open-nomad/client/task_runner.go

1937 lines
60 KiB
Go

package client
import (
"bytes"
"crypto/md5"
"encoding/hex"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"path/filepath"
"strings"
"sync"
"time"
metrics "github.com/armon/go-metrics"
"github.com/boltdb/bolt"
"github.com/golang/snappy"
"github.com/hashicorp/consul-template/signals"
"github.com/hashicorp/go-multierror"
version "github.com/hashicorp/go-version"
"github.com/hashicorp/nomad/client/allocdir"
"github.com/hashicorp/nomad/client/config"
"github.com/hashicorp/nomad/client/driver"
"github.com/hashicorp/nomad/client/getter"
"github.com/hashicorp/nomad/client/vaultclient"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/ugorji/go/codec"
"github.com/hashicorp/nomad/client/driver/env"
dstructs "github.com/hashicorp/nomad/client/driver/structs"
cstructs "github.com/hashicorp/nomad/client/structs"
)
const (
// killBackoffBaseline is the baseline time for exponential backoff while
// killing a task.
killBackoffBaseline = 5 * time.Second
// killBackoffLimit is the limit of the exponential backoff for killing
// the task.
killBackoffLimit = 2 * time.Minute
// killFailureLimit is how many times we will attempt to kill a task before
// giving up and potentially leaking resources.
killFailureLimit = 5
// vaultBackoffBaseline is the baseline time for exponential backoff when
// attempting to retrieve a Vault token
vaultBackoffBaseline = 5 * time.Second
// vaultBackoffLimit is the limit of the exponential backoff when attempting
// to retrieve a Vault token
vaultBackoffLimit = 3 * time.Minute
// vaultTokenFile is the name of the file holding the Vault token inside the
// task's secret directory
vaultTokenFile = "vault_token"
)
var (
// taskRunnerStateAllKey holds all the task runners state. At the moment
// there is no need to split it
taskRunnerStateAllKey = []byte("simple-all")
)
// taskRestartEvent wraps a TaskEvent with additional metadata to control
// restart behavior.
type taskRestartEvent struct {
// taskEvent to report
taskEvent *structs.TaskEvent
// if false, don't count against restart count
failure bool
}
func newTaskRestartEvent(reason string, failure bool) *taskRestartEvent {
return &taskRestartEvent{
taskEvent: structs.NewTaskEvent(structs.TaskRestartSignal).SetRestartReason(reason),
failure: failure,
}
}
// TaskRunner is used to wrap a task within an allocation and provide the execution context.
type TaskRunner struct {
stateDB *bolt.DB
config *config.Config
updater TaskStateUpdater
logger *log.Logger
restartTracker *RestartTracker
consul ConsulServiceAPI
// running marks whether the task is running
running bool
runningLock sync.Mutex
resourceUsage *cstructs.TaskResourceUsage
resourceUsageLock sync.RWMutex
alloc *structs.Allocation
task *structs.Task
taskDir *allocdir.TaskDir
// envBuilder is used to build the task's environment
envBuilder *env.Builder
// driverNet is the network information returned by the driver
driverNet *cstructs.DriverNetwork
driverNetLock sync.Mutex
// updateCh is used to receive updated versions of the allocation
updateCh chan *structs.Allocation
handle driver.DriverHandle
handleLock sync.Mutex
// artifactsDownloaded tracks whether the tasks artifacts have been
// downloaded
//
// Must acquire persistLock when accessing
artifactsDownloaded bool
// taskDirBuilt tracks whether the task has built its directory.
//
// Must acquire persistLock when accessing
taskDirBuilt bool
// createdResources are all the resources created by the task driver
// across all attempts to start the task.
// Simple gets and sets should use {get,set}CreatedResources
createdResources *driver.CreatedResources
createdResourcesLock sync.Mutex
// payloadRendered tracks whether the payload has been rendered to disk
payloadRendered bool
// vaultFuture is the means to wait for and get a Vault token
vaultFuture *tokenFuture
// recoveredVaultToken is the token that was recovered through a restore
recoveredVaultToken string
// vaultClient is used to retrieve and renew any needed Vault token
vaultClient vaultclient.VaultClient
// templateManager is used to manage any consul-templates this task may have
templateManager *TaskTemplateManager
// startCh is used to trigger the start of the task
startCh chan struct{}
// unblockCh is used to unblock the starting of the task
unblockCh chan struct{}
unblocked bool
unblockLock sync.Mutex
// restartCh is used to restart a task
restartCh chan *taskRestartEvent
// signalCh is used to send a signal to a task
signalCh chan SignalEvent
destroy bool
destroyCh chan struct{}
destroyLock sync.Mutex
destroyEvent *structs.TaskEvent
// waitCh closing marks the run loop as having exited
waitCh chan struct{}
// persistLock must be acquired when accessing fields stored by
// SaveState. SaveState is called asynchronously to TaskRunner.Run by
// AllocRunner, so all state fields must be synchronized using this
// lock.
persistLock sync.Mutex
// persistedHash is the hash of the last persisted snapshot. It is used to
// detect if a new snapshot has to be written to disk.
persistedHash []byte
// baseLabels are used when emitting tagged metrics. All task runner metrics
// will have these tags, and optionally more.
baseLabels []metrics.Label
}
// taskRunnerState is used to snapshot the state of the task runner
type taskRunnerState struct {
Version string
HandleID string
ArtifactDownloaded bool
TaskDirBuilt bool
PayloadRendered bool
CreatedResources *driver.CreatedResources
DriverNetwork *cstructs.DriverNetwork
}
func (s *taskRunnerState) Hash() []byte {
h := md5.New()
io.WriteString(h, s.Version)
io.WriteString(h, s.HandleID)
io.WriteString(h, fmt.Sprintf("%v", s.ArtifactDownloaded))
io.WriteString(h, fmt.Sprintf("%v", s.TaskDirBuilt))
io.WriteString(h, fmt.Sprintf("%v", s.PayloadRendered))
h.Write(s.CreatedResources.Hash())
h.Write(s.DriverNetwork.Hash())
return h.Sum(nil)
}
// TaskStateUpdater is used to signal that tasks state has changed. If lazySync
// is set the event won't be immediately pushed to the server.
type TaskStateUpdater func(taskName, state string, event *structs.TaskEvent, lazySync bool)
// SignalEvent is a tuple of the signal and the event generating it
type SignalEvent struct {
// s is the signal to be sent
s os.Signal
// e is the task event generating the signal
e *structs.TaskEvent
// result should be used to send back the result of the signal
result chan<- error
}
// NewTaskRunner is used to create a new task context
func NewTaskRunner(logger *log.Logger, config *config.Config,
stateDB *bolt.DB, updater TaskStateUpdater, taskDir *allocdir.TaskDir,
alloc *structs.Allocation, task *structs.Task,
vaultClient vaultclient.VaultClient, consulClient ConsulServiceAPI) *TaskRunner {
// Merge in the task resources
task.Resources = alloc.TaskResources[task.Name]
// Build the restart tracker.
tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup)
if tg == nil {
logger.Printf("[ERR] client: alloc %q for missing task group %q", alloc.ID, alloc.TaskGroup)
return nil
}
restartTracker := newRestartTracker(tg.RestartPolicy, alloc.Job.Type)
// Initialize the environment builder
envBuilder := env.NewBuilder(config.Node, alloc, task, config.Region)
tc := &TaskRunner{
config: config,
stateDB: stateDB,
updater: updater,
logger: logger,
restartTracker: restartTracker,
alloc: alloc,
task: task,
taskDir: taskDir,
envBuilder: envBuilder,
createdResources: driver.NewCreatedResources(),
consul: consulClient,
vaultClient: vaultClient,
vaultFuture: NewTokenFuture().Set(""),
updateCh: make(chan *structs.Allocation, 64),
destroyCh: make(chan struct{}),
waitCh: make(chan struct{}),
startCh: make(chan struct{}, 1),
unblockCh: make(chan struct{}),
restartCh: make(chan *taskRestartEvent),
signalCh: make(chan SignalEvent),
}
tc.baseLabels = []metrics.Label{
{
Name: "job",
Value: tc.alloc.Job.Name,
},
{
Name: "task_group",
Value: tc.alloc.TaskGroup,
},
{
Name: "alloc_id",
Value: tc.alloc.ID,
},
{
Name: "task",
Value: tc.task.Name,
},
}
return tc
}
// MarkReceived marks the task as received.
func (r *TaskRunner) MarkReceived() {
// We lazy sync this since there will be a follow up message almost
// immediately.
r.updater(r.task.Name, structs.TaskStatePending, structs.NewTaskEvent(structs.TaskReceived), true)
}
// WaitCh returns a channel to wait for termination
func (r *TaskRunner) WaitCh() <-chan struct{} {
return r.waitCh
}
// getHandle returns the task's handle or nil
func (r *TaskRunner) getHandle() driver.DriverHandle {
r.handleLock.Lock()
h := r.handle
r.handleLock.Unlock()
return h
}
// pre060StateFilePath returns the path to our state file that would have been
// written pre v0.6.0
// COMPAT: Remove in 0.7.0
func (r *TaskRunner) pre060StateFilePath() string {
// Get the MD5 of the task name
hashVal := md5.Sum([]byte(r.task.Name))
hashHex := hex.EncodeToString(hashVal[:])
dirName := fmt.Sprintf("task-%s", hashHex)
// Generate the path
return filepath.Join(r.config.StateDir, "alloc", r.alloc.ID, dirName, "state.json")
}
// RestoreState is used to restore our state. If a non-empty string is returned
// the task is restarted with the string as the reason. This is useful for
// backwards incompatible upgrades that need to restart tasks with a new
// executor.
func (r *TaskRunner) RestoreState() (string, error) {
// COMPAT: Remove in 0.7.0
// 0.6.0 transitioned from individual state files to a single bolt-db.
// The upgrade path is to:
// Check if old state exists
// If so, restore from that and delete old state
// Restore using state database
var snap taskRunnerState
// Check if the old snapshot is there
oldPath := r.pre060StateFilePath()
if err := pre060RestoreState(oldPath, &snap); err == nil {
// Delete the old state
os.RemoveAll(oldPath)
} else if !os.IsNotExist(err) {
// Something corrupt in the old state file
return "", err
} else {
// We are doing a normal restore
err := r.stateDB.View(func(tx *bolt.Tx) error {
bkt, err := getTaskBucket(tx, r.alloc.ID, r.task.Name)
if err != nil {
return fmt.Errorf("failed to get task bucket: %v", err)
}
if err := getObject(bkt, taskRunnerStateAllKey, &snap); err != nil {
return fmt.Errorf("failed to read task runner state: %v", err)
}
return nil
})
if err != nil {
return "", err
}
}
// Restore fields from the snapshot
r.artifactsDownloaded = snap.ArtifactDownloaded
r.taskDirBuilt = snap.TaskDirBuilt
r.payloadRendered = snap.PayloadRendered
r.setCreatedResources(snap.CreatedResources)
r.driverNet = snap.DriverNetwork
if r.task.Vault != nil {
// Read the token from the secret directory
tokenPath := filepath.Join(r.taskDir.SecretsDir, vaultTokenFile)
data, err := ioutil.ReadFile(tokenPath)
if err != nil {
if !os.IsNotExist(err) {
return "", fmt.Errorf("failed to read token for task %q in alloc %q: %v", r.task.Name, r.alloc.ID, err)
}
// Token file doesn't exist
} else {
// Store the recovered token
r.recoveredVaultToken = string(data)
}
}
// Restore the driver
restartReason := ""
if snap.HandleID != "" {
d, err := r.createDriver()
if err != nil {
return "", err
}
// Add the restored network driver to the environment
r.envBuilder.SetDriverNetwork(r.driverNet)
// Open a connection to the driver handle
ctx := driver.NewExecContext(r.taskDir, r.envBuilder.Build())
handle, err := d.Open(ctx, snap.HandleID)
// In the case it fails, we relaunch the task in the Run() method.
if err != nil {
r.logger.Printf("[ERR] client: failed to open handle to task %q for alloc %q: %v",
r.task.Name, r.alloc.ID, err)
return "", nil
}
if pre06ScriptCheck(snap.Version, r.task.Driver, r.task.Services) {
restartReason = pre06ScriptCheckReason
}
if err := r.registerServices(d, handle, r.driverNet); err != nil {
// Don't hard fail here as there's a chance this task
// registered with Consul properly when it initial
// started.
r.logger.Printf("[WARN] client: failed to register services and checks with consul for task %q in alloc %q: %v",
r.task.Name, r.alloc.ID, err)
}
r.handleLock.Lock()
r.handle = handle
r.handleLock.Unlock()
r.runningLock.Lock()
r.running = true
r.runningLock.Unlock()
}
return restartReason, nil
}
// ver06 is used for checking for pre-0.6 script checks
var ver06 = version.Must(version.NewVersion("0.6.0dev"))
// pre06ScriptCheckReason is the restart reason given when a pre-0.6 script
// check is found on an exec/java task.
const pre06ScriptCheckReason = "upgrading pre-0.6 script checks"
// pre06ScriptCheck returns true if version is prior to 0.6.0dev, has a script
// check, and uses exec or java drivers.
func pre06ScriptCheck(ver, driver string, services []*structs.Service) bool {
if driver != "exec" && driver != "java" && driver != "mock_driver" {
// Only exec and java are affected
return false
}
v, err := version.NewVersion(ver)
if err != nil {
// Treat it as old
return true
}
if !v.LessThan(ver06) {
// >= 0.6.0dev
return false
}
for _, service := range services {
for _, check := range service.Checks {
if check.Type == "script" {
return true
}
}
}
return false
}
// SaveState is used to snapshot our state
func (r *TaskRunner) SaveState() error {
r.destroyLock.Lock()
defer r.destroyLock.Unlock()
if r.destroy {
// Don't save state if already destroyed
return nil
}
r.persistLock.Lock()
defer r.persistLock.Unlock()
snap := taskRunnerState{
Version: r.config.Version.VersionNumber(),
ArtifactDownloaded: r.artifactsDownloaded,
TaskDirBuilt: r.taskDirBuilt,
PayloadRendered: r.payloadRendered,
CreatedResources: r.getCreatedResources(),
}
r.handleLock.Lock()
if r.handle != nil {
snap.HandleID = r.handle.ID()
}
r.handleLock.Unlock()
r.driverNetLock.Lock()
snap.DriverNetwork = r.driverNet.Copy()
r.driverNetLock.Unlock()
// If nothing has changed avoid the write
h := snap.Hash()
if bytes.Equal(h, r.persistedHash) {
return nil
}
// Serialize the object
var buf bytes.Buffer
if err := codec.NewEncoder(&buf, structs.MsgpackHandle).Encode(&snap); err != nil {
return fmt.Errorf("failed to serialize snapshot: %v", err)
}
// Start the transaction.
