open-nomad/nomad/plan_apply.go

791 lines
27 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package nomad
import (
"context"
"fmt"
"runtime"
"time"
metrics "github.com/armon/go-metrics"
log "github.com/hashicorp/go-hclog"
memdb "github.com/hashicorp/go-memdb"
multierror "github.com/hashicorp/go-multierror"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/raft"
)
// planner is used to manage the submitted allocation plans that are waiting
// to be accessed by the leader
type planner struct {
srv *Server
// planQueue is used to manage the submitted allocation
// plans that are waiting to be assessed by the leader
planQueue *PlanQueue
// badNodeTracker keeps a score for nodes that have plan rejections.
// Plan rejections are somewhat expected given Nomad's optimistic
// scheduling, but repeated rejections for the same node may indicate an
// undetected issue, so we need to track rejection history.
badNodeTracker BadNodeTracker
}
// newPlanner returns a new planner to be used for managing allocation plans.
func newPlanner(s *Server) (*planner, error) {
log := s.logger.Named("planner")
// Create a plan queue
planQueue, err := NewPlanQueue()
if err != nil {
return nil, err
}
// Create the bad node tracker.
var badNodeTracker BadNodeTracker
if s.config.NodePlanRejectionEnabled {
config := DefaultCachedBadNodeTrackerConfig()
config.Window = s.config.NodePlanRejectionWindow
config.Threshold = s.config.NodePlanRejectionThreshold
badNodeTracker, err = NewCachedBadNodeTracker(log, config)
if err != nil {
return nil, err
}
} else {
badNodeTracker = &NoopBadNodeTracker{}
}
return &planner{
srv: s,
planQueue: planQueue,
badNodeTracker: badNodeTracker,
}, nil
}
// planApply is a long lived goroutine that reads plan allocations from
// the plan queue, determines if they can be applied safely and applies
// them via Raft.
//
// Naively, we could simply dequeue a plan, verify, apply and then respond.
// However, the plan application is bounded by the Raft apply time and
// subject to some latency. This creates a stall condition, where we are
// not evaluating, but simply waiting for a transaction to apply.
//
// To avoid this, we overlap verification with apply. This means once
// we've verified plan N we attempt to apply it. However, while waiting
// for apply, we begin to verify plan N+1 under the assumption that plan
// N has succeeded.
//
// In this sense, we track two parallel versions of the world. One is
// the pessimistic one driven by the Raft log which is replicated. The
// other is optimistic and assumes our transactions will succeed. In the
// happy path, this lets us do productive work during the latency of
// apply.
//
// In the unhappy path (Raft transaction fails), effectively we only
// wasted work during a time we would have been waiting anyways. However,
// in anticipation of this case we cannot respond to the plan until
// the Raft log is updated. This means our schedulers will stall,
// but there are many of those and only a single plan verifier.
func (p *planner) planApply() {
// planIndexCh is used to track an outstanding application and receive
// its committed index while snap holds an optimistic state which
// includes that plan application.
var planIndexCh chan uint64
var snap *state.StateSnapshot
// prevPlanResultIndex is the index when the last PlanResult was
// committed. Since only the last plan is optimistically applied to the
// snapshot, it's possible the current snapshot's and plan's indexes
// are less than the index the previous plan result was committed at.
// prevPlanResultIndex also guards against the previous plan committing
// during Dequeue, thus causing the snapshot containing the optimistic
// commit to be discarded and potentially evaluating the current plan
// against an index older than the previous plan was committed at.
