open-nomad/nomad/leader.go

2802 lines
87 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package nomad
import (
"bytes"
"context"
"fmt"
"math/rand"
"net"
"strings"
"sync"
"time"
"github.com/armon/go-metrics"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-memdb"
"github.com/hashicorp/go-version"
"github.com/hashicorp/nomad/helper"
"github.com/hashicorp/nomad/helper/uuid"
"github.com/hashicorp/nomad/nomad/state"
"github.com/hashicorp/nomad/nomad/structs"
"github.com/hashicorp/raft"
"github.com/hashicorp/serf/serf"
"golang.org/x/time/rate"
)
const (
// failedEvalUnblockInterval is the interval at which failed evaluations are
// unblocked to re-enter the scheduler. A failed evaluation occurs under
// high contention when the schedulers plan does not make progress.
failedEvalUnblockInterval = 1 * time.Minute
// replicationRateLimit is used to rate limit how often data is replicated
// between the authoritative region and the local region
replicationRateLimit rate.Limit = 10.0
// barrierWriteTimeout is used to give Raft a chance to process a
// possible loss of leadership event if we are unable to get a barrier
// while leader.
barrierWriteTimeout = 2 * time.Minute
)
var minAutopilotVersion = version.Must(version.NewVersion("0.8.0"))
var minSchedulerConfigVersion = version.Must(version.NewVersion("0.9.0"))
var minClusterIDVersion = version.Must(version.NewVersion("0.10.4"))
var minOneTimeAuthenticationTokenVersion = version.Must(version.NewVersion("1.1.0"))
// minACLRoleVersion is the Nomad version at which the ACL role table was
// introduced. It forms the minimum version all federated servers must meet
// before the feature can be used.
var minACLRoleVersion = version.Must(version.NewVersion("1.4.0"))
// minACLAuthMethodVersion is the Nomad version at which the ACL auth methods
// table was introduced. It forms the minimum version all federated servers must
// meet before the feature can be used.
var minACLAuthMethodVersion = version.Must(version.NewVersion("1.5.0"))
// minACLJWTAuthMethodVersion is the Nomad version at which the ACL JWT auth method type
// was introduced. It forms the minimum version all federated servers must
// meet before the feature can be used.
var minACLJWTAuthMethodVersion = version.Must(version.NewVersion("1.5.4"))
// minACLBindingRuleVersion is the Nomad version at which the ACL binding rules
// table was introduced. It forms the minimum version all federated servers
// must meet before the feature can be used.
var minACLBindingRuleVersion = version.Must(version.NewVersion("1.5.0"))
// minNomadServiceRegistrationVersion is the Nomad version at which the service
// registrations table was introduced. It forms the minimum version all local
// servers must meet before the feature can be used.
var minNomadServiceRegistrationVersion = version.Must(version.NewVersion("1.3.0"))
// Any writes to node pools requires that all servers are on version 1.6.0 to
// prevent older versions of the server from crashing.
var minNodePoolsVersion = version.Must(version.NewVersion("1.6.0"))
// monitorLeadership is used to monitor if we acquire or lose our role
// as the leader in the Raft cluster. There is some work the leader is
// expected to do, so we must react to changes
func (s *Server) monitorLeadership() {
var weAreLeaderCh chan struct{}
var leaderLoop sync.WaitGroup
leaderCh := s.raft.LeaderCh()
leaderStep := func(isLeader bool) {
if isLeader {
if weAreLeaderCh != nil {
s.logger.Error("attempted to start the leader loop while running")
return
}
weAreLeaderCh = make(chan struct{})
leaderLoop.Add(1)
go func(ch chan struct{}) {
defer leaderLoop.Done()
s.leaderLoop(ch)
}(weAreLeaderCh)
s.logger.Info("cluster leadership acquired")
return
}
if weAreLeaderCh == nil {
s.logger.Error("attempted to stop the leader loop while not running")
return
}
s.logger.Debug("shutting down leader loop")
close(weAreLeaderCh)
leaderLoop.Wait()
weAreLeaderCh = nil
s.logger.Info("cluster leadership lost")
}
wasLeader := false
for {
select {
case isLeader := <-leaderCh:
if wasLeader != isLeader {
wasLeader = isLeader
// normal case where we went through a transition
leaderStep(isLeader)
} else if wasLeader && isLeader {
// Server lost but then gained leadership immediately.
// During this time, this server may have received
// Raft transitions that haven't been applied to the FSM
// yet.
// Ensure that that FSM caught up and eval queues are refreshed
s.logger.Warn("cluster leadership lost and gained leadership immediately. Could indicate network issues, memory paging, or high CPU load.")
leaderStep(false)
leaderStep(true)
} else {
// Server gained but lost leadership immediately
// before it reacted; nothing to do, move on
s.logger.Warn("cluster leadership gained and lost leadership immediately. Could indicate network issues, memory paging, or high CPU load.")
}
case <-s.shutdownCh:
if weAreLeaderCh != nil {
leaderStep(false)
}
return
}
}
}
func (s *Server) leadershipTransfer() error {
retryCount := 3
for i := 0; i < retryCount; i++ {
err := s.raft.LeadershipTransfer().Error()
if err == nil {
s.logger.Info("successfully transferred leadership")
return nil
}
// Don't retry if the Raft version doesn't support leadership transfer
// since this will never succeed.
if err == raft.ErrUnsupportedProtocol {
return fmt.Errorf("leadership transfer not supported with Raft version lower than 3")
}
s.logger.Error("failed to transfer leadership attempt, will retry",
"attempt", i,
"retry_limit", retryCount,
"error", err,
)
}
return fmt.Errorf("failed to transfer leadership in %d attempts", retryCount)
}
// leaderLoop runs as long as we are the leader to run various
// maintenance activities
func (s *Server) leaderLoop(stopCh chan struct{}) {
var reconcileCh chan serf.Member
establishedLeader := false
RECONCILE:
// Setup a reconciliation timer
reconcileCh = nil
interval := time.After(s.config.ReconcileInterval)
// Apply a raft barrier to ensure our FSM is caught up
start := time.Now()
barrier := s.raft.Barrier(barrierWriteTimeout)
if err := barrier.Error(); err != nil {
s.logger.Error("failed to wait for barrier", "error", err)
goto WAIT
}
metrics.MeasureSince([]string{"nomad", "leader", "barrier"}, start)
// Check if we need to handle initial leadership actions
if !establishedLeader {
if err := s.establishLeadership(stopCh); err != nil {
s.logger.Error("failed to establish leadership", "error", err)
// Immediately revoke leadership since we didn't successfully
// establish leadership.
if err := s.revokeLeadership(); err != nil {
s.logger.Error("failed to revoke leadership", "error", err)
}
// Attempt to transfer leadership. If successful, leave the
// leaderLoop since this node is no longer the leader. Otherwise
// try to establish leadership again after 5 seconds.
if err := s.leadershipTransfer(); err != nil {
s.logger.Error("failed to transfer leadership", "error", err)
interval = time.After(5 * time.Second)
goto WAIT
}
return
}
establishedLeader = true
defer func() {
if err := s.revokeLeadership(); err != nil {
s.logger.Error("failed to revoke leadership", "error", err)
}
}()
}
// Reconcile any missing data
if err := s.reconcile(); err != nil {
s.logger.Error("failed to reconcile", "error", err)
goto WAIT
}
// Initial reconcile worked, now we can process the channel
// updates
reconcileCh = s.reconcileCh
// Poll the stop channel to give it priority so we don't waste time
// trying to perform the other operations if we have been asked to shut
// down.
select {
case <-stopCh:
return
default:
}
WAIT:
// Wait until leadership is lost or periodically reconcile as long as we
// are the leader, or when Serf events arrive.
for {
select {
case <-stopCh:
// Lost leadership.
return
case <-s.shutdownCh:
return
case <-interval:
goto RECONCILE
case member := <-reconcileCh:
s.reconcileMember(member)
case errCh := <-s.reassertLeaderCh:
// Recompute leader state, by asserting leadership and
// repopulating leader states.
// Check first if we are indeed the leaders first. We
// can get into this state when the initial
// establishLeadership has failed.
// Afterwards we will be waiting for the interval to
// trigger a reconciliation and can potentially end up
// here. There is no point to reassert because this
// agent was never leader in the first place.
if !establishedLeader {
errCh <- fmt.Errorf("leadership has not been established")
continue
}
// refresh leadership state
s.revokeLeadership()
err := s.establishLeadership(stopCh)
errCh <- err
// In case establishLeadership fails, try to transfer leadership.
// At this point Raft thinks we are the leader, but Nomad did not
// complete the required steps to act as the leader.
if err != nil {
if err := s.leadershipTransfer(); err != nil {
// establishedLeader was true before, but it no longer is
// since we revoked leadership and leadershipTransfer also
// failed.