return r.stateDB.Batch(func(tx *bolt.Tx) error {
// Grab the task bucket
taskBkt, err := getTaskBucket(tx, r.alloc.ID, r.task.Name)
if err != nil {
return fmt.Errorf("failed to retrieve allocation bucket: %v", err)
}
if err := putData(taskBkt, taskRunnerStateAllKey, buf.Bytes()); err != nil {
return fmt.Errorf("failed to write task_runner state: %v", err)
}
// Store the hash that was persisted
tx.OnCommit(func() {
r.persistedHash = h
})
return nil
})
}
// DestroyState is used to cleanup after ourselves
func (r *TaskRunner) DestroyState() error {
r.persistLock.Lock()
defer r.persistLock.Unlock()
return r.stateDB.Update(func(tx *bolt.Tx) error {
if err := deleteTaskBucket(tx, r.alloc.ID, r.task.Name); err != nil {
return fmt.Errorf("failed to delete task bucket: %v", err)
}
return nil
})
}
// setState is used to update the state of the task runner
func (r *TaskRunner) setState(state string, event *structs.TaskEvent, lazySync bool) {
event.PopulateEventDisplayMessage()
// Persist our state to disk.
if err := r.SaveState(); err != nil {
r.logger.Printf("[ERR] client: failed to save state of Task Runner for task %q: %v", r.task.Name, err)
}
// Indicate the task has been updated.
r.updater(r.task.Name, state, event, lazySync)
}
// createDriver makes a driver for the task
func (r *TaskRunner) createDriver() (driver.Driver, error) {
// Create a task-specific event emitter callback to expose minimal
// state to drivers
eventEmitter := func(m string, args ...interface{}) {
msg := fmt.Sprintf(m, args...)
r.logger.Printf("[DEBUG] client: driver event for alloc %q: %s", r.alloc.ID, msg)
r.setState(structs.TaskStatePending, structs.NewTaskEvent(structs.TaskDriverMessage).SetDriverMessage(msg), false)
}
driverCtx := driver.NewDriverContext(r.alloc.Job.Name, r.alloc.TaskGroup, r.task.Name, r.alloc.ID, r.config, r.config.Node, r.logger, eventEmitter)
d, err := driver.NewDriver(r.task.Driver, driverCtx)
if err != nil {
return nil, fmt.Errorf("failed to create driver '%s' for alloc %s: %v",
r.task.Driver, r.alloc.ID, err)
}
return d, err
}
// Run is a long running routine used to manage the task
func (r *TaskRunner) Run() {
defer close(r.waitCh)
r.logger.Printf("[DEBUG] client: starting task context for '%s' (alloc '%s')",
r.task.Name, r.alloc.ID)
if err := r.validateTask(); err != nil {
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskFailedValidation).SetValidationError(err).SetFailsTask(),
false)
return
}
// Create a temporary driver so that we can determine the FSIsolation
// required. run->startTask will create a new driver after environment
// has been setup (env vars, templates, artifacts, secrets, etc).
tmpDrv, err := r.createDriver()
if err != nil {
e := fmt.Errorf("failed to create driver of task %q for alloc %q: %v", r.task.Name, r.alloc.ID, err)
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(e).SetFailsTask(),
false)
return
}
// Build base task directory structure regardless of FS isolation abilities.
// This needs to happen before we start the Vault manager and call prestart
// as both those can write to the task directories
if err := r.buildTaskDir(tmpDrv.FSIsolation()); err != nil {
e := fmt.Errorf("failed to build task directory for %q: %v", r.task.Name, err)
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(e).SetFailsTask(),
false)
return
}
// If there is no Vault policy leave the static future created in
// NewTaskRunner
if r.task.Vault != nil {
// Start the go-routine to get a Vault token
r.vaultFuture.Clear()
go r.vaultManager(r.recoveredVaultToken)
}
// Start the run loop
r.run()
// Do any cleanup necessary
r.postrun()
return
}
// validateTask validates the fields of the task and returns an error if the
// task is invalid.
func (r *TaskRunner) validateTask() error {
var mErr multierror.Error
// Validate the user.
unallowedUsers := r.config.ReadStringListToMapDefault("user.blacklist", config.DefaultUserBlacklist)
checkDrivers := r.config.ReadStringListToMapDefault("user.checked_drivers", config.DefaultUserCheckedDrivers)
if _, driverMatch := checkDrivers[r.task.Driver]; driverMatch {
if _, unallowed := unallowedUsers[r.task.User]; unallowed {
mErr.Errors = append(mErr.Errors, fmt.Errorf("running as user %q is disallowed", r.task.User))
}
}
// Validate the artifacts
for i, artifact := range r.task.Artifacts {
// Verify the artifact doesn't escape the task directory.
if err := artifact.Validate(); err != nil {
// If this error occurs there is potentially a server bug or
// malicious, server spoofing.
r.logger.Printf("[ERR] client: allocation %q, task %v, artifact %#v (%v) fails validation: %v",
r.alloc.ID, r.task.Name, artifact, i, err)
mErr.Errors = append(mErr.Errors, fmt.Errorf("artifact (%d) failed validation: %v", i, err))
}
}
// Validate the Service names
taskEnv := r.envBuilder.Build()
for i, service := range r.task.Services {
name := taskEnv.ReplaceEnv(service.Name)
if err := service.ValidateName(name); err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("service (%d) failed validation: %v", i, err))
}
}
if len(mErr.Errors) == 1 {
return mErr.Errors[0]
}
return mErr.ErrorOrNil()
}
// tokenFuture stores the Vault token and allows consumers to block till a valid
// token exists
type tokenFuture struct {
waiting []chan struct{}
token string
set bool
m sync.Mutex
}
// NewTokenFuture returns a new token future without any token set
func NewTokenFuture() *tokenFuture {
return &tokenFuture{}
}
// Wait returns a channel that can be waited on. When this channel unblocks, a
// valid token will be available via the Get method
func (f *tokenFuture) Wait() <-chan struct{} {
f.m.Lock()
defer f.m.Unlock()
c := make(chan struct{})
if f.set {
close(c)
return c
}
f.waiting = append(f.waiting, c)
return c
}
// Set sets the token value and unblocks any caller of Wait
func (f *tokenFuture) Set(token string) *tokenFuture {
f.m.Lock()
defer f.m.Unlock()
f.set = true
f.token = token
for _, w := range f.waiting {
close(w)
}
f.waiting = nil
return f
}
// Clear clears the set vault token.
func (f *tokenFuture) Clear() *tokenFuture {
f.m.Lock()
defer f.m.Unlock()
f.token = ""
f.set = false
return f
}
// Get returns the set Vault token
func (f *tokenFuture) Get() string {
f.m.Lock()
defer f.m.Unlock()
return f.token
}
// vaultManager should be called in a go-routine and manages the derivation,
// renewal and handling of errors with the Vault token. The optional parameter
// allows setting the initial Vault token. This is useful when the Vault token
// is recovered off disk.