var prevPlanResultIndex uint64
// Setup a worker pool with half the cores, with at least 1
poolSize := runtime.NumCPU() / 2
if poolSize == 0 {
poolSize = 1
}
pool := NewEvaluatePool(poolSize, workerPoolBufferSize)
defer pool.Shutdown()
for {
// Pull the next pending plan, exit if we are no longer leader
pending, err := p.planQueue.Dequeue(0)
if err != nil {
return
}
// If last plan has completed get a new snapshot
select {
case idx := <-planIndexCh:
// Previous plan committed. Discard snapshot and ensure
// future snapshots include this plan. idx may be 0 if
// plan failed to apply, so use max(prev, idx)
prevPlanResultIndex = max(prevPlanResultIndex, idx)
planIndexCh = nil
snap = nil
default:
}
if snap != nil {
// If snapshot doesn't contain the previous plan
// result's index and the current plan's snapshot it,
// discard it and get a new one below.
minIndex := max(prevPlanResultIndex, pending.plan.SnapshotIndex)
if idx, err := snap.LatestIndex(); err != nil || idx < minIndex {
snap = nil
}
}
// Snapshot the state so that we have a consistent view of the world
// if no snapshot is available.
// - planIndexCh will be nil if the previous plan result applied
// during Dequeue
// - snap will be nil if its index < max(prevIndex, curIndex)
if planIndexCh == nil || snap == nil {
snap, err = p.snapshotMinIndex(prevPlanResultIndex, pending.plan.SnapshotIndex)
if err != nil {
p.srv.logger.Error("failed to snapshot state", "error", err)
pending.respond(nil, err)
continue
}
}
// Evaluate the plan
result, err := evaluatePlan(pool, snap, pending.plan, p.srv.logger)
if err != nil {
p.srv.logger.Error("failed to evaluate plan", "error", err)
pending.respond(nil, err)
continue
}
// Check if any of the rejected nodes should be made ineligible.
for _, nodeID := range result.RejectedNodes {
if p.badNodeTracker.Add(nodeID) {
result.IneligibleNodes = append(result.IneligibleNodes, nodeID)
}
}
// Fast-path the response if there is nothing to do
if result.IsNoOp() {
pending.respond(result, nil)
continue
}
// Ensure any parallel apply is complete before starting the next one.
// This also limits how out of date our snapshot can be.
if planIndexCh != nil {
idx := <-planIndexCh
planIndexCh = nil
prevPlanResultIndex = max(prevPlanResultIndex, idx)
snap, err = p.snapshotMinIndex(prevPlanResultIndex, pending.plan.SnapshotIndex)
if err != nil {
p.srv.logger.Error("failed to update snapshot state", "error", err)
pending.respond(nil, err)
continue
}
}
// Dispatch the Raft transaction for the plan
future, err := p.applyPlan(pending.plan, result, snap)
if err != nil {
p.srv.logger.Error("failed to submit plan", "error", err)
pending.respond(nil, err)
continue
}
// Respond to the plan in async; receive plan's committed index via chan
planIndexCh = make(chan uint64, 1)
go p.asyncPlanWait(planIndexCh, future, result, pending)
}
}
// snapshotMinIndex wraps SnapshotAfter with a 10s timeout and converts timeout
// errors to a more descriptive error message. The snapshot is guaranteed to
// include both the previous plan and all objects referenced by the plan or
// return an error.
func (p *planner) snapshotMinIndex(prevPlanResultIndex, planSnapshotIndex uint64) (*state.StateSnapshot, error) {
defer metrics.MeasureSince([]string{"nomad", "plan", "wait_for_index"}, time.Now())
// Minimum index the snapshot must include is the max of the previous
// plan result's and current plan's snapshot index.
minIndex := max(prevPlanResultIndex, planSnapshotIndex)
// This timeout creates backpressure where any concurrent
// Plan.Submit RPCs will block waiting for results. This sheds
// load across all servers and gives raft some CPU to catch up,
// because schedulers won't dequeue more work while waiting.