// Stay in the leaderLoop with establishedLeader set to
// false so we try to establish leadership again in the
// next loop.
establishedLeader = false
interval = time.After(5 * time.Second)
goto WAIT
}
// leadershipTransfer was successful and it is
// time to leave the leaderLoop.
return
}
}
}
}
// establishLeadership is invoked once we become leader and are able
// to invoke an initial barrier. The barrier is used to ensure any
// previously inflight transactions have been committed and that our
// state is up-to-date.
func (s *Server) establishLeadership(stopCh chan struct{}) error {
defer metrics.MeasureSince([]string{"nomad", "leader", "establish_leadership"}, time.Now())
// Generate a leader ACL token. This will allow the leader to issue work
// that requires a valid ACL token.
s.setLeaderAcl(uuid.Generate())
// Disable workers to free half the cores for use in the plan queue and
// evaluation broker
s.handlePausableWorkers(true)
// Initialize and start the autopilot routine
s.getOrCreateAutopilotConfig()
s.autopilot.Start(s.shutdownCtx)
// Initialize scheduler configuration.
schedulerConfig := s.getOrCreateSchedulerConfig()
// Initialize the ClusterID
_, _ = s.ClusterID()
// todo: use cluster ID for stuff, later!
// Enable the plan queue, since we are now the leader
s.planQueue.SetEnabled(true)
// Start the plan evaluator
go s.planApply()
// Start the eval broker and blocked eval broker if these are not paused by
// the operator.
restoreEvals := s.handleEvalBrokerStateChange(schedulerConfig)
// Enable the deployment watcher, since we are now the leader
s.deploymentWatcher.SetEnabled(true, s.State())
// Enable the NodeDrainer
s.nodeDrainer.SetEnabled(true, s.State())
// Enable the volume watcher, since we are now the leader
s.volumeWatcher.SetEnabled(true, s.State(), s.getLeaderAcl())
// Restore the eval broker state and blocked eval state. If these are
// currently paused, we do not need to do this.
if restoreEvals {
if err := s.restoreEvals(); err != nil {
return err
}
}
// Activate the vault client
s.vault.SetActive(true)
// Enable the periodic dispatcher, since we are now the leader.
s.periodicDispatcher.SetEnabled(true)
// Activate RPC now that local FSM caught up with Raft (as evident by Barrier call success)
// and all leader related components (e.g. broker queue) are enabled.
// Auxiliary processes (e.g. background, bookkeeping, and cleanup tasks can start after)
s.setConsistentReadReady()
// Further clean ups and follow up that don't block RPC consistency
// Create the first root key if it doesn't already exist
go s.initializeKeyring(stopCh)
// Restore the periodic dispatcher state
if err := s.restorePeriodicDispatcher(); err != nil {
return err
}
// Schedule periodic jobs which include expired local ACL token garbage
// collection.
go s.schedulePeriodic(stopCh)
// Reap any failed evaluations
go s.reapFailedEvaluations(stopCh)
// Reap any duplicate blocked evaluations
go s.reapDupBlockedEvaluations(stopCh)
// Reap any cancelable evaluations
s.reapCancelableEvalsCh = s.reapCancelableEvaluations(stopCh)
// Periodically unblock failed allocations
go s.periodicUnblockFailedEvals(stopCh)
// Periodically publish job summary metrics
go s.publishJobSummaryMetrics(stopCh)
// Periodically publish job status metrics
go s.publishJobStatusMetrics(stopCh)
// Setup the heartbeat timers. This is done both when starting up or when
// a leader fail over happens. Since the timers are maintained by the leader
// node, effectively this means all the timers are renewed at the time of failover.
// The TTL contract is that the session will not be expired before the TTL,
// so expiring it later is allowable.
//
// This MUST be done after the initial barrier to ensure the latest Nodes
// are available to be initialized. Otherwise initialization may use stale
// data.
if err := s.initializeHeartbeatTimers(); err != nil {
s.logger.Error("heartbeat timer setup failed", "error", err)
return err
}
// If ACLs are enabled, the leader needs to start a number of long-lived
// routines. Exactly which routines, depends on whether this leader is
// running within the authoritative region or not.
if s.config.ACLEnabled {
// The authoritative region is responsible for garbage collecting
// expired global tokens. Otherwise, non-authoritative regions need to
// replicate policies, tokens, and namespaces.
switch s.config.AuthoritativeRegion {
case s.config.Region:
go s.schedulePeriodicAuthoritative(stopCh)
default:
go s.replicateACLPolicies(stopCh)
go s.replicateACLTokens(stopCh)
go s.replicateACLRoles(stopCh)
go s.replicateACLAuthMethods(stopCh)
go s.replicateACLBindingRules(stopCh)
go s.replicateNamespaces(stopCh)
go s.replicateNodePools(stopCh)
}
}
// Setup any enterprise systems required.
if err := s.establishEnterpriseLeadership(stopCh); err != nil {
return err
}
// Cleanup orphaned Vault token accessors
if err := s.revokeVaultAccessorsOnRestore(); err != nil {
return err
}
// Cleanup orphaned Service Identity token accessors
if err := s.revokeSITokenAccessorsOnRestore(); err != nil {
return err
}
return nil
}
// replicateNamespaces is used to replicate namespaces from the authoritative
// region to this region.
func (s *Server) replicateNamespaces(stopCh chan struct{}) {
req := structs.NamespaceListRequest{
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AllowStale: true,
},
}
limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit))
s.logger.Debug("starting namespace replication from authoritative region", "region", req.Region)
START:
for {
select {
case <-stopCh:
return
default:
}
// Rate limit how often we attempt replication
limiter.Wait(context.Background())
// Fetch the list of namespaces
var resp structs.NamespaceListResponse
req.AuthToken = s.ReplicationToken()
err := s.forwardRegion(s.config.AuthoritativeRegion, "Namespace.ListNamespaces", &req, &resp)
if err != nil {
s.logger.Error("failed to fetch namespaces from authoritative region", "error", err)
goto ERR_WAIT
}
// Perform a two-way diff
delete, update := diffNamespaces(s.State(), req.MinQueryIndex, resp.Namespaces)
// Delete namespaces that should not exist
if len(delete) > 0 {
args := &structs.NamespaceDeleteRequest{
Namespaces: delete,
}
_, _, err := s.raftApply(structs.NamespaceDeleteRequestType, args)
if err != nil {
s.logger.Error("failed to delete namespaces", "error", err)
goto ERR_WAIT
}
}
// Fetch any outdated namespaces
var fetched []*structs.Namespace
if len(update) > 0 {
req := structs.NamespaceSetRequest{
Namespaces: update,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AuthToken: s.ReplicationToken(),
AllowStale: true,
MinQueryIndex: resp.Index - 1,
},
}
var reply structs.NamespaceSetResponse
if err := s.forwardRegion(s.config.AuthoritativeRegion, "Namespace.GetNamespaces", &req, &reply); err != nil {
s.logger.Error("failed to fetch namespaces from authoritative region", "error", err)
goto ERR_WAIT
}
for _, namespace := range reply.Namespaces {
fetched = append(fetched, namespace)
}
}
// Update local namespaces
if len(fetched) > 0 {
args := &structs.NamespaceUpsertRequest{
Namespaces: fetched,
}
_, _, err := s.raftApply(structs.NamespaceUpsertRequestType, args)
if err != nil {
s.logger.Error("failed to update namespaces", "error", err)
goto ERR_WAIT
}
}
// Update the minimum query index, blocks until there is a change.
req.MinQueryIndex = resp.Index
}
ERR_WAIT:
select {
case <-time.After(s.config.ReplicationBackoff):
goto START
case <-stopCh:
return
}
}
func (s *Server) handlePausableWorkers(isLeader bool) {
for _, w := range s.pausableWorkers() {
if isLeader {
w.Pause()
} else {
w.Resume()
}
}
}
// diffNamespaces is used to perform a two-way diff between the local namespaces
// and the remote namespaces to determine which namespaces need to be deleted or
// updated.
func diffNamespaces(state *state.StateStore, minIndex uint64, remoteList []*structs.Namespace) (delete []string, update []string) {
// Construct a set of the local and remote namespaces
local := make(map[string][]byte)
remote := make(map[string]struct{})
// Add all the local namespaces
iter, err := state.Namespaces(nil)
if err != nil {
panic("failed to iterate local namespaces")
}
for {
raw := iter.Next()
if raw == nil {
break
}
namespace := raw.(*structs.Namespace)
local[namespace.Name] = namespace.Hash
}
// Iterate over the remote namespaces
for _, rns := range remoteList {
remote[rns.Name] = struct{}{}
// Check if the namespace is missing locally
if localHash, ok := local[rns.Name]; !ok {
update = append(update, rns.Name)
// Check if the namespace is newer remotely and there is a hash
// mis-match.