func (r *TaskRunner) vaultManager(token string) {
// Helper for stopping token renewal
stopRenewal := func() {
if err := r.vaultClient.StopRenewToken(r.vaultFuture.Get()); err != nil {
r.logger.Printf("[WARN] client: failed to stop token renewal for task %v in alloc %q: %v", r.task.Name, r.alloc.ID, err)
}
}
// updatedToken lets us store state between loops. If true, a new token
// has been retrieved and we need to apply the Vault change mode
var updatedToken bool
OUTER:
for {
// Check if we should exit
select {
case <-r.waitCh:
stopRenewal()
return
default:
}
// Clear the token
r.vaultFuture.Clear()
// Check if there already is a token which can be the case for
// restoring the TaskRunner
if token == "" {
// Get a token
var exit bool
token, exit = r.deriveVaultToken()
if exit {
// Exit the manager
return
}
// Write the token to disk
if err := r.writeToken(token); err != nil {
e := fmt.Errorf("failed to write Vault token to disk")
r.logger.Printf("[ERR] client: %v for task %v on alloc %q: %v", e, r.task.Name, r.alloc.ID, err)
r.Kill("vault", e.Error(), true)
return
}
}
// Start the renewal process
renewCh, err := r.vaultClient.RenewToken(token, 30)
// An error returned means the token is not being renewed
if err != nil {
r.logger.Printf("[ERR] client: failed to start renewal of Vault token for task %v on alloc %q: %v", r.task.Name, r.alloc.ID, err)
token = ""
goto OUTER
}
// The Vault token is valid now, so set it
r.vaultFuture.Set(token)
if updatedToken {
switch r.task.Vault.ChangeMode {
case structs.VaultChangeModeSignal:
s, err := signals.Parse(r.task.Vault.ChangeSignal)
if err != nil {
e := fmt.Errorf("failed to parse signal: %v", err)
r.logger.Printf("[ERR] client: %v", err)
r.Kill("vault", e.Error(), true)
return
}
if err := r.Signal("vault", "new Vault token acquired", s); err != nil {
r.logger.Printf("[ERR] client: failed to send signal to task %v for alloc %q: %v", r.task.Name, r.alloc.ID, err)
r.Kill("vault", fmt.Sprintf("failed to send signal to task: %v", err), true)
return
}
case structs.VaultChangeModeRestart:
const noFailure = false
r.Restart("vault", "new Vault token acquired", noFailure)
case structs.VaultChangeModeNoop:
fallthrough
default:
r.logger.Printf("[ERR] client: Invalid Vault change mode: %q", r.task.Vault.ChangeMode)
}
// We have handled it
updatedToken = false
// Call the handler
r.updatedTokenHandler()
}
// Start watching for renewal errors
select {
case err := <-renewCh:
// Clear the token
token = ""
r.logger.Printf("[ERR] client: failed to renew Vault token for task %v on alloc %q: %v", r.task.Name, r.alloc.ID, err)
stopRenewal()
// Check if we have to do anything
if r.task.Vault.ChangeMode != structs.VaultChangeModeNoop {
updatedToken = true
}
case <-r.waitCh:
stopRenewal()
return
}
}
}
// deriveVaultToken derives the Vault token using exponential backoffs. It
// returns the Vault token and whether the manager should exit.
func (r *TaskRunner) deriveVaultToken() (token string, exit bool) {
attempts := 0
for {
tokens, err := r.vaultClient.DeriveToken(r.alloc, []string{r.task.Name})
if err == nil {
return tokens[r.task.Name], false
}
// Check if this is a server side error
if structs.IsServerSide(err) {
r.logger.Printf("[ERR] client: failed to derive Vault token for task %v on alloc %q: %v",
r.task.Name, r.alloc.ID, err)
r.Kill("vault", fmt.Sprintf("server error deriving vault token: %v", err), true)
return "", true
}
// Check if we can't recover from the error
if !structs.IsRecoverable(err) {
r.logger.Printf("[ERR] client: failed to derive Vault token for task %v on alloc %q: %v",
r.task.Name, r.alloc.ID, err)
r.Kill("vault", fmt.Sprintf("failed to derive token: %v", err), true)
return "", true
}
// Handle the retry case
backoff := (1 << (2 * uint64(attempts))) * vaultBackoffBaseline
if backoff > vaultBackoffLimit {
backoff = vaultBackoffLimit
}
r.logger.Printf("[ERR] client: failed to derive Vault token for task %v on alloc %q: %v; retrying in %v",
r.task.Name, r.alloc.ID, err, backoff)
attempts++
// Wait till retrying
select {
case <-r.waitCh:
return "", true
case <-time.After(backoff):
}
}
}
// writeToken writes the given token to disk
func (r *TaskRunner) writeToken(token string) error {
tokenPath := filepath.Join(r.taskDir.SecretsDir, vaultTokenFile)
if err := ioutil.WriteFile(tokenPath, []byte(token), 0777); err != nil {
return fmt.Errorf("failed to save Vault tokens to secret dir for task %q in alloc %q: %v", r.task.Name, r.alloc.ID, err)
}
return nil
}
// updatedTokenHandler is called when a new Vault token is retrieved. Things
// that rely on the token should be updated here.
func (r *TaskRunner) updatedTokenHandler() {
// Update the tasks environment
r.envBuilder.SetVaultToken(r.vaultFuture.Get(), r.task.Vault.Env)
if r.templateManager != nil {
r.templateManager.Stop()
// Create a new templateManager
var err error
r.templateManager, err = NewTaskTemplateManager(&TaskTemplateManagerConfig{
Hooks: r,
Templates: r.task.Templates,
ClientConfig: r.config,
VaultToken: r.vaultFuture.Get(),
TaskDir: r.taskDir.Dir,
EnvBuilder: r.envBuilder,
MaxTemplateEventRate: DefaultMaxTemplateEventRate,
})
if err != nil {
err := fmt.Errorf("failed to build task's template manager: %v", err)
r.setState(structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask(),
false)
r.logger.Printf("[ERR] client: alloc %q, task %q %v", r.alloc.ID, r.task.Name, err)
r.Kill("vault", err.Error(), true)
return
}
}
}
// prestart handles life-cycle tasks that occur before the task has started.
// Since it's run asynchronously with the main Run() loop the alloc & task are
// passed in to avoid racing with updates.
func (r *TaskRunner) prestart(alloc *structs.Allocation, task *structs.Task, resultCh chan bool) {
if task.Vault != nil {
// Wait for the token
r.logger.Printf("[DEBUG] client: waiting for Vault token for task %v in alloc %q", task.Name, alloc.ID)
tokenCh := r.vaultFuture.Wait()
select {
case <-tokenCh:
case <-r.waitCh:
resultCh <- false
return
}
r.logger.Printf("[DEBUG] client: retrieved Vault token for task %v in alloc %q", task.Name, alloc.ID)
r.envBuilder.SetVaultToken(r.vaultFuture.Get(), task.Vault.Env)
}
// If the job is a dispatch job and there is a payload write it to disk
requirePayload := len(alloc.Job.Payload) != 0 &&
(r.task.DispatchPayload != nil && r.task.DispatchPayload.File != "")
if !r.payloadRendered && requirePayload {
renderTo := filepath.Join(r.taskDir.LocalDir, task.DispatchPayload.File)
decoded, err := snappy.Decode(nil, alloc.Job.Payload)
if err != nil {
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask(),
false)
resultCh <- false
return
}
if err := os.MkdirAll(filepath.Dir(renderTo), 07777); err != nil {
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask(),
false)
resultCh <- false
return
}
if err := ioutil.WriteFile(renderTo, decoded, 0777); err != nil {
r.setState(
structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask(),
false)
resultCh <- false
return
}
r.payloadRendered = true
}
for {
r.persistLock.Lock()
downloaded := r.artifactsDownloaded
r.persistLock.Unlock()
// Download the task's artifacts
if !downloaded && len(task.Artifacts) > 0 {
r.setState(structs.TaskStatePending, structs.NewTaskEvent(structs.TaskDownloadingArtifacts), false)
taskEnv := r.envBuilder.Build()
for _, artifact := range task.Artifacts {
if err := getter.GetArtifact(taskEnv, artifact, r.taskDir.Dir); err != nil {
wrapped := fmt.Errorf("failed to download artifact %q: %v", artifact.GetterSource, err)
r.logger.Printf("[DEBUG] client: %v", wrapped)
r.setState(structs.TaskStatePending,
structs.NewTaskEvent(structs.TaskArtifactDownloadFailed).SetDownloadError(wrapped), false)
r.restartTracker.SetStartError(structs.WrapRecoverable(wrapped.Error(), err))
goto RESTART
}
}
r.persistLock.Lock()
r.artifactsDownloaded = true
r.persistLock.Unlock()
}
// We don't have to wait for any template
if len(task.Templates) == 0 {
// Send the start signal
select {
case r.startCh <- struct{}{}:
default:
}
resultCh <- true
return
}
// Build the template manager
if r.templateManager == nil {
var err error
r.templateManager, err = NewTaskTemplateManager(&TaskTemplateManagerConfig{
Hooks: r,
Templates: r.task.Templates,
ClientConfig: r.config,
VaultToken: r.vaultFuture.Get(),
TaskDir: r.taskDir.Dir,
EnvBuilder: r.envBuilder,
MaxTemplateEventRate: DefaultMaxTemplateEventRate,
})
if err != nil {
err := fmt.Errorf("failed to build task's template manager: %v", err)
r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask(), false)
r.logger.Printf("[ERR] client: alloc %q, task %q %v", alloc.ID, task.Name, err)
resultCh <- false
return
}
}
// Block for consul-template
// TODO Hooks should register themselves as blocking and then we can
// periodically enumerate what we are still blocked on
select {
case <-r.unblockCh:
// Send the start signal
select {
case r.startCh <- struct{}{}:
default:
}
resultCh <- true
return
case <-r.waitCh:
// The run loop has exited so exit too
resultCh <- false
return
}
RESTART:
restart := r.shouldRestart()
if !restart {
resultCh <- false
return
}
}
}
// postrun is used to do any cleanup that is necessary after exiting the runloop
func (r *TaskRunner) postrun() {
// Stop the template manager
if r.templateManager != nil {
r.templateManager.Stop()
}
}
// run is the main run loop that handles starting the application, destroying
// it, restarts and signals.