const timeout = 10 * time.Second
ctx, cancel := context.WithTimeout(context.Background(), timeout)
snap, err := p.srv.fsm.State().SnapshotMinIndex(ctx, minIndex)
cancel()
if err == context.DeadlineExceeded {
return nil, fmt.Errorf("timed out after %s waiting for index=%d (previous plan result index=%d; plan snapshot index=%d)",
timeout, minIndex, prevPlanResultIndex, planSnapshotIndex)
}
return snap, err
}
// applyPlan is used to apply the plan result and to return the alloc index
func (p *planner) applyPlan(plan *structs.Plan, result *structs.PlanResult, snap *state.StateSnapshot) (raft.ApplyFuture, error) {
now := time.Now().UTC().UnixNano()
// Setup the update request
req := structs.ApplyPlanResultsRequest{
AllocUpdateRequest: structs.AllocUpdateRequest{
Job: plan.Job,
},
Deployment: result.Deployment,
DeploymentUpdates: result.DeploymentUpdates,
IneligibleNodes: result.IneligibleNodes,
EvalID: plan.EvalID,
UpdatedAt: now,
}
preemptedJobIDs := make(map[structs.NamespacedID]struct{})
if ServersMeetMinimumVersion(p.srv.Members(), p.srv.Region(), MinVersionPlanNormalization, true) {
// Initialize the allocs request using the new optimized log entry format.
// Determine the minimum number of updates, could be more if there
// are multiple updates per node
req.AllocsStopped = make([]*structs.AllocationDiff, 0, len(result.NodeUpdate))
req.AllocsUpdated = make([]*structs.Allocation, 0, len(result.NodeAllocation))
req.AllocsPreempted = make([]*structs.AllocationDiff, 0, len(result.NodePreemptions))
for _, updateList := range result.NodeUpdate {
for _, stoppedAlloc := range updateList {
req.AllocsStopped = append(req.AllocsStopped, normalizeStoppedAlloc(stoppedAlloc, now))
}
}
for _, allocList := range result.NodeAllocation {
req.AllocsUpdated = append(req.AllocsUpdated, allocList...)
}
// Set the time the alloc was applied for the first time. This can be used
// to approximate the scheduling time.
updateAllocTimestamps(req.AllocsUpdated, now)
err := signAllocIdentities(p.srv.encrypter, plan.Job, req.AllocsUpdated)
if err != nil {
return nil, err
}
for _, preemptions := range result.NodePreemptions {
for _, preemptedAlloc := range preemptions {
req.AllocsPreempted = append(req.AllocsPreempted, normalizePreemptedAlloc(preemptedAlloc, now))
// Gather jobids to create follow up evals
appendNamespacedJobID(preemptedJobIDs, preemptedAlloc)
}
}
} else {
// COMPAT 0.11: This branch is deprecated and will only be used to support
// application of older log entries. Expected to be removed in a future version.
// Determine the minimum number of updates, could be more if there
// are multiple updates per node
minUpdates := len(result.NodeUpdate)
minUpdates += len(result.NodeAllocation)
// Initialize using the older log entry format for Alloc and NodePreemptions
req.Alloc = make([]*structs.Allocation, 0, minUpdates)
req.NodePreemptions = make([]*structs.Allocation, 0, len(result.NodePreemptions))
for _, updateList := range result.NodeUpdate {
req.Alloc = append(req.Alloc, updateList...)
}
for _, allocList := range result.NodeAllocation {
req.Alloc = append(req.Alloc, allocList...)
}
for _, preemptions := range result.NodePreemptions {
req.NodePreemptions = append(req.NodePreemptions, preemptions...)
}
// Set the time the alloc was applied for the first time. This can be used
// to approximate the scheduling time.