} else if rns.ModifyIndex > minIndex && !bytes.Equal(localHash, rns.Hash) {
update = append(update, rns.Name)
}
}
// Check if namespaces should be deleted
for lns := range local {
if _, ok := remote[lns]; !ok {
delete = append(delete, lns)
}
}
return
}
// replicateNodePools is used to replicate node pools from the authoritative
// region to this region.
func (s *Server) replicateNodePools(stopCh chan struct{}) {
req := structs.NodePoolListRequest{
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AllowStale: true,
},
}
limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit))
s.logger.Debug("starting node pool replication from authoritative region", "region", req.Region)
for {
select {
case <-stopCh:
return
default:
}
// Rate limit how often we attempt replication
limiter.Wait(context.Background())
if !ServersMeetMinimumVersion(
s.serf.Members(), s.Region(), minNodePoolsVersion, true) {
s.logger.Trace(
"all servers must be upgraded to 1.6.0 before Node Pools can be replicated")
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
var resp structs.NodePoolListResponse
req.AuthToken = s.ReplicationToken()
err := s.forwardRegion(s.config.AuthoritativeRegion, "NodePool.List", &req, &resp)
if err != nil {
s.logger.Error("failed to fetch node pools from authoritative region", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
// Perform a two-way diff
delete, update := diffNodePools(s.State(), req.MinQueryIndex, resp.NodePools)
// A significant amount of time could pass between the last check
// on whether we should stop the replication process. Therefore, do
// a check here, before calling Raft.
select {
case <-stopCh:
return
default:
}
// Delete node pools that should not exist
if len(delete) > 0 {
args := &structs.NodePoolDeleteRequest{
Names: delete,
}
_, _, err := s.raftApply(structs.NodePoolDeleteRequestType, args)
if err != nil {
s.logger.Error("failed to delete node pools", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
}
// Update local node pools
if len(update) > 0 {
args := &structs.NodePoolUpsertRequest{
NodePools: update,
}
_, _, err := s.raftApply(structs.NodePoolUpsertRequestType, args)
if err != nil {
s.logger.Error("failed to update node pools", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
}
// Update the minimum query index, blocks until there is a change.
req.MinQueryIndex = resp.Index
}
}
// diffNodePools is used to perform a two-way diff between the local node pools
// and the remote node pools to determine which node pools need to be deleted or
// updated.
func diffNodePools(store *state.StateStore, minIndex uint64, remoteList []*structs.NodePool) (delete []string, update []*structs.NodePool) {
// Construct a set of the local and remote node pools
local := make(map[string][]byte)
remote := make(map[string]struct{})
// Add all the local node pools
iter, err := store.NodePools(nil, state.SortDefault)
if err != nil {
panic("failed to iterate local node pools")
}
for {
raw := iter.Next()
if raw == nil {
break
}
pool := raw.(*structs.NodePool)
local[pool.Name] = pool.Hash
}
for _, rnp := range remoteList {
remote[rnp.Name] = struct{}{}
if localHash, ok := local[rnp.Name]; !ok {
// Node pools that are missing locally should be added
update = append(update, rnp)
} else if rnp.ModifyIndex > minIndex && !bytes.Equal(localHash, rnp.Hash) {
// Node pools that have been added/updated more recently than the
// last index we saw, and have a hash mismatch with what we have
// locally, should be updated.
update = append(update, rnp)
}
}
// Node pools that don't exist on the remote should be deleted
for lnp := range local {
if _, ok := remote[lnp]; !ok {
delete = append(delete, lnp)
}
}
return
}
// restoreEvals is used to restore pending evaluations into the eval broker and
// blocked evaluations into the blocked eval tracker. The broker and blocked
// eval tracker is maintained only by the leader, so it must be restored anytime
// a leadership transition takes place.
func (s *Server) restoreEvals() error {
// Get an iterator over every evaluation
ws := memdb.NewWatchSet()
iter, err := s.fsm.State().Evals(ws, false)
if err != nil {
return fmt.Errorf("failed to get evaluations: %v", err)
}
for {
raw := iter.Next()
if raw == nil {
break
}
eval := raw.(*structs.Evaluation)
if eval.ShouldEnqueue() {
s.evalBroker.Enqueue(eval)
} else if eval.ShouldBlock() {
s.blockedEvals.Block(eval)
}
}
return nil
}
// revokeVaultAccessorsOnRestore is used to restore Vault accessors that should be
// revoked.
func (s *Server) revokeVaultAccessorsOnRestore() error {
// An accessor should be revoked if its allocation or node is terminal
ws := memdb.NewWatchSet()
state := s.fsm.State()
iter, err := state.VaultAccessors(ws)
if err != nil {
return fmt.Errorf("failed to get vault accessors: %v", err)
}
var revoke []*structs.VaultAccessor
for {
raw := iter.Next()
if raw == nil {
break
}
va := raw.(*structs.VaultAccessor)
// Check the allocation
alloc, err := state.AllocByID(ws, va.AllocID)
if err != nil {
return fmt.Errorf("failed to lookup allocation %q: %v", va.AllocID, err)
}
if alloc == nil || alloc.Terminated() {
// No longer running and should be revoked
revoke = append(revoke, va)
continue
}
// Check the node
node, err := state.NodeByID(ws, va.NodeID)
if err != nil {
return fmt.Errorf("failed to lookup node %q: %v", va.NodeID, err)
}
if node == nil || node.TerminalStatus() {
// Node is terminal so any accessor from it should be revoked
revoke = append(revoke, va)
continue
}
}
if len(revoke) != 0 {
s.logger.Info("revoking vault accessors after becoming leader", "accessors", len(revoke))
if err := s.vault.MarkForRevocation(revoke); err != nil {
return fmt.Errorf("failed to revoke tokens: %v", err)
}
}
return nil
}
// revokeSITokenAccessorsOnRestore is used to revoke Service Identity token
// accessors on behalf of allocs that are now gone / terminal.
func (s *Server) revokeSITokenAccessorsOnRestore() error {
ws := memdb.NewWatchSet()
fsmState := s.fsm.State()
iter, err := fsmState.SITokenAccessors(ws)
if err != nil {
return fmt.Errorf("failed to get SI token accessors: %w", err)
}
var toRevoke []*structs.SITokenAccessor
for raw := iter.Next(); raw != nil; raw = iter.Next() {
accessor := raw.(*structs.SITokenAccessor)
// Check the allocation
alloc, err := fsmState.AllocByID(ws, accessor.AllocID)
if err != nil {
return fmt.Errorf("failed to lookup alloc %q: %w", accessor.AllocID, err)
}
if alloc == nil || alloc.Terminated() {
// no longer running and associated accessors should be revoked
toRevoke = append(toRevoke, accessor)
continue
}
// Check the node
node, err := fsmState.NodeByID(ws, accessor.NodeID)
if err != nil {
return fmt.Errorf("failed to lookup node %q: %w", accessor.NodeID, err)
}
if node == nil || node.TerminalStatus() {
// node is terminal and associated accessors should be revoked
toRevoke = append(toRevoke, accessor)
continue
}
}
if len(toRevoke) > 0 {
s.logger.Info("revoking consul accessors after becoming leader", "accessors", len(toRevoke))
s.consulACLs.MarkForRevocation(toRevoke)
}
return nil
}
// restorePeriodicDispatcher is used to restore all periodic jobs into the
// periodic dispatcher. It also determines if a periodic job should have been
// created during the leadership transition and force runs them. The periodic
// dispatcher is maintained only by the leader, so it must be restored anytime a
// leadership transition takes place.
func (s *Server) restorePeriodicDispatcher() error {
logger := s.logger.Named("periodic")
ws := memdb.NewWatchSet()
iter, err := s.fsm.State().JobsByPeriodic(ws, true)
if err != nil {
return fmt.Errorf("failed to get periodic jobs: %v", err)
}
now := time.Now()
for i := iter.Next(); i != nil; i = iter.Next() {
job := i.(*structs.Job)
// We skip adding parameterized jobs because they themselves aren't
// tracked, only the dispatched children are.
if job.IsParameterized() {
continue
}
if err := s.periodicDispatcher.Add(job); err != nil {
logger.Error("failed to add job to periodic dispatcher", "error", err)
continue
}
// We do not need to force run the job since it isn't active.
if !job.IsPeriodicActive() {
continue
}
// If the periodic job has never been launched before, launch will hold
// the time the periodic job was added. Otherwise it has the last launch
// time of the periodic job.
launch, err := s.fsm.State().PeriodicLaunchByID(ws, job.Namespace, job.ID)
if err != nil {
return fmt.Errorf("failed to get periodic launch time: %v", err)
}
if launch == nil {
return fmt.Errorf("no recorded periodic launch time for job %q in namespace %q",
job.ID, job.Namespace)
}
// nextLaunch is the next launch that should occur.