func (r *TaskRunner) run() {
// Predeclare things so we can jump to the RESTART
var stopCollection chan struct{}
var handleWaitCh chan *dstructs.WaitResult
// If we already have a handle, populate the stopCollection and handleWaitCh
// to fix the invariant that it exists.
handleEmpty := r.getHandle() == nil
if !handleEmpty {
stopCollection = make(chan struct{})
go r.collectResourceUsageStats(stopCollection)
handleWaitCh = r.handle.WaitCh()
}
for {
// Do the prestart activities
prestartResultCh := make(chan bool, 1)
go r.prestart(r.alloc, r.task, prestartResultCh)
WAIT:
for {
select {
case success := <-prestartResultCh:
if !success {
r.cleanup()
r.setState(structs.TaskStateDead, nil, false)
return
}
case <-r.startCh:
// Start the task if not yet started or it is being forced. This logic
// is necessary because in the case of a restore the handle already
// exists.
handleEmpty := r.getHandle() == nil
if handleEmpty {
startErr := r.startTask()
r.restartTracker.SetStartError(startErr)
if startErr != nil {
r.setState("", structs.NewTaskEvent(structs.TaskDriverFailure).SetDriverError(startErr), true)
goto RESTART
}
// Mark the task as started
r.setState(structs.TaskStateRunning, structs.NewTaskEvent(structs.TaskStarted), false)
r.runningLock.Lock()
r.running = true
r.runningLock.Unlock()
if stopCollection == nil {
stopCollection = make(chan struct{})
go r.collectResourceUsageStats(stopCollection)
}
handleWaitCh = r.handle.WaitCh()
}
case waitRes := <-handleWaitCh:
if waitRes == nil {
panic("nil wait")
}
r.runningLock.Lock()
r.running = false
r.runningLock.Unlock()
// Stop collection of the task's resource usage
close(stopCollection)
// Log whether the task was successful or not.
r.restartTracker.SetWaitResult(waitRes)
r.setState("", r.waitErrorToEvent(waitRes), true)
if !waitRes.Successful() {
r.logger.Printf("[INFO] client: task %q for alloc %q failed: %v", r.task.Name, r.alloc.ID, waitRes)
} else {
r.logger.Printf("[INFO] client: task %q for alloc %q completed successfully", r.task.Name, r.alloc.ID)
}
break WAIT
case update := <-r.updateCh:
if err := r.handleUpdate(update); err != nil {
r.logger.Printf("[ERR] client: update to task %q failed: %v", r.task.Name, err)
}
case se := <-r.signalCh:
r.runningLock.Lock()
running := r.running
r.runningLock.Unlock()
common := fmt.Sprintf("signal %v to task %v for alloc %q", se.s, r.task.Name, r.alloc.ID)
if !running {
// Send no error
r.logger.Printf("[DEBUG] client: skipping %s", common)
se.result <- nil
continue
}
r.logger.Printf("[DEBUG] client: sending %s", common)
r.setState(structs.TaskStateRunning, se.e, false)
res := r.handle.Signal(se.s)
se.result <- res
case restartEvent := <-r.restartCh:
r.runningLock.Lock()
running := r.running
r.runningLock.Unlock()
common := fmt.Sprintf("task %v for alloc %q", r.task.Name, r.alloc.ID)
if !running {
r.logger.Printf("[DEBUG] client: skipping restart of %v: task isn't running", common)
continue
}
r.logger.Printf("[DEBUG] client: restarting %s: %v", common, restartEvent.taskEvent.RestartReason)
r.setState(structs.TaskStateRunning, restartEvent.taskEvent, false)
r.killTask(nil)
close(stopCollection)
if handleWaitCh != nil {
<-handleWaitCh
}
r.restartTracker.SetRestartTriggered(restartEvent.failure)
break WAIT
case <-r.destroyCh:
r.runningLock.Lock()
running := r.running
r.runningLock.Unlock()
if !running {
r.cleanup()
r.setState(structs.TaskStateDead, r.destroyEvent, false)
return
}
// Remove from consul before killing the task so that traffic
// can be rerouted
interpTask := interpolateServices(r.envBuilder.Build(), r.task)
r.consul.RemoveTask(r.alloc.ID, interpTask)
// Delay actually killing the task if configured. See #244
if r.task.ShutdownDelay > 0 {
r.logger.Printf("[DEBUG] client: delaying shutdown of alloc %q task %q for %q",
r.alloc.ID, r.task.Name, r.task.ShutdownDelay)
<-time.After(r.task.ShutdownDelay)
}
// Store the task event that provides context on the task
// destroy. The Killed event is set from the alloc_runner and
// doesn't add detail
var killEvent *structs.TaskEvent
if r.destroyEvent.Type != structs.TaskKilled {
if r.destroyEvent.Type == structs.TaskKilling {
killEvent = r.destroyEvent
} else {
r.setState(structs.TaskStateRunning, r.destroyEvent, false)
}
}
r.killTask(killEvent)
close(stopCollection)
// Wait for handler to exit before calling cleanup
<-handleWaitCh
r.cleanup()
r.setState(structs.TaskStateDead, nil, false)
return
}
}
RESTART:
// shouldRestart will block if the task should restart after a delay.
restart := r.shouldRestart()
if !restart {
r.cleanup()
r.setState(structs.TaskStateDead, nil, false)
return
}
// Clear the handle so a new driver will be created.
r.handleLock.Lock()
r.handle = nil
handleWaitCh = nil
stopCollection = nil
r.handleLock.Unlock()
}
}
// cleanup removes Consul entries and calls Driver.Cleanup when a task is
// stopping. Errors are logged.