updateAllocTimestamps(req.Alloc, now)
// Set modify time for preempted allocs if any
// Also gather jobids to create follow up evals
for _, alloc := range req.NodePreemptions {
alloc.ModifyTime = now
appendNamespacedJobID(preemptedJobIDs, alloc)
}
}
var evals []*structs.Evaluation
for preemptedJobID := range preemptedJobIDs {
job, _ := p.srv.State().JobByID(nil, preemptedJobID.Namespace, preemptedJobID.ID)
if job != nil {
eval := &structs.Evaluation{
ID: uuid.Generate(),
Namespace: job.Namespace,
TriggeredBy: structs.EvalTriggerPreemption,
JobID: job.ID,
Type: job.Type,
Priority: job.Priority,
Status: structs.EvalStatusPending,
CreateTime: now,
ModifyTime: now,
}
evals = append(evals, eval)
}
}
req.PreemptionEvals = evals
// Dispatch the Raft transaction
future, err := p.srv.raftApplyFuture(structs.ApplyPlanResultsRequestType, &req)
if err != nil {
return nil, err
}
// Optimistically apply to our state view
if snap != nil {
nextIdx := p.srv.raft.AppliedIndex() + 1
if err := snap.UpsertPlanResults(structs.ApplyPlanResultsRequestType, nextIdx, &req); err != nil {
return future, err
}
}
return future, nil
}
// normalizePreemptedAlloc removes redundant fields from a preempted allocation and
// returns AllocationDiff. Since a preempted allocation is always an existing allocation,
// the struct returned by this method contains only the differential, which can be
// applied to an existing allocation, to yield the updated struct
func normalizePreemptedAlloc(preemptedAlloc *structs.Allocation, now int64) *structs.AllocationDiff {
return &structs.AllocationDiff{
ID: preemptedAlloc.ID,
PreemptedByAllocation: preemptedAlloc.PreemptedByAllocation,
ModifyTime: now,
}
}
// normalizeStoppedAlloc removes redundant fields from a stopped allocation and
// returns AllocationDiff. Since a stopped allocation is always an existing allocation,
// the struct returned by this method contains only the differential, which can be
// applied to an existing allocation, to yield the updated struct
func normalizeStoppedAlloc(stoppedAlloc *structs.Allocation, now int64) *structs.AllocationDiff {
return &structs.AllocationDiff{
ID: stoppedAlloc.ID,
DesiredDescription: stoppedAlloc.DesiredDescription,
ClientStatus: stoppedAlloc.ClientStatus,
ModifyTime: now,
FollowupEvalID: stoppedAlloc.FollowupEvalID,
}
}
// appendNamespacedJobID appends the namespaced Job ID for the alloc to the jobIDs set
func appendNamespacedJobID(jobIDs map[structs.NamespacedID]struct{}, alloc *structs.Allocation) {
id := structs.NamespacedID{Namespace: alloc.Namespace, ID: alloc.JobID}
if _, ok := jobIDs[id]; !ok {
jobIDs[id] = struct{}{}
}
}
// updateAllocTimestamps sets the CreateTime and ModifyTime for the allocations
// to the timestamp provided
func updateAllocTimestamps(allocations []*structs.Allocation, timestamp int64) {
for _, alloc := range allocations {
if alloc.CreateTime == 0 {
alloc.CreateTime = timestamp
}
alloc.ModifyTime = timestamp
}
}
func signAllocIdentities(signer claimSigner, job *structs.Job, allocations []*structs.Allocation) error {
for _, alloc := range allocations {
if alloc.SignedIdentities == nil {
alloc.SignedIdentities = map[string]string{}
}
tg := job.LookupTaskGroup(alloc.TaskGroup)
for _, task := range tg.Tasks {
// skip tasks that already have an identity
if _, ok := alloc.SignedIdentities[task.Name]; ok {
continue
}
claims := alloc.ToTaskIdentityClaims(job, task.Name)
token, keyID, err := signer.SignClaims(claims)
if err != nil {
return err
}
alloc.SignedIdentities[task.Name] = token
alloc.SigningKeyID = keyID
}
}
return nil
}
// asyncPlanWait is used to apply and respond to a plan async. On successful
// commit the plan's index will be sent on the chan. On error the chan will be
// closed.
func (p *planner) asyncPlanWait(indexCh chan<- uint64, future raft.ApplyFuture,
result *structs.PlanResult, pending *pendingPlan) {
defer metrics.MeasureSince([]string{"nomad", "plan", "apply"}, time.Now())
defer close(indexCh)
// Wait for the plan to apply
if err := future.Error(); err != nil {
p.srv.logger.Error("failed to apply plan", "error", err)
pending.respond(nil, err)
return
}
// Respond to the plan
index := future.Index()
result.AllocIndex = index
// If this is a partial plan application, we need to ensure the scheduler
// at least has visibility into any placements it made to avoid double placement.