nextLaunch, err := job.Periodic.Next(launch.Launch.In(job.Periodic.GetLocation()))
if err != nil {
logger.Error("failed to determine next periodic launch for job", "job", job.NamespacedID(), "error", err)
continue
}
// We skip force launching the job if there should be no next launch
// (the zero case) or if the next launch time is in the future. If it is
// in the future, it will be handled by the periodic dispatcher.
if nextLaunch.IsZero() || !nextLaunch.Before(now) {
continue
}
// We skip if the job doesn't allow overlap and there are already
// instances running
allowed, err := s.cronJobOverlapAllowed(job)
if err != nil {
return fmt.Errorf("failed to get job status: %v", err)
}
if !allowed {
continue
}
if _, err := s.periodicDispatcher.ForceEval(job.Namespace, job.ID); err != nil {
logger.Error("force run of periodic job failed", "job", job.NamespacedID(), "error", err)
return fmt.Errorf("force run of periodic job %q failed: %v", job.NamespacedID(), err)
}
logger.Debug("periodic job force run during leadership establishment", "job", job.NamespacedID())
}
return nil
}
// cronJobOverlapAllowed checks if the job allows for overlap and if there are already
// instances of the job running in order to determine if a new evaluation needs to
// be created upon periodic dispatcher restore
func (s *Server) cronJobOverlapAllowed(job *structs.Job) (bool, error) {
if job.Periodic.ProhibitOverlap {
running, err := s.periodicDispatcher.dispatcher.RunningChildren(job)
if err != nil {
return false, fmt.Errorf("failed to determine if periodic job has running children %q error %q", job.NamespacedID(), err)
}
if running {
return false, nil
}
}
return true, nil
}
// schedulePeriodic is used to do periodic job dispatch while we are leader
func (s *Server) schedulePeriodic(stopCh chan struct{}) {
evalGC := time.NewTicker(s.config.EvalGCInterval)
defer evalGC.Stop()
nodeGC := time.NewTicker(s.config.NodeGCInterval)
defer nodeGC.Stop()
jobGC := time.NewTicker(s.config.JobGCInterval)
defer jobGC.Stop()
deploymentGC := time.NewTicker(s.config.DeploymentGCInterval)
defer deploymentGC.Stop()
csiPluginGC := time.NewTicker(s.config.CSIPluginGCInterval)
defer csiPluginGC.Stop()
csiVolumeClaimGC := time.NewTicker(s.config.CSIVolumeClaimGCInterval)
defer csiVolumeClaimGC.Stop()
oneTimeTokenGC := time.NewTicker(s.config.OneTimeTokenGCInterval)
defer oneTimeTokenGC.Stop()
rootKeyGC := time.NewTicker(s.config.RootKeyGCInterval)
defer rootKeyGC.Stop()
variablesRekey := time.NewTicker(s.config.VariablesRekeyInterval)
defer variablesRekey.Stop()
// Set up the expired ACL local token garbage collection timer.
localTokenExpiredGC, localTokenExpiredGCStop := helper.NewSafeTimer(s.config.ACLTokenExpirationGCInterval)
defer localTokenExpiredGCStop()
for {
select {
case <-evalGC.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobEvalGC, index))
}
case <-nodeGC.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobNodeGC, index))
}
case <-jobGC.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobJobGC, index))
}
case <-deploymentGC.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobDeploymentGC, index))
}
case <-csiPluginGC.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobCSIPluginGC, index))
}
case <-csiVolumeClaimGC.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobCSIVolumeClaimGC, index))
}
case <-oneTimeTokenGC.C:
if !ServersMeetMinimumVersion(s.Members(), s.Region(), minOneTimeAuthenticationTokenVersion, false) {
continue
}
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobOneTimeTokenGC, index))
}
case <-localTokenExpiredGC.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobLocalTokenExpiredGC, index))
}
localTokenExpiredGC.Reset(s.config.ACLTokenExpirationGCInterval)
case <-rootKeyGC.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobRootKeyRotateOrGC, index))
}
case <-variablesRekey.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobVariablesRekey, index))
}
case <-stopCh:
return
}
}
}
// schedulePeriodicAuthoritative is a long-lived routine intended for use on
// the leader within the authoritative region only. It periodically queues work
// onto the _core scheduler for ACL based activities such as removing expired
// global ACL tokens.
func (s *Server) schedulePeriodicAuthoritative(stopCh chan struct{}) {
// Set up the expired ACL global token garbage collection timer.
globalTokenExpiredGC, globalTokenExpiredGCStop := helper.NewSafeTimer(s.config.ACLTokenExpirationGCInterval)
defer globalTokenExpiredGCStop()
for {
select {
case <-globalTokenExpiredGC.C:
if index, ok := s.getLatestIndex(); ok {
s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobGlobalTokenExpiredGC, index))
}
globalTokenExpiredGC.Reset(s.config.ACLTokenExpirationGCInterval)
case <-stopCh:
return
}
}
}
// getLatestIndex is a helper function which returns the latest index from the
// state store. The boolean return indicates whether the call has been
// successful or not.
func (s *Server) getLatestIndex() (uint64, bool) {
snapshotIndex, err := s.fsm.State().LatestIndex()
if err != nil {
s.logger.Error("failed to determine state store's index", "error", err)
return 0, false
}
return snapshotIndex, true
}
// coreJobEval returns an evaluation for a core job
func (s *Server) coreJobEval(job string, modifyIndex uint64) *structs.Evaluation {
return &structs.Evaluation{
ID: uuid.Generate(),
Namespace: "-",
Priority: structs.CoreJobPriority,
Type: structs.JobTypeCore,
TriggeredBy: structs.EvalTriggerScheduled,
JobID: job,
LeaderACL: s.getLeaderAcl(),
Status: structs.EvalStatusPending,
ModifyIndex: modifyIndex,
}
}
// reapFailedEvaluations is used to reap evaluations that
// have reached their delivery limit and should be failed
func (s *Server) reapFailedEvaluations(stopCh chan struct{}) {
for {
select {
case <-stopCh:
return
default:
// Scan for a failed evaluation
eval, token, err := s.evalBroker.Dequeue([]string{failedQueue}, time.Second)
if err != nil {
return
}
if eval == nil {
continue
}
// Update the status to failed
updateEval := eval.Copy()
updateEval.Status = structs.EvalStatusFailed
updateEval.StatusDescription = fmt.Sprintf("evaluation reached delivery limit (%d)", s.config.EvalDeliveryLimit)
s.logger.Warn("eval reached delivery limit, marking as failed",
"eval", hclog.Fmt("%#v", updateEval))
// Core job evals that fail or span leader elections will never
// succeed because the follow-up doesn't have the leader ACL. We
// rely on the leader to schedule new core jobs periodically
// instead.
if eval.Type != structs.JobTypeCore {
// Create a follow-up evaluation that will be used to retry the
// scheduling for the job after the cluster is hopefully more stable
// due to the fairly large backoff.
followupEvalWait := s.config.EvalFailedFollowupBaselineDelay +
time.Duration(rand.Int63n(int64(s.config.EvalFailedFollowupDelayRange)))
followupEval := eval.CreateFailedFollowUpEval(followupEvalWait)
updateEval.NextEval = followupEval.ID
updateEval.UpdateModifyTime()
// Update via Raft
req := structs.EvalUpdateRequest{
Evals: []*structs.Evaluation{updateEval, followupEval},
}
if _, _, err := s.raftApply(structs.EvalUpdateRequestType, &req); err != nil {
s.logger.Error("failed to update failed eval and create a follow-up",
"eval", hclog.Fmt("%#v", updateEval), "error", err)
continue
}
}
// Ack completion
s.evalBroker.Ack(eval.ID, token)
}
}
}
// reapDupBlockedEvaluations is used to reap duplicate blocked evaluations and
// should be cancelled.
func (s *Server) reapDupBlockedEvaluations(stopCh chan struct{}) {
for {
select {
case <-stopCh:
return
default:
// Scan for duplicate blocked evals.
