf("[ERR] nomad: failed to apply plan: %v", err)
pending.respond(nil, err)
continue
}
result.AllocIndex = allocIndex
}
// Respond to the plan
pending.respond(result, nil)
}
}
// evaluatePlan is used to determine what portions of a plan
// can be applied if any. Returns if there should be a plan application
// which may be partial or if there was an error
func (s *Server) evaluatePlan(plan *structs.Plan) (*structs.PlanResult, error) {
// Snapshot the state so that we have a consistent view of the world
snap, err := s.fsm.State().Snapshot()
if err != nil {
return nil, fmt.Errorf("failed to snapshot state: %v", err)
}
// Create a result holder for the plan
result := &structs.PlanResult{
NodeEvict: make(map[string][]string),
NodeAllocation: make(map[string][]*structs.Allocation),
}
// Check each allocation to see if it should be allowed
for nodeID, allocList := range plan.NodeAllocation {
// Get the node itself
node, err := snap.GetNodeByID(nodeID)
if err != nil {
return nil, fmt.Errorf("failed to get node '%s': %v", node, err)
}
// Get the existing allocations
existingAlloc, err := snap.AllocsByNode(nodeID)
if err != nil {
return nil, fmt.Errorf("failed to get existing allocations for '%s': %v", node, err)
}
// Determine the proposed allocation by first removing allocations
// that are planned evictions and adding the new allocations.
proposed := existingAlloc
evictions := plan.NodeEvict[nodeID]
if len(evictions) > 0 {
proposed = trimAllocations(existingAlloc, evictions)
}
proposed = append(proposed, allocList...)
// Determine if everything fits
if !AllocationsFit(node, proposed) {
// Scheduler must have stale data, RefreshIndex should force
// the latest view of allocations and nodes
allocIndex, err := snap.GetIndex("allocs")
if err != nil {
return nil, err
}
nodeIndex, err := snap.GetIndex("node")
if err != nil {
return nil, err
}
result.RefreshIndex = max(nodeIndex, allocIndex)
// If we require all-at-once scheduling, there is no point
// to continue the evaluation, as we've already failed.
if plan.AllAtOnce {
return result, nil
}
// Skip this node, since it cannot be used.
continue
}
// Add this to the plan result
if len(evictions) > 0 {
result.NodeEvict[nodeID] = evictions
}
if len(allocList) > 0 {
result.NodeAllocation[nodeID] = allocList
}
}
return result, nil
}
// applyPlan is used to apply the plan result and to return the alloc index
func (s *Server) applyPlan(result *structs.PlanResult) (uint64, error) {
req := structs.AllocUpdateRequest{}
for _, evictList := range result.NodeEvict {
req.Evict = append(req.Evict, evictList...)
}
for _, allocList := range result.NodeAllocation {
req.Alloc = append(req.Alloc, allocList...)
}
_, index, err := s.raftApply(structs.AllocUpdateRequestType, &req)
return index, err
}
// max returns the maximum value
func max(a, b uint64) uint64 {
if a >= b {
return a
}
return b
}
// AllocationsFit checks if a given set of allocations will fit on a node
func AllocationsFit(node *structs.Node, allocs []*structs.Allocation) bool {
// Start with no resource utilization
resourcesUsed := new(structs.Resources)
// Add the reserved resources of the node
if node.Reserved != nil {
addResources(resourcesUsed, node.Reserved)
}
// For each allocaiton, add the resources
for _, alloc := range allocs {
addResources(resourcesUsed, alloc.Resources)
}
// Check that the node resources are a super set of those
// that are being allocated
if !resourceSubset(node.Resources, resourcesUsed) {
return false
}
// portsOvercommited
if portsOvercommited(resourcesUsed) {
return false
}
// Everything is in order!
return true
}
// addResources adds the resources of the delta to the base
func addResources(base, delta *structs.Resources) {
if base == nil || delta == nil {
return
}
base.CPU += delta.CPU
base.MemoryMB += delta.MemoryMB
base.DiskMB += delta.DiskMB
base.IOPS += delta.IOPS
for _, net := range delta.Networks {
if idx := networkIndexByCidr(base.Networks, net.CIDR); idx >= 0 {
base.Networks[idx].ReservedPorts = append(base.Networks[idx].ReservedPorts,
net.ReservedPorts...)
base.Networks[idx].MBits += net.MBits
}
}
}
// resourceSubset checks if a resource utilization is a subset of another set
func resourceSubset(super, sub *structs.Resources) bool {
if super.CPU < sub.CPU {
return false
}
if super.MemoryMB < sub.MemoryMB {
return false
}
if super.DiskMB < sub.DiskMB {
return false
}
if super.IOPS < sub.IOPS {
return false
}
for _, net := range super.Networks {
idx := networkIndexByCidr(sub.Networks, net.CIDR)
if idx >= 0 {
if net.MBits < sub.Networks[idx].MBits {
return false
}
}
}
return true
}
// portsOvercommited checks if any of the port resources are over-committed
func portsOvercommited(r *structs.Resources) bool {
for _, net := range r.Networks {
ports := make(map[int]struct{})
for _, port := range net.ReservedPorts {
if _, ok := ports[port]; ok {
return true
}
ports[port] = struct{}{}
}
}
return false
}
// networkIndexByCidr finds the index in a list of network resources
// that matches a given CIDR
func networkIndexByCidr(list []*structs.NetworkResource, cidr string) int {
for idx, net := range list {
if net.CIDR == cidr {
return idx
}
}
return -1
}
// trimAllocations is used to remove any allocaitons with the given ID
// from the list of allocations
func trimAllocations(alloc []*structs.Allocation, remove []string) []*structs.Allocation {
// Convert remove into a set
removeSet := make(map[string]struct{})
for _, removeID := range remove {
removeSet[removeID] = struct{}{}
}
n := len(alloc)
for i := 0; i < n; i++ {
if _, ok := removeSet[alloc[i].ID]; ok {
alloc[i], alloc[n-1] = alloc[n-1], nil
i--
n--
}
}
alloc = alloc[:n]
return alloc
}