// The RefreshIndex computed by evaluatePlan may be stale due to evaluation
// against an optimistic copy of the state.
if result.RefreshIndex != 0 {
result.RefreshIndex = maxUint64(result.RefreshIndex, result.AllocIndex)
}
pending.respond(result, nil)
indexCh <- index
}
// evaluatePlan is used to determine what portions of a plan
// can be applied if any. Returns if there should be a plan application
// which may be partial or if there was an error
func evaluatePlan(pool *EvaluatePool, snap *state.StateSnapshot, plan *structs.Plan, logger log.Logger) (*structs.PlanResult, error) {
defer metrics.MeasureSince([]string{"nomad", "plan", "evaluate"}, time.Now())
logger.Trace("evaluating plan", "plan", log.Fmt("%#v", plan))
// Denormalize without the job
err := snap.DenormalizeAllocationsMap(plan.NodeUpdate)
if err != nil {
return nil, err
}
// Denormalize without the job
err = snap.DenormalizeAllocationsMap(plan.NodePreemptions)
if err != nil {
return nil, err
}
// Check if the plan exceeds quota
overQuota, err := evaluatePlanQuota(snap, plan)
if err != nil {
return nil, err
}
// Reject the plan and force the scheduler to refresh
if overQuota {
index, err := refreshIndex(snap)
if err != nil {
return nil, err
}
logger.Debug("plan for evaluation exceeds quota limit. Forcing state refresh", "eval_id", plan.EvalID, "refresh_index", index)
return &structs.PlanResult{RefreshIndex: index}, nil
}
return evaluatePlanPlacements(pool, snap, plan, logger)
}
// evaluatePlanPlacements is used to determine what portions of a plan can be
// applied if any, looking for node over commitment. Returns if there should be
// a plan application which may be partial or if there was an error
func evaluatePlanPlacements(pool *EvaluatePool, snap *state.StateSnapshot, plan *structs.Plan, logger log.Logger) (*structs.PlanResult, error) {
// Create a result holder for the plan
result := &structs.PlanResult{
NodeUpdate: make(map[string][]*structs.Allocation),
NodeAllocation: make(map[string][]*structs.Allocation),
Deployment: plan.Deployment.Copy(),
DeploymentUpdates: plan.DeploymentUpdates,
NodePreemptions: make(map[string][]*structs.Allocation),
}
// Collect all the nodeIDs
nodeIDs := make(map[string]struct{})
nodeIDList := make([]string, 0, len(plan.NodeUpdate)+len(plan.NodeAllocation))
for nodeID := range plan.NodeUpdate {
if _, ok := nodeIDs[nodeID]; !ok {
nodeIDs[nodeID] = struct{}{}
nodeIDList = append(nodeIDList, nodeID)
}
}
for nodeID := range plan.NodeAllocation {
if _, ok := nodeIDs[nodeID]; !ok {
nodeIDs[nodeID] = struct{}{}
nodeIDList = append(nodeIDList, nodeID)
}
}
// Setup a multierror to handle potentially getting many
// errors since we are processing in parallel.
var mErr multierror.Error
partialCommit := false
rejectedNodes := make(map[string]struct{}, 0)
// handleResult is used to process the result of evaluateNodePlan
handleResult := func(nodeID string, fit bool, reason string, err error) (cancel bool) {
// Evaluate the plan for this node
if err != nil {
mErr.Errors = append(mErr.Errors, err)
return true
}
if !fit {
metrics.IncrCounterWithLabels([]string{"nomad", "plan", "node_rejected"}, 1, []metrics.Label{{Name: "node_id", Value: nodeID}})
// Log the reason why the node's allocations could not be made
if reason != "" {
//TODO This was debug level and should return
//to debug level in the future. However until
//https://github.com/hashicorp/nomad/issues/9506
//is resolved this log line is the only way to
//monitor the disagreement between workers and
//the plan applier.