dups := s.blockedEvals.GetDuplicates(time.Second)
if dups == nil {
continue
}
cancel := make([]*structs.Evaluation, len(dups))
for i, dup := range dups {
// Update the status to cancelled
newEval := dup.Copy()
newEval.Status = structs.EvalStatusCancelled
newEval.StatusDescription = fmt.Sprintf("existing blocked evaluation exists for job %q", newEval.JobID)
newEval.UpdateModifyTime()
cancel[i] = newEval
}
// Update via Raft
req := structs.EvalUpdateRequest{
Evals: cancel,
}
if _, _, err := s.raftApply(structs.EvalUpdateRequestType, &req); err != nil {
s.logger.Error("failed to update duplicate evals", "evals", hclog.Fmt("%#v", cancel), "error", err)
continue
}
}
}
}
// reapCancelableEvaluations is used to reap evaluations that were marked
// cancelable by the eval broker and should be canceled. These get swept up
// whenever an eval Acks, but this ensures that we don't have a straggling batch
// when the cluster doesn't have any more work to do. Returns a wake-up channel
// that can be used to trigger a new reap without waiting for the timer
func (s *Server) reapCancelableEvaluations(stopCh chan struct{}) chan struct{} {
wakeCh := make(chan struct{}, 1)
go func() {
timer, cancel := helper.NewSafeTimer(s.config.EvalReapCancelableInterval)
defer cancel()
for {
select {
case <-stopCh:
return
case <-wakeCh:
cancelCancelableEvals(s)
case <-timer.C:
cancelCancelableEvals(s)
timer.Reset(s.config.EvalReapCancelableInterval)
}
}
}()
return wakeCh
}
const cancelableEvalsBatchSize = 728 // structs.MaxUUIDsPerWriteRequest / 10
// cancelCancelableEvals pulls a batch of cancelable evaluations from the eval
// broker and updates their status to canceled.
func cancelCancelableEvals(srv *Server) error {
const cancelDesc = "canceled after more recent eval was processed"
// We *can* send larger raft logs but rough benchmarks show that a smaller
// page size strikes a balance between throughput and time we block the FSM
// apply for other operations
cancelable := srv.evalBroker.Cancelable(cancelableEvalsBatchSize)
if len(cancelable) > 0 {
for i, eval := range cancelable {
eval = eval.Copy()
eval.Status = structs.EvalStatusCancelled
eval.StatusDescription = cancelDesc
eval.UpdateModifyTime()
cancelable[i] = eval
}
update := &structs.EvalUpdateRequest{
Evals: cancelable,
WriteRequest: structs.WriteRequest{Region: srv.Region()},
}
_, _, err := srv.raftApply(structs.EvalUpdateRequestType, update)
if err != nil {
srv.logger.Warn("eval cancel failed", "error", err, "method", "ack")
return err
}
}
return nil
}
// periodicUnblockFailedEvals periodically unblocks failed, blocked evaluations.
func (s *Server) periodicUnblockFailedEvals(stopCh chan struct{}) {
ticker := time.NewTicker(failedEvalUnblockInterval)
defer ticker.Stop()
for {
select {
case <-stopCh:
return
case <-ticker.C:
// Unblock the failed allocations
s.blockedEvals.UnblockFailed()
}
}
}
// publishJobSummaryMetrics publishes the job summaries as metrics
func (s *Server) publishJobSummaryMetrics(stopCh chan struct{}) {
timer := time.NewTimer(0)
defer timer.Stop()
for {
select {
case <-stopCh:
return
case <-timer.C:
timer.Reset(s.config.StatsCollectionInterval)
state, err := s.State().Snapshot()
if err != nil {
s.logger.Error("failed to get state", "error", err)
continue
}
ws := memdb.NewWatchSet()
iter, err := state.JobSummaries(ws)
if err != nil {
s.logger.Error("failed to get job summaries", "error", err)
continue
}
for {
raw := iter.Next()
if raw == nil {
break
}
summary := raw.(*structs.JobSummary)
if s.config.DisableDispatchedJobSummaryMetrics {
job, err := state.JobByID(ws, summary.Namespace, summary.JobID)
if err != nil {
s.logger.Error("error getting job for summary", "error", err)
continue
}
if job.Dispatched {
continue
}
}
s.iterateJobSummaryMetrics(summary)
}
}
}
}
func (s *Server) iterateJobSummaryMetrics(summary *structs.JobSummary) {
for name, tgSummary := range summary.Summary {
labels := []metrics.Label{
{
Name: "job",
Value: summary.JobID,
},
{
Name: "task_group",
Value: name,
},
{
Name: "namespace",
Value: summary.Namespace,
},
}
if strings.Contains(summary.JobID, "/dispatch-") {
jobInfo := strings.Split(summary.JobID, "/dispatch-")
labels = append(labels, metrics.Label{
Name: "parent_id",
Value: jobInfo[0],
}, metrics.Label{
Name: "dispatch_id",
Value: jobInfo[1],
})
}
if strings.Contains(summary.JobID, "/periodic-") {
jobInfo := strings.Split(summary.JobID, "/periodic-")
labels = append(labels, metrics.Label{
Name: "parent_id",
Value: jobInfo[0],
}, metrics.Label{
Name: "periodic_id",
Value: jobInfo[1],
})
}
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "queued"},
float32(tgSummary.Queued), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "complete"},
float32(tgSummary.Complete), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "failed"},
float32(tgSummary.Failed), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "running"},
float32(tgSummary.Running), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "starting"},
float32(tgSummary.Starting), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "lost"},
float32(tgSummary.Lost), labels)
metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "unknown"},
float32(tgSummary.Unknown), labels)
}
}
// publishJobStatusMetrics publishes the job statuses as metrics
func (s *Server) publishJobStatusMetrics(stopCh chan struct{}) {
timer := time.NewTimer(0)
defer timer.Stop()
for {
select {
case <-stopCh:
return
case <-timer.C:
timer.Reset(s.config.StatsCollectionInterval)
state, err := s.State().Snapshot()
if err != nil {
s.logger.Error("failed to get state", "error", err)
continue
}
ws := memdb.NewWatchSet()
iter, err := state.Jobs(ws)
if err != nil {
s.logger.Error("failed to get job statuses", "error", err)
continue
}
s.iterateJobStatusMetrics(&iter)
}
}
}
func (s *Server) iterateJobStatusMetrics(jobs *memdb.ResultIterator) {
var pending int64 // Sum of all jobs in 'pending' state
var running int64 // Sum of all jobs in 'running' state
var dead int64 // Sum of all jobs in 'dead' state
for {
raw := (*jobs).Next()
if raw == nil {
break
}
job := raw.(*structs.Job)
switch job.Status {
case structs.JobStatusPending:
pending++
case structs.JobStatusRunning:
running++
case structs.JobStatusDead:
dead++
}
}
metrics.SetGauge([]string{"nomad", "job_status", "pending"}, float32(pending))
metrics.SetGauge([]string{"nomad", "job_status", "running"}, float32(running))
metrics.SetGauge([]string{"nomad", "job_status", "dead"}, float32(dead))
}
// revokeLeadership is invoked once we step down as leader.
// This is used to cleanup any state that may be specific to a leader.
func (s *Server) revokeLeadership() error {
defer metrics.MeasureSince([]string{"nomad", "leader", "revoke_leadership"}, time.Now())
s.resetConsistentReadReady()
// Clear the leader token since we are no longer the leader.
s.setLeaderAcl("")
// Disable autopilot
s.autopilot.Stop()
// Disable the plan queue, since we are no longer leader
s.planQueue.SetEnabled(false)
// Disable the eval broker and blocked evals. We do not need to check the
// scheduler configuration paused eval broker value, as the brokers should
// always be paused on the non-leader.
s.brokerLock.Lock()
s.evalBroker.SetEnabled(false)
s.blockedEvals.SetEnabled(false)
s.brokerLock.Unlock()
// Disable the periodic dispatcher, since it is only useful as a leader
s.periodicDispatcher.SetEnabled(false)
// Disable the Vault client as it is only useful as a leader.
s.vault.SetActive(false)
// Disable the deployment watcher as it is only useful as a leader.
s.deploymentWatcher.SetEnabled(false, nil)
// Disable the node drainer
s.nodeDrainer.SetEnabled(false, nil)
// Disable the volume watcher
s.volumeWatcher.SetEnabled(false, nil, "")
// Disable any enterprise systems required.
if err := s.revokeEnterpriseLeadership(); err != nil {
return err
}
// Clear the heartbeat timers on either shutdown or step down,
// since we are no longer responsible for TTL expirations.
if err := s.clearAllHeartbeatTimers(); err != nil {
s.logger.Error("clearing heartbeat timers failed", "error", err)
return err
}
// Unpause our worker if we paused previously
s.handlePausableWorkers(false)
return nil
}
// pausableWorkers returns a slice of the workers
// to pause on leader transitions.
