open-nomad/scheduler/scheduler_system.go

557 lines
17 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package scheduler
import (
"fmt"
"runtime/debug"
log "github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-memdb"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/structs"
)
const (
// maxSystemScheduleAttempts is used to limit the number of times
// we will attempt to schedule if we continue to hit conflicts for system
// jobs.
maxSystemScheduleAttempts = 5
// maxSysBatchScheduleAttempts is used to limit the number of times we will
// attempt to schedule if we continue to hit conflicts for sysbatch jobs.
maxSysBatchScheduleAttempts = 2
)
// SystemScheduler is used for 'system' and 'sysbatch' jobs. This scheduler is
// designed for jobs that should be run on every client. The 'system' mode
// will ensure those jobs continuously run regardless of successful task exits,
// whereas 'sysbatch' considers the task complete on success.
type SystemScheduler struct {
logger log.Logger
eventsCh chan<- interface{}
state State
planner Planner
sysbatch bool
eval *structs.Evaluation
job *structs.Job
plan *structs.Plan
planResult *structs.PlanResult
ctx *EvalContext
stack *SystemStack
nodes []*structs.Node
notReadyNodes map[string]struct{}
nodesByDC map[string]int
limitReached bool
nextEval *structs.Evaluation
failedTGAllocs map[string]*structs.AllocMetric
queuedAllocs map[string]int
}
// NewSystemScheduler is a factory function to instantiate a new system
// scheduler.
func NewSystemScheduler(logger log.Logger, eventsCh chan<- interface{}, state State, planner Planner) Scheduler {
return &SystemScheduler{
logger: logger.Named("system_sched"),
eventsCh: eventsCh,
state: state,
planner: planner,
sysbatch: false,
}
}
func NewSysBatchScheduler(logger log.Logger, eventsCh chan<- interface{}, state State, planner Planner) Scheduler {
return &SystemScheduler{
logger: logger.Named("sysbatch_sched"),
eventsCh: eventsCh,
state: state,
planner: planner,
sysbatch: true,
}
}
// Process is used to handle a single evaluation.
func (s *SystemScheduler) Process(eval *structs.Evaluation) (err error) {
defer func() {
if r := recover(); r != nil {
s.logger.Error("processing eval panicked scheduler - please report this as a bug!", "eval_id", eval.ID, "error", r, "stack_trace", string(debug.Stack()))
err = fmt.Errorf("failed to process eval: %v", r)
}
}()
// Store the evaluation
s.eval = eval
// Update our logger with the eval's information
s.logger = s.logger.With("eval_id", eval.ID, "job_id", eval.JobID, "namespace", eval.Namespace)
// Verify the evaluation trigger reason is understood
if !s.canHandle(eval.TriggeredBy) {
desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason", eval.TriggeredBy)
return setStatus(s.logger, s.planner, s.eval, s.nextEval, nil, s.failedTGAllocs, structs.EvalStatusFailed, desc,
s.queuedAllocs, "")
}
limit := maxSystemScheduleAttempts
if s.sysbatch {
limit = maxSysBatchScheduleAttempts
}
// Retry up to the maxSystemScheduleAttempts and reset if progress is made.
progress := func() bool { return progressMade(s.planResult) }
if err := retryMax(limit, s.process, progress); err != nil {
if statusErr, ok := err.(*SetStatusError); ok {
return setStatus(s.logger, s.planner, s.eval, s.nextEval, nil, s.failedTGAllocs, statusErr.EvalStatus, err.Error(),
s.queuedAllocs, "")
}
return err
}
// Update the status to complete
return setStatus(s.logger, s.planner, s.eval, s.nextEval, nil, s.failedTGAllocs, structs.EvalStatusComplete, "",
s.queuedAllocs, "")
}
// process is wrapped in retryMax to iteratively run the handler until we have no
// further work or we've made the maximum number of attempts.
func (s *SystemScheduler) process() (bool, error) {
// Lookup the Job by ID
var err error
ws := memdb.NewWatchSet()
s.job, err = s.state.JobByID(ws, s.eval.Namespace, s.eval.JobID)
if err != nil {
return false, fmt.Errorf("failed to get job '%s': %v", s.eval.JobID, err)
}
numTaskGroups := 0
if !s.job.Stopped() {
numTaskGroups = len(s.job.TaskGroups)
}
s.queuedAllocs = make(map[string]int, numTaskGroups)
// Get the ready nodes in the required datacenters
if !s.job.Stopped() {
s.nodes, s.notReadyNodes, s.nodesByDC, err = readyNodesInDCsAndPool(
s.state, s.job.Datacenters, s.job.NodePool)
if err != nil {
return false, fmt.Errorf("failed to get ready nodes: %v", err)
}
}
// Create a plan
s.plan = s.eval.MakePlan(s.job)
// Reset the failed allocations
s.failedTGAllocs = nil
// Create an evaluation context
s.ctx = NewEvalContext(s.eventsCh, s.state, s.plan, s.logger)
// Construct the placement stack
s.stack = NewSystemStack(s.sysbatch, s.ctx)
if !s.job.Stopped() {
s.setJob(s.job)
}
// Compute the target job allocations
if err := s.computeJobAllocs(); err != nil {
s.logger.Error("failed to compute job allocations", "error", err)
return false, err
}
// If the plan is a no-op, we can bail. If AnnotatePlan is set submit the plan
// anyways to get the annotations.
