f0c3dca49c
Copy the updated version of freeport (sdk/freeport), and tweak it for use in Nomad tests. This means staying below port 10000 to avoid conflicts with the lib/freeport that is still transitively used by the old version of consul that we vendor. Also provide implementations to find ephemeral ports of macOS and Windows environments. Ports acquired through freeport are supposed to be returned to freeport, which this change now also introduces. Many tests are modified to include calls to a cleanup function for Server objects. This should help quite a bit with some flakey tests, but not all of them. Our port problems will not go away completely until we upgrade our vendor version of consul. With Go modules, we'll probably do a 'replace' to swap out other copies of freeport with the one now in 'nomad/helper/freeport'.
298 lines
7.9 KiB
Go
298 lines
7.9 KiB
Go
// Copied from github.com/hashicorp/consul/sdk/freeport
|
|
//
|
|
// and tweaked for use by Nomad.
|
|
package freeport
|
|
|
|
import (
|
|
"container/list"
|
|
"fmt"
|
|
"math/rand"
|
|
"net"
|
|
"os"
|
|
"runtime"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
// todo(shoenig)
|
|
// There is a conflict between this copy of the updated sdk/freeport package
|
|
// and the lib/freeport package that is vendored as of nomad v0.10.x, which
|
|
// means we need to be careful to avoid the ports that transitive dependency
|
|
// is going to use (i.e. 10,000+). For now, we use the 9XXX port range with
|
|
// small blocks which means some tests will have to wait, and we need to be
|
|
// very careful not to leak ports.
|
|
|
|
const (
|
|
// blockSize is the size of the allocated port block. ports are given out
|
|
// consecutively from that block and after that point in a LRU fashion.
|
|
// blockSize = 1500
|
|
blockSize = 100 // todo(shoenig) revert once consul dependency is updated
|
|
|
|
// maxBlocks is the number of available port blocks before exclusions.
|
|
// maxBlocks = 30
|
|
maxBlocks = 10 // todo(shoenig) revert once consul dependency is updated
|
|
|
|
// lowPort is the lowest port number that should be used.
|
|
// lowPort = 10000
|
|
lowPort = 9000 // todo(shoenig) revert once consul dependency is updated
|
|
|
|
// attempts is how often we try to allocate a port block
|
|
// before giving up.
|
|
attempts = 10
|
|
)
|
|
|
|
var (
|
|
// effectiveMaxBlocks is the number of available port blocks.
|
|
// lowPort + effectiveMaxBlocks * blockSize must be less than 65535.
|
|
effectiveMaxBlocks int
|
|
|
|
// firstPort is the first port of the allocated block.
|
|
firstPort int
|
|
|
|
// lockLn is the system-wide mutex for the port block.
|
|
lockLn net.Listener
|
|
|
|
// mu guards:
|
|
// - pendingPorts
|
|
// - freePorts
|
|
// - total
|
|
mu sync.Mutex
|
|
|
|
// once is used to do the initialization on the first call to retrieve free
|
|
// ports
|
|
once sync.Once
|
|
|
|
// condNotEmpty is a condition variable to wait for freePorts to be not
|
|
// empty. Linked to 'mu'
|
|
condNotEmpty *sync.Cond
|
|
|
|
// freePorts is a FIFO of all currently free ports. Take from the front,
|
|
// and return to the back.
|
|
freePorts *list.List
|
|
|
|
// pendingPorts is a FIFO of recently freed ports that have not yet passed
|
|
// the not-in-use check.
|
|
pendingPorts *list.List
|
|
|
|
// total is the total number of available ports in the block for use.
|
|
total int
|
|
)
|
|
|
|
// initialize is used to initialize freeport.