//
// Upon leadership establishment, pause workers to free half
// the cores for use in the plan queue and evaluation broker
func (s *Server) pausableWorkers() []*Worker {
n := len(s.workers)
if n <= 1 {
return []*Worker{}
}
// Disabling 3/4 of the workers frees CPU for raft and the
// plan applier which uses 1/2 the cores.
return s.workers[:3*n/4]
}
// reconcile is used to reconcile the differences between Serf
// membership and what is reflected in our strongly consistent store.
func (s *Server) reconcile() error {
defer metrics.MeasureSince([]string{"nomad", "leader", "reconcile"}, time.Now())
members := s.serf.Members()
for _, member := range members {
if err := s.reconcileMember(member); err != nil {
return err
}
}
return nil
}
// reconcileMember is used to do an async reconcile of a single serf member
func (s *Server) reconcileMember(member serf.Member) error {
// Check if this is a member we should handle
valid, parts := isNomadServer(member)
if !valid || parts.Region != s.config.Region {
return nil
}
defer metrics.MeasureSince([]string{"nomad", "leader", "reconcileMember"}, time.Now())
var err error
switch member.Status {
case serf.StatusAlive:
err = s.addRaftPeer(member, parts)
case serf.StatusLeft, StatusReap:
err = s.removeRaftPeer(member, parts)
}
if err != nil {
s.logger.Error("failed to reconcile member", "member", member, "error", err)
return err
}
return nil
}
// addRaftPeer is used to add a new Raft peer when a Nomad server joins
func (s *Server) addRaftPeer(m serf.Member, parts *serverParts) error {
// Check for possibility of multiple bootstrap nodes
members := s.serf.Members()
if parts.Bootstrap {
for _, member := range members {
valid, p := isNomadServer(member)
if valid && member.Name != m.Name && p.Bootstrap {
s.logger.Error("skipping adding Raft peer because an existing peer is in bootstrap mode and only one server should be in bootstrap mode",
"existing_peer", member.Name, "joining_peer", m.Name)
return nil
}
}
}
// Processing ourselves could result in trying to remove ourselves to
// fix up our address, which would make us step down. This is only
// safe to attempt if there are multiple servers available.
addr := (&net.TCPAddr{IP: m.Addr, Port: parts.Port}).String()
configFuture := s.raft.GetConfiguration()
if err := configFuture.Error(); err != nil {
s.logger.Error("failed to get raft configuration", "error", err)
return err
}
if m.Name == s.config.NodeName {
if l := len(configFuture.Configuration().Servers); l < 3 {
s.logger.Debug("skipping self join check for peer since the cluster is too small", "peer", m.Name)
return nil
}
}
// See if it's already in the configuration. It's harmless to re-add it
// but we want to avoid doing that if possible to prevent useless Raft
// log entries. If the address is the same but the ID changed, remove the
// old server before adding the new one.
minRaftProtocol, err := s.MinRaftProtocol()
if err != nil {
return err
}
for _, server := range configFuture.Configuration().Servers {
// No-op if the raft version is too low
if server.Address == raft.ServerAddress(addr) && (minRaftProtocol < 2 || parts.RaftVersion < 3) {
return nil
}
// If the address or ID matches an existing server, see if we need to remove the old one first
if server.Address == raft.ServerAddress(addr) || server.ID == raft.ServerID(parts.ID) {
// Exit with no-op if this is being called on an existing server and both the ID and address match
if server.Address == raft.ServerAddress(addr) && server.ID == raft.ServerID(parts.ID) {
return nil
}
future := s.raft.RemoveServer(server.ID, 0, 0)
if server.Address == raft.ServerAddress(addr) {
if err := future.Error(); err != nil {
return fmt.Errorf("error removing server with duplicate address %q: %s", server.Address, err)
}
s.logger.Info("removed server with duplicate address", "address", server.Address)
} else {
if err := future.Error(); err != nil {
return fmt.Errorf("error removing server with duplicate ID %q: %s", server.ID, err)
}
s.logger.Info("removed server with duplicate ID", "id", server.ID)
}
}
}
// Attempt to add as a peer
switch {
case minRaftProtocol >= 3:
addFuture := s.raft.AddNonvoter(raft.ServerID(parts.ID), raft.ServerAddress(addr), 0, 0)
if err := addFuture.Error(); err != nil {
s.logger.Error("failed to add raft peer", "error", err)
return err
}
case minRaftProtocol == 2 && parts.RaftVersion >= 3:
addFuture := s.raft.AddVoter(raft.ServerID(parts.ID), raft.ServerAddress(addr), 0, 0)
if err := addFuture.Error(); err != nil {
s.logger.Error("failed to add raft peer", "error", err)
return err
}
default:
addFuture := s.raft.AddPeer(raft.ServerAddress(addr))
if err := addFuture.Error(); err != nil {
s.logger.Error("failed to add raft peer", "error", err)
return err
}
}
return nil
}
// removeRaftPeer is used to remove a Raft peer when a Nomad server leaves
// or is reaped
func (s *Server) removeRaftPeer(m serf.Member, parts *serverParts) error {
addr := (&net.TCPAddr{IP: m.Addr, Port: parts.Port}).String()
// See if it's already in the configuration. It's harmless to re-remove it
// but we want to avoid doing that if possible to prevent useless Raft
// log entries.
configFuture := s.raft.GetConfiguration()
if err := configFuture.Error(); err != nil {
s.logger.Error("failed to get raft configuration", "error", err)
return err
}
minRaftProtocol, err := s.MinRaftProtocol()
if err != nil {
return err
}
// Pick which remove API to use based on how the server was added.
for _, server := range configFuture.Configuration().Servers {
// Check if this is the server to remove based on how it was registered.
// Raft v2 servers are registered by address.
// Raft v3 servers are registered by ID.
if server.ID == raft.ServerID(parts.ID) || server.Address == raft.ServerAddress(addr) {
// Use the new add/remove APIs if we understand them.
if minRaftProtocol >= 2 {
s.logger.Info("removing server by ID", "id", server.ID)
future := s.raft.RemoveServer(server.ID, 0, 0)
if err := future.Error(); err != nil {
s.logger.Error("failed to remove raft peer", "id", server.ID, "error", err)
return err
}
} else {
// If not, use the old remove API
s.logger.Info("removing server by address", "address", server.Address)
future := s.raft.RemovePeer(raft.ServerAddress(addr))
if err := future.Error(); err != nil {
s.logger.Error("failed to remove raft peer", "address", addr, "error", err)
return err
}
}
break
}
}
return nil
}
// replicateACLPolicies is used to replicate ACL policies from
// the authoritative region to this region.
func (s *Server) replicateACLPolicies(stopCh chan struct{}) {
req := structs.ACLPolicyListRequest{
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AllowStale: true,
},
}
limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit))
s.logger.Debug("starting ACL policy replication from authoritative region", "authoritative_region", req.Region)
START:
for {
select {
case <-stopCh:
return
default:
// Rate limit how often we attempt replication
limiter.Wait(context.Background())
// Fetch the list of policies
var resp structs.ACLPolicyListResponse
req.AuthToken = s.ReplicationToken()
err := s.forwardRegion(s.config.AuthoritativeRegion,
"ACL.ListPolicies", &req, &resp)
if err != nil {
s.logger.Error("failed to fetch policies from authoritative region", "error", err)
goto ERR_WAIT
}
// Perform a two-way diff
delete, update := diffACLPolicies(s.State(), req.MinQueryIndex, resp.Policies)
// Delete policies that should not exist
if len(delete) > 0 {
args := &structs.ACLPolicyDeleteRequest{
Names: delete,
}
_, _, err := s.raftApply(structs.ACLPolicyDeleteRequestType, args)
if err != nil {
s.logger.Error("failed to delete policies", "error", err)
goto ERR_WAIT
}
}
// Fetch any outdated policies
var fetched []*structs.ACLPolicy
if len(update) > 0 {
req := structs.ACLPolicySetRequest{
Names: update,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AuthToken: s.ReplicationToken(),
AllowStale: true,
MinQueryIndex: resp.Index - 1,
},
}
var reply structs.ACLPolicySetResponse
if err := s.forwardRegion(s.config.AuthoritativeRegion,
"ACL.GetPolicies", &req, &reply); err != nil {
s.logger.Error("failed to fetch policies from authoritative region", "error", err)
goto ERR_WAIT
}
for _, policy := range reply.Policies {
fetched = append(fetched, policy)
}
}
// Update local policies
if len(fetched) > 0 {
args := &structs.ACLPolicyUpsertRequest{
Policies: fetched,
}
_, _, err := s.raftApply(structs.ACLPolicyUpsertRequestType, args)
if err != nil {
s.logger.Error("failed to update policies", "error", err)
goto ERR_WAIT
}
}
// Update the minimum query index, blocks until there
// is a change.
req.MinQueryIndex = resp.Index
}
}
ERR_WAIT:
select {
case <-time.After(s.config.ReplicationBackoff):
goto START
case <-stopCh:
return
}
}
// diffACLPolicies is used to perform a two-way diff between the local
// policies and the remote policies to determine which policies need to
// be deleted or updated.
func diffACLPolicies(state *state.StateStore, minIndex uint64, remoteList []*structs.ACLPolicyListStub) (delete []string, update []string) {
// Construct a set of the local and remote policies
local := make(map[string][]byte)
remote := make(map[string]struct{})
// Add all the local policies
iter, err := state.ACLPolicies(nil)
if err != nil {
panic("failed to iterate local policies")
}
for {
raw := iter.Next()
if raw == nil {
break
}
policy := raw.(*structs.ACLPolicy)
local[policy.Name] = policy.Hash
}
// Iterate over the remote policies
for _, rp := range remoteList {
remote[rp.Name] = struct{}{}
// Check if the policy is missing locally
if localHash, ok := local[rp.Name]; !ok {
update = append(update, rp.Name)
// Check if policy is newer remotely and there is a hash mis-match.