logger.Info("plan for node rejected, refer to https://www.nomadproject.io/s/port-plan-failure for more information",
"node_id", nodeID, "reason", reason, "eval_id", plan.EvalID,
"namespace", plan.Job.Namespace)
}
// Set that this is a partial commit and store the node that was
// rejected so the plan applier can detect repeated plan rejections
// for the same node.
partialCommit = true
rejectedNodes[nodeID] = struct{}{}
// If we require all-at-once scheduling, there is no point
// to continue the evaluation, as we've already failed.
if plan.AllAtOnce {
result.NodeUpdate = nil
result.NodeAllocation = nil
result.DeploymentUpdates = nil
result.Deployment = nil
result.NodePreemptions = nil
return true
}
// Skip this node, since it cannot be used.
return
}
// Add this to the plan result
if nodeUpdate := plan.NodeUpdate[nodeID]; len(nodeUpdate) > 0 {
result.NodeUpdate[nodeID] = nodeUpdate
}
if nodeAlloc := plan.NodeAllocation[nodeID]; len(nodeAlloc) > 0 {
result.NodeAllocation[nodeID] = nodeAlloc
}
if nodePreemptions := plan.NodePreemptions[nodeID]; nodePreemptions != nil {
// Do a pass over preempted allocs in the plan to check
// whether the alloc is already in a terminal state
var filteredNodePreemptions []*structs.Allocation
for _, preemptedAlloc := range nodePreemptions {
alloc, err := snap.AllocByID(nil, preemptedAlloc.ID)
if err != nil {
mErr.Errors = append(mErr.Errors, err)
continue
}
if alloc != nil && !alloc.TerminalStatus() {
filteredNodePreemptions = append(filteredNodePreemptions, preemptedAlloc)
}
}
result.NodePreemptions[nodeID] = filteredNodePreemptions
}
return
}
// Get the pool channels
req := pool.RequestCh()
resp := pool.ResultCh()
outstanding := 0
didCancel := false
// Evaluate each node in the plan, handling results as they are ready to
// avoid blocking.
OUTER:
for len(nodeIDList) > 0 {
nodeID := nodeIDList[0]
select {
case req <- evaluateRequest{snap, plan, nodeID}:
outstanding++
nodeIDList = nodeIDList[1:]
case r := <-resp:
outstanding--
// Handle a result that allows us to cancel evaluation,
// which may save time processing additional entries.
if cancel := handleResult(r.nodeID, r.fit, r.reason, r.err); cancel {
didCancel = true
break OUTER
}
}
}
// Drain the remaining results
for outstanding > 0 {
r := <-resp
if !didCancel {
if cancel := handleResult(r.nodeID, r.fit, r.reason, r.err); cancel {
didCancel = true
}
}
outstanding--
}
// If the plan resulted in a partial commit, we need to determine
// a minimum refresh index to force the scheduler to work on a more
// up-to-date state to avoid the failures.
if partialCommit {
index, err := refreshIndex(snap)
if err != nil {
mErr.Errors = append(mErr.Errors, err)
}
result.RefreshIndex = index
if result.RefreshIndex == 0 {
err := fmt.Errorf("partialCommit with RefreshIndex of 0")
mErr.Errors = append(mErr.Errors, err)
}
// If there was a partial commit and we are operating within a
// deployment correct for any canary that may have been desired to be
// placed but wasn't actually placed
correctDeploymentCanaries(result)
}
for n := range rejectedNodes {
result.RejectedNodes = append(result.RejectedNodes, n)
}
return result, mErr.ErrorOrNil()
}
// correctDeploymentCanaries ensures that the deployment object doesn't list any
// canaries as placed if they didn't actually get placed. This could happen if
// the plan had a partial commit.