|
|
func initialize() {
|
|
var err error
|
|
effectiveMaxBlocks, err = adjustMaxBlocks()
|
|
if err != nil {
|
|
panic("freeport: ephemeral port range detection failed: " + err.Error())
|
|
}
|
|
if effectiveMaxBlocks < 0 {
|
|
panic("freeport: no blocks of ports available outside of ephemeral range")
|
|
}
|
|
if lowPort+effectiveMaxBlocks*blockSize > 65535 {
|
|
panic("freeport: block size too big or too many blocks requested")
|
|
}
|
|
|
|
rand.Seed(time.Now().UnixNano())
|
|
firstPort, lockLn = alloc()
|
|
|
|
condNotEmpty = sync.NewCond(&mu)
|
|
freePorts = list.New()
|
|
pendingPorts = list.New()
|
|
|
|
// fill with all available free ports
|
|
for port := firstPort + 1; port < firstPort+blockSize; port++ {
|
|
if used := isPortInUse(port); !used {
|
|
freePorts.PushBack(port)
|
|
}
|
|
}
|
|
total = freePorts.Len()
|
|
|
|
go checkFreedPorts()
|
|
}
|
|
|
|
func checkFreedPorts() {
|
|
ticker := time.NewTicker(250 * time.Millisecond)
|
|
for {
|
|
<-ticker.C
|
|
checkFreedPortsOnce()
|
|
}
|
|
}
|
|
|
|
func checkFreedPortsOnce() {
|
|
mu.Lock()
|
|
defer mu.Unlock()
|
|
|
|
pending := pendingPorts.Len()
|
|
remove := make([]*list.Element, 0, pending)
|
|
for elem := pendingPorts.Front(); elem != nil; elem = elem.Next() {
|
|
port := elem.Value.(int)
|
|
if used := isPortInUse(port); !used {
|
|
freePorts.PushBack(port)
|
|
remove = append(remove, elem)
|
|
}
|
|
}
|
|
|
|
retained := pending - len(remove)
|
|
|
|
if retained > 0 {
|
|
logf("WARN", "%d out of %d pending ports are still in use; something probably didn't wait around for the port to be closed!", retained, pending)
|
|
}
|
|
|
|
if len(remove) == 0 {
|
|
return
|
|
}
|
|
|
|
for _, elem := range remove {
|
|
pendingPorts.Remove(elem)
|
|
}
|
|
|
|
condNotEmpty.Broadcast()
|
|
}
|
|
|
|
// adjustMaxBlocks avoids having the allocation ranges overlap the ephemeral
|
|
// port range.
|
|
func adjustMaxBlocks() (int, error) {
|
|
ephemeralPortMin, ephemeralPortMax, err := getEphemeralPortRange()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
if ephemeralPortMin <= 0 || ephemeralPortMax <= 0 {
|
|
logf("INFO", "ephemeral port range detection not configured for GOOS=%q", runtime.GOOS)
|
|
return maxBlocks, nil
|
|
}
|
|
|
|
logf("INFO", "detected ephemeral port range of [%d, %d]", ephemeralPortMin, ephemeralPortMax)
|
|
for block := 0; block < maxBlocks; block++ {
|
|
min := lowPort + block*blockSize
|
|
max := min + blockSize
|
|
overlap := intervalOverlap(min, max-1, ephemeralPortMin, ephemeralPortMax)
|
|
if overlap {
|
|
logf("INFO", "reducing max blocks from %d to %d to avoid the ephemeral port range", maxBlocks, block)
|
|
return block, nil
|
|
}
|
|
}
|
|
return maxBlocks, nil
|
|
}
|
|
|
|
// alloc reserves a port block for exclusive use for the lifetime of the
|
|
// application. lockLn serves as a system-wide mutex for the port block and is
|
|
// implemented as a TCP listener which is bound to the firstPort and which will
|
|
// be automatically released when the application terminates.
|
|
func alloc() (int, net.Listener) {
|
|
for i := 0; i < attempts; i++ {
|
|
block := int(rand.Int31n(int32(effectiveMaxBlocks)))
|
|
firstPort := lowPort + block*blockSize
|
|
ln, err := net.ListenTCP("tcp", tcpAddr("127.0.0.1", firstPort))
|
|
if err != nil {
|
|
continue
|
|
}
|
|
// logf("DEBUG", "allocated port block %d (%d-%d)", block, firstPort, firstPort+blockSize-1)
|
|
return firstPort, ln
|
|
}
|
|
panic("freeport: cannot allocate port block")
|
|
}
|
|
|
|
// MustTake is the same as Take except it panics on error.