if s.plan.IsNoOp() && !s.eval.AnnotatePlan {
return true, nil
}
// If the limit of placements was reached we need to create an evaluation
// to pickup from here after the stagger period.
if s.limitReached && s.nextEval == nil {
s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger)
if err := s.planner.CreateEval(s.nextEval); err != nil {
s.logger.Error("failed to make next eval for rolling update", "error", err)
return false, err
}
s.logger.Debug("rolling update limit reached, next eval created", "next_eval_id", s.nextEval.ID)
}
// Submit the plan
result, newState, err := s.planner.SubmitPlan(s.plan)
s.planResult = result
if err != nil {
return false, err
}
// Decrement the number of allocations pending per task group based on the
// number of allocations successfully placed
adjustQueuedAllocations(s.logger, result, s.queuedAllocs)
// If we got a state refresh, try again since we have stale data
if newState != nil {
s.logger.Debug("refresh forced")
s.state = newState
return false, nil
}
// Try again if the plan was not fully committed, potential conflict
fullCommit, expected, actual := result.FullCommit(s.plan)
if !fullCommit {
s.logger.Debug("plan didn't fully commit", "attempted", expected, "placed", actual)
return false, nil
}
// Success!
return true, nil
}
// setJob updates the stack with the given job and job's node pool scheduler
// configuration.
func (s *SystemScheduler) setJob(job *structs.Job) error {
// Fetch node pool and global scheduler configuration to determine how to
// configure the scheduler.
pool, err := s.state.NodePoolByName(nil, job.NodePool)
if err != nil {
return fmt.Errorf("failed to get job node pool %q: %v", job.NodePool, err)
}
_, schedConfig, err := s.state.SchedulerConfig()
if err != nil {
return fmt.Errorf("failed to get scheduler configuration: %v", err)
}
s.stack.SetJob(job)
s.stack.SetSchedulerConfiguration(schedConfig.WithNodePool(pool))
return nil
}
// computeJobAllocs is used to reconcile differences between the job,
// existing allocations and node status to update the allocations.
func (s *SystemScheduler) computeJobAllocs() error {
// Lookup the allocations by JobID
ws := memdb.NewWatchSet()
allocs, err := s.state.AllocsByJob(ws, s.eval.Namespace, s.eval.JobID, true)
if err != nil {
return fmt.Errorf("failed to get allocs for job '%s': %v", s.eval.JobID, err)
}
// Determine the tainted nodes containing job allocs
tainted, err := taintedNodes(s.state, allocs)
if err != nil {
return fmt.Errorf("failed to get tainted nodes for job '%s': %v", s.eval.JobID, err)
}
// Update the allocations which are in pending/running state on tainted
// nodes to lost.
updateNonTerminalAllocsToLost(s.plan, tainted, allocs)
// Split out terminal allocations
live, term := structs.SplitTerminalAllocs(allocs)
// Diff the required and existing allocations
diff := diffSystemAllocs(s.job, s.nodes, s.notReadyNodes, tainted, live, term,
s.planner.ServersMeetMinimumVersion(minVersionMaxClientDisconnect, true))
s.logger.Debug("reconciled current state with desired state", "results", log.Fmt("%#v", diff))
// Add all the allocs to stop
for _, e := range diff.stop {
s.plan.AppendStoppedAlloc(e.Alloc, allocNotNeeded, "", "")
}
// Add all the allocs to migrate
for _, e := range diff.migrate {
s.plan.AppendStoppedAlloc(e.Alloc, allocNodeTainted, "", "")
}
// Lost allocations should be transitioned to desired status stop and client
// status lost.
for _, e := range diff.lost {
s.plan.AppendStoppedAlloc(e.Alloc, allocLost, structs.AllocClientStatusLost, "")
}
for _, e := range diff.disconnecting {
s.plan.AppendUnknownAlloc(e.Alloc)
}
// Attempt to do the upgrades in place.