func (r *TaskRunner) cleanup() {
// Remove from Consul
interpTask := interpolateServices(r.envBuilder.Build(), r.task)
r.consul.RemoveTask(r.alloc.ID, interpTask)
drv, err := r.createDriver()
if err != nil {
r.logger.Printf("[ERR] client: error creating driver to cleanup resources: %v", err)
return
}
res := r.getCreatedResources()
ctx := driver.NewExecContext(r.taskDir, r.envBuilder.Build())
attempts := 1
var cleanupErr error
for retry := true; retry; attempts++ {
cleanupErr = drv.Cleanup(ctx, res)
retry = structs.IsRecoverable(cleanupErr)
// Copy current createdResources state in case SaveState is
// called between retries
r.setCreatedResources(res)
// Retry 3 times with sleeps between
if !retry || attempts > 3 {
break
}
time.Sleep(time.Duration(attempts) * time.Second)
}
if cleanupErr != nil {
r.logger.Printf("[ERR] client: error cleaning up resources for task %q after %d attempts: %v", r.task.Name, attempts, cleanupErr)
}
return
}
// shouldRestart returns if the task should restart. If the return value is
// true, the task's restart policy has already been considered and any wait time
// between restarts has been applied.
func (r *TaskRunner) shouldRestart() bool {
state, when := r.restartTracker.GetState()
reason := r.restartTracker.GetReason()
switch state {
case structs.TaskNotRestarting, structs.TaskTerminated:
r.logger.Printf("[INFO] client: Not restarting task: %v for alloc: %v ", r.task.Name, r.alloc.ID)
if state == structs.TaskNotRestarting {
r.setState(structs.TaskStateDead,
structs.NewTaskEvent(structs.TaskNotRestarting).
SetRestartReason(reason).SetFailsTask(),
false)
}
return false
case structs.TaskRestarting:
r.logger.Printf("[INFO] client: Restarting task %q for alloc %q in %v", r.task.Name, r.alloc.ID, when)
r.setState(structs.TaskStatePending,
structs.NewTaskEvent(structs.TaskRestarting).
SetRestartDelay(when).
SetRestartReason(reason),
false)
default:
r.logger.Printf("[ERR] client: restart tracker returned unknown state: %q", state)
return false
}
// Unregister from Consul while waiting to restart.
interpTask := interpolateServices(r.envBuilder.Build(), r.task)
r.consul.RemoveTask(r.alloc.ID, interpTask)
// Sleep but watch for destroy events.
select {
case <-time.After(when):
case <-r.destroyCh:
}
// Destroyed while we were waiting to restart, so abort.
r.destroyLock.Lock()
destroyed := r.destroy
r.destroyLock.Unlock()
if destroyed {
r.logger.Printf("[DEBUG] client: Not restarting task: %v because it has been destroyed", r.task.Name)
r.setState(structs.TaskStateDead, r.destroyEvent, false)
return false
}
return true
}
// killTask kills the running task. A killing event can optionally be passed and
// this event is used to mark the task as being killed. It provides a means to
// store extra information.
func (r *TaskRunner) killTask(killingEvent *structs.TaskEvent) {
r.runningLock.Lock()
running := r.running
r.runningLock.Unlock()
if !running {
return
}
// Get the kill timeout
timeout := driver.GetKillTimeout(r.task.KillTimeout, r.config.MaxKillTimeout)
// Build the event
var event *structs.TaskEvent
if killingEvent != nil {
event = killingEvent
event.Type = structs.TaskKilling
} else {
event = structs.NewTaskEvent(structs.TaskKilling)
}
event.SetKillTimeout(timeout)
// Mark that we received the kill event
r.setState(structs.TaskStateRunning, event, false)
handle := r.getHandle()
// Kill the task using an exponential backoff in-case of failures.
destroySuccess, err := r.handleDestroy(handle)
if !destroySuccess {
// We couldn't successfully destroy the resource created.
r.logger.Printf("[ERR] client: failed to kill task %q. Resources may have been leaked: %v", r.task.Name, err)
}
r.runningLock.Lock()
r.running = false
r.runningLock.Unlock()
// Store that the task has been destroyed and any associated error.
r.setState("", structs.NewTaskEvent(structs.TaskKilled).SetKillError(err), true)
}
// startTask creates the driver, task dir, and starts the task.
func (r *TaskRunner) startTask() error {
// Create a driver
drv, err := r.createDriver()
if err != nil {
return fmt.Errorf("failed to create driver of task %q for alloc %q: %v",
r.task.Name, r.alloc.ID, err)
}
// Run prestart
ctx := driver.NewExecContext(r.taskDir, r.envBuilder.Build())
presp, err := drv.Prestart(ctx, r.task)
// Merge newly created resources into previously created resources
if presp != nil {
r.createdResourcesLock.Lock()
r.createdResources.Merge(presp.CreatedResources)
r.createdResourcesLock.Unlock()
// Set any network configuration returned by the driver
r.envBuilder.SetDriverNetwork(presp.Network)
}
if err != nil {
wrapped := fmt.Sprintf("failed to initialize task %q for alloc %q: %v",
r.task.Name, r.alloc.ID, err)
r.logger.Printf("[WARN] client: error from prestart: %s", wrapped)
return structs.WrapRecoverable(wrapped, err)
}
// Create a new context for Start since the environment may have been updated.
ctx = driver.NewExecContext(r.taskDir, r.envBuilder.Build())
// Start the job
sresp, err := drv.Start(ctx, r.task)
if err != nil {
wrapped := fmt.Sprintf("failed to start task %q for alloc %q: %v",
r.task.Name, r.alloc.ID, err)
r.logger.Printf("[WARN] client: %s", wrapped)
return structs.WrapRecoverable(wrapped, err)
}
// Log driver network information
if sresp.Network != nil && sresp.Network.IP != "" {
if sresp.Network.AutoAdvertise {
r.logger.Printf("[INFO] client: alloc %s task %s auto-advertising detected IP %s",
r.alloc.ID, r.task.Name, sresp.Network.IP)
} else {
r.logger.Printf("[TRACE] client: alloc %s task %s detected IP %s but not auto-advertising",
r.alloc.ID, r.task.Name, sresp.Network.IP)
}
}
if sresp.Network == nil || sresp.Network.IP == "" {
r.logger.Printf("[TRACE] client: alloc %s task %s could not detect a driver IP", r.alloc.ID, r.task.Name)
}
// Update environment with the network defined by the driver's Start method.
r.envBuilder.SetDriverNetwork(sresp.Network)
if err := r.registerServices(drv, sresp.Handle, sresp.Network); err != nil {
// All IO is done asynchronously, so errors from registering
// services are hard failures.
r.logger.Printf("[ERR] client: failed to register services and checks for task %q alloc %q: %v", r.task.Name, r.alloc.ID, err)
// Kill the started task
if destroyed, err := r.handleDestroy(sresp.Handle); !destroyed {
r.logger.Printf("[ERR] client: failed to kill task %q alloc %q. Resources may be leaked: %v",
r.task.Name, r.alloc.ID, err)
}
return structs.NewRecoverableError(err, false)
}
r.handleLock.Lock()
r.handle = sresp.Handle
r.handleLock.Unlock()
// Need to persist the driver network between restarts
r.driverNetLock.Lock()
r.driverNet = sresp.Network
r.driverNetLock.Unlock()
return nil
}
// registerServices and checks with Consul.
func (r *TaskRunner) registerServices(d driver.Driver, h driver.DriverHandle, n *cstructs.DriverNetwork) error {
var exec driver.ScriptExecutor
if d.Abilities().Exec {
// Allow set the script executor if the driver supports it
exec = h
}
interpolatedTask := interpolateServices(r.envBuilder.Build(), r.task)
return r.consul.RegisterTask(r.alloc.ID, interpolatedTask, r, exec, n)
}
// interpolateServices interpolates tags in a service and checks with values from the
// task's environment.