func correctDeploymentCanaries(result *structs.PlanResult) {
// Hot path
if result.Deployment == nil || !result.Deployment.HasPlacedCanaries() {
return
}
// Build a set of all the allocations IDs that were placed
placedAllocs := make(map[string]struct{}, len(result.NodeAllocation))
for _, placed := range result.NodeAllocation {
for _, alloc := range placed {
placedAllocs[alloc.ID] = struct{}{}
}
}
// Go through all the canaries and ensure that the result list only contains
// those that have been placed
for _, group := range result.Deployment.TaskGroups {
canaries := group.PlacedCanaries
if len(canaries) == 0 {
continue
}
// Prune the canaries in place to avoid allocating an extra slice
i := 0
for _, canaryID := range canaries {
if _, ok := placedAllocs[canaryID]; ok {
canaries[i] = canaryID
i++
}
}
group.PlacedCanaries = canaries[:i]
}
}
// evaluateNodePlan is used to evaluate the plan for a single node,
// returning if the plan is valid or if an error is encountered
func evaluateNodePlan(snap *state.StateSnapshot, plan *structs.Plan, nodeID string) (bool, string, error) {
// If this is an evict-only plan, it always 'fits' since we are removing things.
if len(plan.NodeAllocation[nodeID]) == 0 {
return true, "", nil
}
// Get the node itself
ws := memdb.NewWatchSet()
node, err := snap.NodeByID(ws, nodeID)
if err != nil {
return false, "", fmt.Errorf("failed to get node '%s': %v", nodeID, err)
}
// If the node does not exist or is not ready for scheduling it is not fit
// XXX: There is a potential race between when we do this check and when
// the Raft commit happens.
if node == nil {
return false, "node does not exist", nil
} else if node.Status == structs.NodeStatusDisconnected {
if isValidForDisconnectedNode(plan, node.ID) {
return true, "", nil
}
return false, "node is disconnected and contains invalid updates", nil
} else if node.Status != structs.NodeStatusReady {
return false, "node is not ready for placements", nil
}
// Get the existing allocations that are non-terminal
existingAlloc, err := snap.AllocsByNodeTerminal(ws, nodeID, false)
if err != nil {
return false, "", fmt.Errorf("failed to get existing allocations for '%s': %v", nodeID, err)
}
// If nodeAllocations is a subset of the existing allocations we can continue,
// even if the node is not eligible, as only in-place updates or stop/evict are performed
if structs.AllocSubset(existingAlloc, plan.NodeAllocation[nodeID]) {
return true, "", nil
}
if node.SchedulingEligibility == structs.NodeSchedulingIneligible {
return false, "node is not eligible", nil
}
// Determine the proposed allocation by first removing allocations
// that are planned evictions and adding the new allocations.
var remove []*structs.Allocation
if update := plan.NodeUpdate[nodeID]; len(update) > 0 {
remove = append(remove, update...)
}
// Remove any preempted allocs
if preempted := plan.NodePreemptions[nodeID]; len(preempted) > 0 {
remove = append(remove, preempted...)
}
if updated := plan.NodeAllocation[nodeID]; len(updated) > 0 {
remove = append(remove, updated...)
}
proposed := structs.RemoveAllocs(existingAlloc, remove)
proposed = append(proposed, plan.NodeAllocation[nodeID]...)
// Check if these allocations fit
fit, reason, _, err := structs.AllocsFit(node, proposed, nil, true)
return fit, reason, err
}
// The plan is only valid for disconnected nodes if it only contains
// updates to mark allocations as unknown.
func isValidForDisconnectedNode(plan *structs.Plan, nodeID string) bool {
for _, alloc := range plan.NodeAllocation[nodeID] {
if alloc.ClientStatus != structs.AllocClientStatusUnknown {
return false
}
}
return true
}