} else if rp.ModifyIndex > minIndex && !bytes.Equal(localHash, rp.Hash) {
update = append(update, rp.Name)
}
}
// Check if policy should be deleted
for lp := range local {
if _, ok := remote[lp]; !ok {
delete = append(delete, lp)
}
}
return
}
// replicateACLTokens is used to replicate global ACL tokens from
// the authoritative region to this region.
func (s *Server) replicateACLTokens(stopCh chan struct{}) {
req := structs.ACLTokenListRequest{
GlobalOnly: true,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AllowStale: true,
},
}
limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit))
s.logger.Debug("starting ACL token replication from authoritative region", "authoritative_region", req.Region)
START:
for {
select {
case <-stopCh:
return
default:
// Rate limit how often we attempt replication
limiter.Wait(context.Background())
// Fetch the list of tokens
var resp structs.ACLTokenListResponse
req.AuthToken = s.ReplicationToken()
err := s.forwardRegion(s.config.AuthoritativeRegion,
"ACL.ListTokens", &req, &resp)
if err != nil {
s.logger.Error("failed to fetch tokens from authoritative region", "error", err)
goto ERR_WAIT
}
// Perform a two-way diff
delete, update := diffACLTokens(s.State(), req.MinQueryIndex, resp.Tokens)
// Delete tokens that should not exist
if len(delete) > 0 {
args := &structs.ACLTokenDeleteRequest{
AccessorIDs: delete,
}
_, _, err := s.raftApply(structs.ACLTokenDeleteRequestType, args)
if err != nil {
s.logger.Error("failed to delete tokens", "error", err)
goto ERR_WAIT
}
}
// Fetch any outdated policies.
var fetched []*structs.ACLToken
if len(update) > 0 {
req := structs.ACLTokenSetRequest{
AccessorIDS: update,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AuthToken: s.ReplicationToken(),
AllowStale: true,
MinQueryIndex: resp.Index - 1,
},
}
var reply structs.ACLTokenSetResponse
if err := s.forwardRegion(s.config.AuthoritativeRegion,
"ACL.GetTokens", &req, &reply); err != nil {
s.logger.Error("failed to fetch tokens from authoritative region", "error", err)
goto ERR_WAIT
}
for _, token := range reply.Tokens {
fetched = append(fetched, token)
}
}
// Update local tokens
if len(fetched) > 0 {
args := &structs.ACLTokenUpsertRequest{
Tokens: fetched,
}
_, _, err := s.raftApply(structs.ACLTokenUpsertRequestType, args)
if err != nil {
s.logger.Error("failed to update tokens", "error", err)
goto ERR_WAIT
}
}
// Update the minimum query index, blocks until there
// is a change.
req.MinQueryIndex = resp.Index
}
}
ERR_WAIT:
select {
case <-time.After(s.config.ReplicationBackoff):
goto START
case <-stopCh:
return
}
}
// diffACLTokens is used to perform a two-way diff between the local
// tokens and the remote tokens to determine which tokens need to
// be deleted or updated.
func diffACLTokens(store *state.StateStore, minIndex uint64, remoteList []*structs.ACLTokenListStub) (delete []string, update []string) {
// Construct a set of the local and remote policies
local := make(map[string][]byte)
remote := make(map[string]struct{})
// Add all the local global tokens
iter, err := store.ACLTokensByGlobal(nil, true, state.SortDefault)
if err != nil {
panic("failed to iterate local tokens")
}
for {
raw := iter.Next()
if raw == nil {
break
}
token := raw.(*structs.ACLToken)
local[token.AccessorID] = token.Hash
}
// Iterate over the remote tokens
for _, rp := range remoteList {
remote[rp.AccessorID] = struct{}{}
// Check if the token is missing locally
if localHash, ok := local[rp.AccessorID]; !ok {
update = append(update, rp.AccessorID)
// Check if policy is newer remotely and there is a hash mis-match.
} else if rp.ModifyIndex > minIndex && !bytes.Equal(localHash, rp.Hash) {
update = append(update, rp.AccessorID)
}
}
// Check if local token should be deleted
for lp := range local {
if _, ok := remote[lp]; !ok {
delete = append(delete, lp)
}
}
return
}
// replicateACLRoles is used to replicate ACL Roles from the authoritative
// region to this region. The loop should only be run on the leader within the
// federated region.
func (s *Server) replicateACLRoles(stopCh chan struct{}) {
// Generate our request object. We only need to do this once and reuse it
// for every RPC request. The MinQueryIndex is updated after every
// successful replication loop, so the next query acts as a blocking query
// and only returns upon a change in the authoritative region.
req := structs.ACLRolesListRequest{
QueryOptions: structs.QueryOptions{
AllowStale: true,
Region: s.config.AuthoritativeRegion,
},
}
// Create our replication rate limiter for ACL roles and log a lovely
// message to indicate the process is starting.
limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit))
s.logger.Debug("starting ACL Role replication from authoritative region",
"authoritative_region", req.Region)
// Enter the main ACL Role replication loop that will only exit when the
// stopCh is closed.
//
// Any error encountered will use the replicationBackoffContinue function
// which handles replication backoff and shutdown coordination in the event
// of an error inside the loop.
for {
select {
case <-stopCh:
return
default:
// Rate limit how often we attempt replication. It is OK to ignore
// the error as the context will never be cancelled and the limit
// parameters are controlled internally.
_ = limiter.Wait(context.Background())
if !ServersMeetMinimumVersion(
s.serf.Members(), s.Region(), minACLRoleVersion, true) {
s.logger.Trace(
"all servers must be upgraded to 1.4.0 or later before ACL Roles can be replicated")
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
// Set the replication token on each replication iteration so that
// it is always current and can handle agent SIGHUP reloads.
req.AuthToken = s.ReplicationToken()
var resp structs.ACLRolesListResponse
// Make the list RPC request to the authoritative region, so we
// capture the latest ACL role listing.
err := s.forwardRegion(s.config.AuthoritativeRegion, structs.ACLListRolesRPCMethod, &req, &resp)
if err != nil {
s.logger.Error("failed to fetch ACL Roles from authoritative region", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
// Perform a two-way diff on the ACL roles.
toDelete, toUpdate := diffACLRoles(s.State(), req.MinQueryIndex, resp.ACLRoles)
// A significant amount of time could pass between the last check
// on whether we should stop the replication process. Therefore, do
// a check here, before calling Raft.
select {
case <-stopCh:
return
default:
}
// If we have ACL roles to delete, make this call directly to Raft.
if len(toDelete) > 0 {
args := structs.ACLRolesDeleteByIDRequest{ACLRoleIDs: toDelete}
_, _, err := s.raftApply(structs.ACLRolesDeleteByIDRequestType, &args)
// If the error was because we lost leadership while calling
// Raft, avoid logging as this can be confusing to operators.
if err != nil {
if err != raft.ErrLeadershipLost {
s.logger.Error("failed to delete ACL roles", "error", err)
}
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
}
// Fetch any outdated policies.
var fetched []*structs.ACLRole
if len(toUpdate) > 0 {
req := structs.ACLRolesByIDRequest{
ACLRoleIDs: toUpdate,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AuthToken: s.ReplicationToken(),
AllowStale: true,
MinQueryIndex: resp.Index - 1,
},
}
var reply structs.ACLRolesByIDResponse
if err := s.forwardRegion(s.config.AuthoritativeRegion, structs.ACLGetRolesByIDRPCMethod, &req, &reply); err != nil {
s.logger.Error("failed to fetch ACL Roles from authoritative region", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
for _, aclRole := range reply.ACLRoles {
fetched = append(fetched, aclRole)
}
}
// Update local tokens
if len(fetched) > 0 {
// The replication of ACL roles and policies are independent,
// therefore we cannot ensure the policies linked within the
// role are present. We must set allow missing to true.
args := structs.ACLRolesUpsertRequest{
ACLRoles: fetched,
AllowMissingPolicies: true,
}
// Perform the upsert directly via Raft.