|
|
func MustTake(n int) (ports []int) {
|
|
ports, err := Take(n)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return ports
|
|
}
|
|
|
|
// Take returns a list of free ports from the allocated port block. It is safe
|
|
// to call this method concurrently. Ports have been tested to be available on
|
|
// 127.0.0.1 TCP but there is no guarantee that they will remain free in the
|
|
// future.
|
|
func Take(n int) (ports []int, err error) {
|
|
if n <= 0 {
|
|
return nil, fmt.Errorf("freeport: cannot take %d ports", n)
|
|
}
|
|
|
|
mu.Lock()
|
|
defer mu.Unlock()
|
|
|
|
// Reserve a port block
|
|
once.Do(initialize)
|
|
|
|
if n > total {
|
|
return nil, fmt.Errorf("freeport: block size too small")
|
|
}
|
|
|
|
for len(ports) < n {
|
|
for freePorts.Len() == 0 {
|
|
if total == 0 {
|
|
return nil, fmt.Errorf("freeport: impossible to satisfy request; there are no actual free ports in the block anymore")
|
|
}
|
|
condNotEmpty.Wait()
|
|
}
|
|
|
|
elem := freePorts.Front()
|
|
freePorts.Remove(elem)
|
|
port := elem.Value.(int)
|
|
|
|
if used := isPortInUse(port); used {
|
|
// Something outside of the test suite has stolen this port, possibly
|
|
// due to assignment to an ephemeral port, remove it completely.
|
|
logf("WARN", "leaked port %d due to theft; removing from circulation", port)
|
|
total--
|
|
continue
|
|
}
|
|
|
|
ports = append(ports, port)
|
|
}
|
|
|
|
// logf("DEBUG", "free ports: %v", ports)
|
|
return ports, nil
|
|
}
|
|
|
|
// Return returns a block of ports back to the general pool. These ports should
|
|
// have been returned from a call to Take().
|
|
func Return(ports []int) {
|
|
if len(ports) == 0 {
|
|
return // convenience short circuit for test ergonomics
|
|
}
|
|
|
|
mu.Lock()
|
|
defer mu.Unlock()
|
|
|
|
for _, port := range ports {
|
|
if port > firstPort && port < firstPort+blockSize {
|
|
pendingPorts.PushBack(port)
|
|
}
|
|
}
|
|
}
|
|
|
|
func isPortInUse(port int) bool {
|
|
ln, err := net.ListenTCP("tcp", tcpAddr("127.0.0.1", port))
|
|
if err != nil {
|
|
return true
|
|
}
|
|
_ = ln.Close()
|
|
return false
|
|
}
|
|
|
|
func tcpAddr(ip string, port int) *net.TCPAddr {
|
|
return &net.TCPAddr{IP: net.ParseIP(ip), Port: port}
|
|
}
|
|
|
|
// intervalOverlap returns true if the doubly-inclusive integer intervals
|
|
// represented by [min1, max1] and [min2, max2] overlap.
|
|
func intervalOverlap(min1, max1, min2, max2 int) bool {
|
|
if min1 > max1 {
|
|
logf("WARN", "interval1 is not ordered [%d, %d]", min1, max1)
|
|
return false
|
|
}
|
|
if min2 > max2 {
|
|
logf("WARN", "interval2 is not ordered [%d, %d]", min2, max2)
|
|
return false
|
|
}
|
|
return min1 <= max2 && min2 <= max1
|
|
}
|
|
|
|
func logf(severity string, format string, a ...interface{}) {
|
|
_, _ = fmt.Fprintf(os.Stderr, "["+severity+"] freeport: "+format+"\n", a...)
|
|
}
|