// Reconnecting allocations need to be updated to persists alloc state
// changes.
updates := make([]allocTuple, 0, len(diff.update)+len(diff.reconnecting))
updates = append(updates, diff.update...)
updates = append(updates, diff.reconnecting...)
destructiveUpdates, inplaceUpdates := inplaceUpdate(s.ctx, s.eval, s.job, s.stack, updates)
diff.update = destructiveUpdates
if s.eval.AnnotatePlan {
s.plan.Annotations = &structs.PlanAnnotations{
DesiredTGUpdates: desiredUpdates(diff, inplaceUpdates, destructiveUpdates),
}
}
// Check if a rolling upgrade strategy is being used
limit := len(diff.update)
if !s.job.Stopped() && s.job.Update.Rolling() {
limit = s.job.Update.MaxParallel
}
// Treat non in-place updates as an eviction and new placement.
s.limitReached = evictAndPlace(s.ctx, diff, diff.update, allocUpdating, &limit)
// Nothing remaining to do if placement is not required
if len(diff.place) == 0 {
if !s.job.Stopped() {
for _, tg := range s.job.TaskGroups {
s.queuedAllocs[tg.Name] = 0
}
}
return nil
}
// Record the number of allocations that needs to be placed per Task Group
for _, allocTuple := range diff.place {
s.queuedAllocs[allocTuple.TaskGroup.Name] += 1
}
// Compute the placements
return s.computePlacements(diff.place)
}
func mergeNodeFiltered(acc, curr *structs.AllocMetric) *structs.AllocMetric {
if acc == nil {
return curr.Copy()
}
acc.NodesEvaluated += curr.NodesEvaluated
acc.NodesFiltered += curr.NodesFiltered
if acc.ClassFiltered == nil {
acc.ClassFiltered = make(map[string]int)
}
for k, v := range curr.ClassFiltered {
acc.ClassFiltered[k] += v
}
if acc.ConstraintFiltered == nil {
acc.ConstraintFiltered = make(map[string]int)
}
for k, v := range curr.ConstraintFiltered {
acc.ConstraintFiltered[k] += v
}
acc.AllocationTime += curr.AllocationTime
return acc
}
// computePlacements computes placements for allocations
func (s *SystemScheduler) computePlacements(place []allocTuple) error {
nodeByID := make(map[string]*structs.Node, len(s.nodes))
for _, node := range s.nodes {
nodeByID[node.ID] = node
}
// track node filtering, to only report an error if all nodes have been filtered
var filteredMetrics map[string]*structs.AllocMetric
nodes := make([]*structs.Node, 1)
for _, missing := range place {
tgName := missing.TaskGroup.Name
node, ok := nodeByID[missing.Alloc.NodeID]
if !ok {
s.logger.Debug("could not find node %q", missing.Alloc.NodeID)
continue
}
// Update the set of placement nodes
nodes[0] = node
s.stack.SetNodes(nodes)
// Attempt to match the task group
option := s.stack.Select(missing.TaskGroup, &SelectOptions{AllocName: missing.Name})
if option == nil {
// If the task can't be placed on this node, update reporting data
// and continue to short circuit the loop
// If this node was filtered because of constraint
// mismatches and we couldn't create an allocation then
// decrement queuedAllocs for that task group.
if s.ctx.metrics.NodesFiltered > 0 {
queued := s.queuedAllocs[tgName] - 1
s.queuedAllocs[tgName] = queued
if filteredMetrics == nil {
filteredMetrics = map[string]*structs.AllocMetric{}
}
filteredMetrics[tgName] = mergeNodeFiltered(filteredMetrics[tgName], s.ctx.Metrics())
if queued <= 0 {
if s.failedTGAllocs == nil {
s.failedTGAllocs = make(map[string]*structs.AllocMetric)
}
s.failedTGAllocs[tgName] = filteredMetrics[tgName]
}
// If we are annotating the plan, then decrement the desired
// placements based on whether the node meets the constraints
if s.eval.AnnotatePlan && s.plan.Annotations != nil &&
s.plan.Annotations.DesiredTGUpdates != nil {
desired := s.plan.Annotations.DesiredTGUpdates[tgName]
desired.Place -= 1
}
// Filtered nodes are not reported to users, just omitted from the job status
continue
}
// Check if this task group has already failed, reported to the user as a count
if metric, ok := s.failedTGAllocs[tgName]; ok {
metric.CoalescedFailures += 1
metric.ExhaustResources(missing.TaskGroup)
continue
}
// Store the available nodes by datacenter
s.ctx.Metrics().NodesAvailable = s.nodesByDC
s.ctx.Metrics().NodesInPool = len(s.nodes)
// Compute top K scoring node metadata
s.ctx.Metrics().PopulateScoreMetaData()
// Lazy initialize the failed map
if s.failedTGAllocs == nil {
s.failedTGAllocs = make(map[string]*structs.AllocMetric)
}
// Update metrics with the resources requested by the task group.