func interpolateServices(taskEnv *env.TaskEnv, task *structs.Task) *structs.Task {
taskCopy := task.Copy()
for _, service := range taskCopy.Services {
for _, check := range service.Checks {
check.Name = taskEnv.ReplaceEnv(check.Name)
check.Type = taskEnv.ReplaceEnv(check.Type)
check.Command = taskEnv.ReplaceEnv(check.Command)
check.Args = taskEnv.ParseAndReplace(check.Args)
check.Path = taskEnv.ReplaceEnv(check.Path)
check.Protocol = taskEnv.ReplaceEnv(check.Protocol)
check.PortLabel = taskEnv.ReplaceEnv(check.PortLabel)
check.InitialStatus = taskEnv.ReplaceEnv(check.InitialStatus)
check.Method = taskEnv.ReplaceEnv(check.Method)
check.GRPCService = taskEnv.ReplaceEnv(check.GRPCService)
if len(check.Header) > 0 {
header := make(map[string][]string, len(check.Header))
for k, vs := range check.Header {
newVals := make([]string, len(vs))
for i, v := range vs {
newVals[i] = taskEnv.ReplaceEnv(v)
}
header[taskEnv.ReplaceEnv(k)] = newVals
}
check.Header = header
}
}
service.Name = taskEnv.ReplaceEnv(service.Name)
service.PortLabel = taskEnv.ReplaceEnv(service.PortLabel)
service.Tags = taskEnv.ParseAndReplace(service.Tags)
}
return taskCopy
}
// buildTaskDir creates the task directory before driver.Prestart. It is safe
// to call multiple times as its state is persisted.
func (r *TaskRunner) buildTaskDir(fsi cstructs.FSIsolation) error {
r.persistLock.Lock()
built := r.taskDirBuilt
r.persistLock.Unlock()
// We do not set the state again since this only occurs during restoration
// and the task dir is already built. The reason we call Build again is to
// ensure that the task dir invariants are still held.
if !built {
r.setState(structs.TaskStatePending,
structs.NewTaskEvent(structs.TaskSetup).SetMessage(structs.TaskBuildingTaskDir),
false)
}
chroot := config.DefaultChrootEnv
if len(r.config.ChrootEnv) > 0 {
chroot = r.config.ChrootEnv
}
if err := r.taskDir.Build(built, chroot, fsi); err != nil {
return err
}
// Mark task dir as successfully built
r.persistLock.Lock()
r.taskDirBuilt = true
r.persistLock.Unlock()
// Set path and host related env vars
driver.SetEnvvars(r.envBuilder, fsi, r.taskDir, r.config)
return nil
}
// collectResourceUsageStats starts collecting resource usage stats of a Task.
// Collection ends when the passed channel is closed
func (r *TaskRunner) collectResourceUsageStats(stopCollection <-chan struct{}) {
// start collecting the stats right away and then start collecting every
// collection interval
next := time.NewTimer(0)
defer next.Stop()
for {
select {
case <-next.C:
next.Reset(r.config.StatsCollectionInterval)
handle := r.getHandle()
if handle == nil {
continue
}
ru, err := handle.Stats()
if err != nil {
// Check if the driver doesn't implement stats
if err.Error() == driver.DriverStatsNotImplemented.Error() {
r.logger.Printf("[DEBUG] client: driver for task %q in allocation %q doesn't support stats", r.task.Name, r.alloc.ID)
return
}
// We do not log when the plugin is shutdown as this is simply a
// race between the stopCollection channel being closed and calling
// Stats on the handle.
if !strings.Contains(err.Error(), "connection is shut down") {
r.logger.Printf("[DEBUG] client: error fetching stats of task %v: %v", r.task.Name, err)
}
continue
}
r.resourceUsageLock.Lock()
r.resourceUsage = ru
r.resourceUsageLock.Unlock()
if ru != nil {
r.emitStats(ru)
}
case <-stopCollection:
return
}
}
}
// LatestResourceUsage returns the last resource utilization datapoint collected
func (r *TaskRunner) LatestResourceUsage() *cstructs.TaskResourceUsage {
r.resourceUsageLock.RLock()
defer r.resourceUsageLock.RUnlock()
r.runningLock.Lock()
defer r.runningLock.Unlock()
// If the task is not running there can be no latest resource
if !r.running {
return nil
}
return r.resourceUsage
}
// handleUpdate takes an updated allocation and updates internal state to
// reflect the new config for the task.
func (r *TaskRunner) handleUpdate(update *structs.Allocation) error {
// Extract the task group from the alloc.
tg := update.Job.LookupTaskGroup(update.TaskGroup)
if tg == nil {
return fmt.Errorf("alloc '%s' missing task group '%s'", update.ID, update.TaskGroup)
}
// Extract the task.
var updatedTask *structs.Task
for _, t := range tg.Tasks {
if t.Name == r.task.Name {
updatedTask = t.Copy()
break
}
}
if updatedTask == nil {
return fmt.Errorf("task group %q doesn't contain task %q", tg.Name, r.task.Name)
}
// Merge in the task resources
updatedTask.Resources = update.TaskResources[updatedTask.Name]
// Interpolate the old task with the old env before updating the env as
// updating services in Consul need both the old and new interpolations
// to find differences.
oldInterpolatedTask := interpolateServices(r.envBuilder.Build(), r.task)
// Now it's safe to update the environment
r.envBuilder.UpdateTask(update, updatedTask)
var mErr multierror.Error
r.handleLock.Lock()
if r.handle != nil {
drv, err := r.createDriver()
if err != nil {
// Something has really gone wrong; don't continue
r.handleLock.Unlock()
return fmt.Errorf("error accessing driver when updating task %q: %v", r.task.Name, err)
}
// Update will update resources and store the new kill timeout.
if err := r.handle.Update(updatedTask); err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("updating task resources failed: %v", err))
}
// Update services in Consul
newInterpolatedTask := interpolateServices(r.envBuilder.Build(), updatedTask)
if err := r.updateServices(drv, r.handle, oldInterpolatedTask, newInterpolatedTask); err != nil {
mErr.Errors = append(mErr.Errors, fmt.Errorf("error updating services and checks in Consul: %v", err))
}
}
r.handleLock.Unlock()
// Update the restart policy.
if r.restartTracker != nil {
r.restartTracker.SetPolicy(tg.RestartPolicy)
}
// Store the updated alloc.
r.alloc = update
r.task = updatedTask
return mErr.ErrorOrNil()
}
// updateServices and checks with Consul. Tasks must be interpolated!
func (r *TaskRunner) updateServices(d driver.Driver, h driver.ScriptExecutor, oldTask, newTask *structs.Task) error {
var exec driver.ScriptExecutor
if d.Abilities().Exec {
// Allow set the script executor if the driver supports it
exec = h
}
r.driverNetLock.Lock()
net := r.driverNet.Copy()
r.driverNetLock.Unlock()
return r.consul.UpdateTask(r.alloc.ID, oldTask, newTask, r, exec, net)
}
// handleDestroy kills the task handle. In the case that killing fails,
// handleDestroy will retry with an exponential backoff and will give up at a
// given limit. It returns whether the task was destroyed and the error
// associated with the last kill attempt.
func (r *TaskRunner) handleDestroy(handle driver.DriverHandle) (destroyed bool, err error) {
// Cap the number of times we attempt to kill the task.