s.ctx.Metrics().ExhaustResources(missing.TaskGroup)
// Actual failure to start this task on this candidate node, report it individually
s.failedTGAllocs[tgName] = s.ctx.Metrics()
s.addBlocked(node)
continue
}
// Store the available nodes by datacenter
s.ctx.Metrics().NodesAvailable = s.nodesByDC
s.ctx.Metrics().NodesInPool = len(s.nodes)
// Compute top K scoring node metadata
s.ctx.Metrics().PopulateScoreMetaData()
// Set fields based on if we found an allocation option
resources := &structs.AllocatedResources{
Tasks: option.TaskResources,
TaskLifecycles: option.TaskLifecycles,
Shared: structs.AllocatedSharedResources{
DiskMB: int64(missing.TaskGroup.EphemeralDisk.SizeMB),
},
}
if option.AllocResources != nil {
resources.Shared.Networks = option.AllocResources.Networks
resources.Shared.Ports = option.AllocResources.Ports
}
// Create an allocation for this
alloc := &structs.Allocation{
ID: uuid.Generate(),
Namespace: s.job.Namespace,
EvalID: s.eval.ID,
Name: missing.Name,
JobID: s.job.ID,
TaskGroup: tgName,
Metrics: s.ctx.Metrics(),
NodeID: option.Node.ID,
NodeName: option.Node.Name,
TaskResources: resources.OldTaskResources(),
AllocatedResources: resources,
DesiredStatus: structs.AllocDesiredStatusRun,
ClientStatus: structs.AllocClientStatusPending,
// SharedResources is considered deprecated, will be removed in 0.11.
// It is only set for compat reasons
SharedResources: &structs.Resources{
DiskMB: missing.TaskGroup.EphemeralDisk.SizeMB,
Networks: resources.Shared.Networks,
},
}
// If the new allocation is replacing an older allocation then we record the
// older allocation id so that they are chained
if missing.Alloc != nil {
alloc.PreviousAllocation = missing.Alloc.ID
}
// If this placement involves preemption, set DesiredState to evict for those allocations
if option.PreemptedAllocs != nil {
var preemptedAllocIDs []string
for _, stop := range option.PreemptedAllocs {
s.plan.AppendPreemptedAlloc(stop, alloc.ID)
preemptedAllocIDs = append(preemptedAllocIDs, stop.ID)
if s.eval.AnnotatePlan && s.plan.Annotations != nil {
s.plan.Annotations.PreemptedAllocs = append(s.plan.Annotations.PreemptedAllocs, stop.Stub(nil))
if s.plan.Annotations.DesiredTGUpdates != nil {
desired := s.plan.Annotations.DesiredTGUpdates[tgName]
desired.Preemptions += 1
}
}
}
alloc.PreemptedAllocations = preemptedAllocIDs
}
s.plan.AppendAlloc(alloc, nil)
}
return nil
}
// addBlocked creates a new blocked eval for this job on this node
// and submit to the planner (worker.go), which keeps the eval for execution later
func (s *SystemScheduler) addBlocked(node *structs.Node) error {
e := s.ctx.Eligibility()
escaped := e.HasEscaped()
// Only store the eligible classes if the eval hasn't escaped.
var classEligibility map[string]bool
if !escaped {
classEligibility = e.GetClasses()
}
blocked := s.eval.CreateBlockedEval(classEligibility, escaped, e.QuotaLimitReached(), s.failedTGAllocs)
blocked.StatusDescription = blockedEvalFailedPlacements
blocked.NodeID = node.ID
return s.planner.CreateEval(blocked)
}
func (s *SystemScheduler) canHandle(trigger string) bool {
switch trigger {
case structs.EvalTriggerJobRegister:
case structs.EvalTriggerNodeUpdate:
case structs.EvalTriggerFailedFollowUp:
case structs.EvalTriggerJobDeregister:
case structs.EvalTriggerRollingUpdate:
case structs.EvalTriggerPreemption:
case structs.EvalTriggerDeploymentWatcher:
case structs.EvalTriggerNodeDrain:
case structs.EvalTriggerAllocStop:
case structs.EvalTriggerQueuedAllocs:
case structs.EvalTriggerScaling:
case structs.EvalTriggerReconnect:
default:
switch s.sysbatch {
case true:
return trigger == structs.EvalTriggerPeriodicJob
case false:
return false
}
}
return true
}