for i := 0; i < killFailureLimit; i++ {
if err = handle.Kill(); err != nil {
// Calculate the new backoff
backoff := (1 << (2 * uint64(i))) * killBackoffBaseline
if backoff > killBackoffLimit {
backoff = killBackoffLimit
}
r.logger.Printf("[ERR] client: failed to kill task '%s' for alloc %q. Retrying in %v: %v",
r.task.Name, r.alloc.ID, backoff, err)
time.Sleep(backoff)
} else {
// Kill was successful
return true, nil
}
}
return
}
// Restart will restart the task.
func (r *TaskRunner) Restart(source, reason string, failure bool) {
reasonStr := fmt.Sprintf("%s: %s", source, reason)
event := newTaskRestartEvent(reasonStr, failure)
select {
case r.restartCh <- event:
case <-r.waitCh:
}
}
// Signal will send a signal to the task
func (r *TaskRunner) Signal(source, reason string, s os.Signal) error {
reasonStr := fmt.Sprintf("%s: %s", source, reason)
event := structs.NewTaskEvent(structs.TaskSignaling).SetTaskSignal(s).SetTaskSignalReason(reasonStr)
resCh := make(chan error)
se := SignalEvent{
s: s,
e: event,
result: resCh,
}
select {
case r.signalCh <- se:
case <-r.waitCh:
}
return <-resCh
}
// Kill will kill a task and store the error, no longer restarting the task. If
// fail is set, the task is marked as having failed.
func (r *TaskRunner) Kill(source, reason string, fail bool) {
reasonStr := fmt.Sprintf("%s: %s", source, reason)
event := structs.NewTaskEvent(structs.TaskKilling).SetKillReason(reasonStr)
if fail {
event.SetFailsTask()
}
r.logger.Printf("[DEBUG] client: killing task %v for alloc %q: %v", r.task.Name, r.alloc.ID, reasonStr)
r.Destroy(event)
}
func (r *TaskRunner) EmitEvent(source, message string) {
event := structs.NewTaskEvent(source).
SetMessage(message)
r.setState("", event, false)
r.logger.Printf("[DEBUG] client: event from %q for task %q in alloc %q: %v",
source, r.task.Name, r.alloc.ID, message)
}
// UnblockStart unblocks the starting of the task. It currently assumes only
// consul-template will unblock
func (r *TaskRunner) UnblockStart(source string) {
r.unblockLock.Lock()
defer r.unblockLock.Unlock()
if r.unblocked {
return
}
r.logger.Printf("[DEBUG] client: unblocking task %v for alloc %q: %v", r.task.Name, r.alloc.ID, source)
r.unblocked = true
close(r.unblockCh)
}
// Helper function for converting a WaitResult into a TaskTerminated event.
func (r *TaskRunner) waitErrorToEvent(res *dstructs.WaitResult) *structs.TaskEvent {
return structs.NewTaskEvent(structs.TaskTerminated).
SetExitCode(res.ExitCode).
SetSignal(res.Signal).
SetExitMessage(res.Err)
}
// Update is used to update the task of the context
func (r *TaskRunner) Update(update *structs.Allocation) {
select {
case r.updateCh <- update:
default:
r.logger.Printf("[ERR] client: dropping task update '%s' (alloc '%s')",
r.task.Name, r.alloc.ID)
}
}
// Destroy is used to indicate that the task context should be destroyed. The
// event parameter provides a context for the destroy.
func (r *TaskRunner) Destroy(event *structs.TaskEvent) {
r.destroyLock.Lock()
defer r.destroyLock.Unlock()
if r.destroy {
return
}
r.destroy = true
r.destroyEvent = event
close(r.destroyCh)
}
// getCreatedResources returns the resources created by drivers. It will never
// return nil.
func (r *TaskRunner) getCreatedResources() *driver.CreatedResources {
r.createdResourcesLock.Lock()
if r.createdResources == nil {
r.createdResources = driver.NewCreatedResources()
}
cr := r.createdResources.Copy()
r.createdResourcesLock.Unlock()
return cr
}
// setCreatedResources updates the resources created by drivers. If passed nil
// it will set createdResources to an initialized struct.
func (r *TaskRunner) setCreatedResources(cr *driver.CreatedResources) {
if cr == nil {
cr = driver.NewCreatedResources()
}
r.createdResourcesLock.Lock()
r.createdResources = cr.Copy()
r.createdResourcesLock.Unlock()
}
func (r *TaskRunner) setGaugeForMemory(ru *cstructs.TaskResourceUsage) {
if !r.config.DisableTaggedMetrics {
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", "rss"},
float32(ru.ResourceUsage.MemoryStats.RSS), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", "rss"},
float32(ru.ResourceUsage.MemoryStats.RSS), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", "cache"},
float32(ru.ResourceUsage.MemoryStats.Cache), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", "swap"},
float32(ru.ResourceUsage.MemoryStats.Swap), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", "max_usage"},
float32(ru.ResourceUsage.MemoryStats.MaxUsage), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", "kernel_usage"},
float32(ru.ResourceUsage.MemoryStats.KernelUsage), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "memory", "kernel_max_usage"},
float32(ru.ResourceUsage.MemoryStats.KernelMaxUsage), r.baseLabels)
}
if r.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "rss"}, float32(ru.ResourceUsage.MemoryStats.RSS))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "cache"}, float32(ru.ResourceUsage.MemoryStats.Cache))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "swap"}, float32(ru.ResourceUsage.MemoryStats.Swap))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "max_usage"}, float32(ru.ResourceUsage.MemoryStats.MaxUsage))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "kernel_usage"}, float32(ru.ResourceUsage.MemoryStats.KernelUsage))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "kernel_max_usage"}, float32(ru.ResourceUsage.MemoryStats.KernelMaxUsage))
}
}
func (r *TaskRunner) setGaugeForCPU(ru *cstructs.TaskResourceUsage) {
if !r.config.DisableTaggedMetrics {
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "total_percent"},
float32(ru.ResourceUsage.CpuStats.Percent), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "system"},
float32(ru.ResourceUsage.CpuStats.SystemMode), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "user"},
float32(ru.ResourceUsage.CpuStats.UserMode), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "throttled_time"},
float32(ru.ResourceUsage.CpuStats.ThrottledTime), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "throttled_periods"},
float32(ru.ResourceUsage.CpuStats.ThrottledPeriods), r.baseLabels)
metrics.SetGaugeWithLabels([]string{"client", "allocs", "cpu", "total_ticks"},
float32(ru.ResourceUsage.CpuStats.TotalTicks), r.baseLabels)
}
if r.config.BackwardsCompatibleMetrics {
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "total_percent"}, float32(ru.ResourceUsage.CpuStats.Percent))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "system"}, float32(ru.ResourceUsage.CpuStats.SystemMode))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "user"}, float32(ru.ResourceUsage.CpuStats.UserMode))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "throttled_time"}, float32(ru.ResourceUsage.CpuStats.ThrottledTime))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "throttled_periods"}, float32(ru.ResourceUsage.CpuStats.ThrottledPeriods))
metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "total_ticks"}, float32(ru.ResourceUsage.CpuStats.TotalTicks))
}
}
// emitStats emits resource usage stats of tasks to remote metrics collector
// sinks
func (r *TaskRunner) emitStats(ru *cstructs.TaskResourceUsage) {
if !r.config.PublishAllocationMetrics {
return
}
// If the task is not running don't emit anything
r.runningLock.Lock()
running := r.running
r.runningLock.Unlock()
if !running {
return
}
if ru.ResourceUsage.MemoryStats != nil {
r.setGaugeForMemory(ru)
}
if ru.ResourceUsage.CpuStats != nil {
r.setGaugeForCPU(ru)
}
}