_, _, err := s.raftApply(structs.ACLRolesUpsertRequestType, &args)
if err != nil {
s.logger.Error("failed to update ACL roles", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
}
// Update the minimum query index, blocks until there is a change.
req.MinQueryIndex = resp.Index
}
}
}
// diffACLRoles is used to perform a two-way diff between the local ACL Roles
// and the remote Roles to determine which tokens need to be deleted or
// updated. The returned array's contain ACL Role IDs.
func diffACLRoles(
store *state.StateStore, minIndex uint64, remoteList []*structs.ACLRoleListStub) (
delete []string, update []string) {
// The local ACL role tracking is keyed by the role ID and the value is the
// hash of the role.
local := make(map[string][]byte)
// The remote ACL role tracking is keyed by the role ID; the value is an
// empty struct as we already have the full object.
remote := make(map[string]struct{})
// Read all the ACL role currently held within our local state. This panic
// will only happen as a developer making a mistake with naming the index
// to use.
iter, err := store.GetACLRoles(nil)
if err != nil {
panic(fmt.Sprintf("failed to iterate local ACL roles: %v", err))
}
// Iterate the local ACL roles and add them to our tracking of local roles.
for raw := iter.Next(); raw != nil; raw = iter.Next() {
aclRole := raw.(*structs.ACLRole)
local[aclRole.ID] = aclRole.Hash
}
// Iterate over the remote ACL roles.
for _, remoteACLRole := range remoteList {
remote[remoteACLRole.ID] = struct{}{}
// Identify whether the ACL role is within the local state. If it is
// not, add this to our update list.
if localHash, ok := local[remoteACLRole.ID]; !ok {
update = append(update, remoteACLRole.ID)
// Check if ACL role is newer remotely and there is a hash
// mismatch.
} else if remoteACLRole.ModifyIndex > minIndex && !bytes.Equal(localHash, remoteACLRole.Hash) {
update = append(update, remoteACLRole.ID)
}
}
// If we have ACL roles within state which are no longer present in the
// authoritative region we should delete them.
for localACLRole := range local {
if _, ok := remote[localACLRole]; !ok {
delete = append(delete, localACLRole)
}
}
return
}
// replicateACLAuthMethods is used to replicate ACL Authentication Methods from
// the authoritative region to this region. The loop should only be run on the
// leader within the federated region.
func (s *Server) replicateACLAuthMethods(stopCh chan struct{}) {
// Generate our request object. We only need to do this once and reuse it
// for every RPC request. The MinQueryIndex is updated after every
// successful replication loop, so the next query acts as a blocking query
// and only returns upon a change in the authoritative region.
req := structs.ACLAuthMethodListRequest{
QueryOptions: structs.QueryOptions{
AllowStale: true,
Region: s.config.AuthoritativeRegion,
},
}
// Create our replication rate limiter for ACL auth-methods and log a
// lovely message to indicate the process is starting.
limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit))
s.logger.Debug("starting ACL Auth-Methods replication from authoritative region",
"authoritative_region", req.Region)
// Enter the main ACL auth-methods replication loop that will only exit
// when the stopCh is closed.
//
// Any error encountered will use the replicationBackoffContinue function
// which handles replication backoff and shutdown coordination in the event
// of an error inside the loop.
for {
select {
case <-stopCh:
return
default:
// Rate limit how often we attempt replication. It is OK to ignore
// the error as the context will never be cancelled and the limit
// parameters are controlled internally.
_ = limiter.Wait(context.Background())
if !ServersMeetMinimumVersion(
s.serf.Members(), s.Region(), minACLAuthMethodVersion, true) {
s.logger.Trace(
"all servers must be upgraded to 1.5.0 or later before ACL Auth Methods can be replicated")
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
// Set the replication token on each replication iteration so that
// it is always current and can handle agent SIGHUP reloads.
req.AuthToken = s.ReplicationToken()
var resp structs.ACLAuthMethodListResponse
// Make the list RPC request to the authoritative region, so we
// capture the latest ACL auth-method listing.
err := s.forwardRegion(s.config.AuthoritativeRegion, structs.ACLListAuthMethodsRPCMethod, &req, &resp)
if err != nil {
s.logger.Error("failed to fetch ACL auth-methods from authoritative region", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
// Perform a two-way diff on the ACL auth-methods.
toDelete, toUpdate := diffACLAuthMethods(s.State(), req.MinQueryIndex, resp.AuthMethods)
// A significant amount of time could pass between the last check
// on whether we should stop the replication process. Therefore, do
// a check here, before calling Raft.
select {
case <-stopCh:
return
default:
}
// If we have ACL auth-methods to delete, make this call directly
// to Raft.
if len(toDelete) > 0 {
args := structs.ACLAuthMethodDeleteRequest{Names: toDelete}
_, _, err := s.raftApply(structs.ACLAuthMethodsDeleteRequestType, &args)
// If the error was because we lost leadership while calling
// Raft, avoid logging as this can be confusing to operators.
if err != nil {
if err != raft.ErrLeadershipLost {
s.logger.Error("failed to delete ACL auth-methods", "error", err)
}
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
}
// Fetch any outdated auth-methods.
var fetched []*structs.ACLAuthMethod
if len(toUpdate) > 0 {
req := structs.ACLAuthMethodsGetRequest{
Names: toUpdate,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AuthToken: s.ReplicationToken(),
AllowStale: true,
MinQueryIndex: resp.Index - 1,
},
}
var reply structs.ACLAuthMethodsGetResponse
if err := s.forwardRegion(s.config.AuthoritativeRegion, structs.ACLGetAuthMethodsRPCMethod, &req, &reply); err != nil {
s.logger.Error("failed to fetch ACL auth-methods from authoritative region", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
for _, aclAuthMethod := range reply.AuthMethods {
fetched = append(fetched, aclAuthMethod)
}
}
// Update local auth-methods.
if len(fetched) > 0 {
args := structs.ACLAuthMethodUpsertRequest{
AuthMethods: fetched,
}
// Perform the upsert directly via Raft.
_, _, err := s.raftApply(structs.ACLAuthMethodsUpsertRequestType, &args)
if err != nil {
s.logger.Error("failed to update ACL auth-methods", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
}
// Update the minimum query index, blocks until there is a change.
req.MinQueryIndex = resp.Index
}
}
}
// diffACLAuthMethods is used to perform a two-way diff between the local ACL
// auth-methods and the remote auth-methods to determine which ones need to be
// deleted or updated. The returned array's contain ACL auth-method names.
func diffACLAuthMethods(
store *state.StateStore, minIndex uint64, remoteList []*structs.ACLAuthMethodStub) (
delete []string, update []string) {
// The local ACL auth-method tracking is keyed by the name and the value is
// the hash of the auth-method.
local := make(map[string][]byte)
// The remote ACL auth-method tracking is keyed by the name; the value is
// an empty struct as we already have the full object.
remote := make(map[string]struct{})
// Read all the ACL auth-methods currently held within our local state.
// This panic will only happen as a developer making a mistake with naming
// the index to use.
iter, err := store.GetACLAuthMethods(nil)
if err != nil {
panic(fmt.Sprintf("failed to iterate local ACL roles: %v", err))
}
// Iterate the local ACL auth-methods and add them to our tracking of
// local auth-methods
for raw := iter.Next(); raw != nil; raw = iter.Next() {
aclAuthMethod := raw.(*structs.ACLAuthMethod)
local[aclAuthMethod.Name] = aclAuthMethod.Hash
}
// Iterate over the remote ACL auth-methods.
for _, remoteACLAuthMethod := range remoteList {
remote[remoteACLAuthMethod.Name] = struct{}{}
// Identify whether the ACL auth-method is within the local state. If
// it is not, add this to our update list.
if localHash, ok := local[remoteACLAuthMethod.Name]; !ok {
update = append(update, remoteACLAuthMethod.Name)
// Check if ACL auth-method is newer remotely and there is a hash
// mismatch.
} else if remoteACLAuthMethod.ModifyIndex > minIndex && !bytes.Equal(localHash, remoteACLAuthMethod.Hash) {
update = append(update, remoteACLAuthMethod.Name)
}
}
// If we have ACL auth-methods within state which are no longer present in
// the authoritative region we should delete them.
for localACLAuthMethod := range local {
if _, ok := remote[localACLAuthMethod]; !ok {
delete = append(delete, localACLAuthMethod)
}
}
return
}
// replicateACLBindingRules is used to replicate ACL binding rules from the
// authoritative region to this region. The loop should only be run on the
// leader within the federated region.
func (s *Server) replicateACLBindingRules(stopCh chan struct{}) {
// Generate our request object. We only need to do this once and reuse it
// for every RPC request. The MinQueryIndex is updated after every
// successful replication loop, so the next query acts as a blocking query
// and only returns upon a change in the authoritative region.
req := structs.ACLBindingRulesListRequest{
QueryOptions: structs.QueryOptions{
AllowStale: true,
Region: s.config.AuthoritativeRegion,
},
}
// Create our replication rate limiter for ACL binding rules and log a
// lovely message to indicate the process is starting.
limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit))
s.logger.Debug("starting ACL Binding Rules replication from authoritative region",
"authoritative_region", req.Region)
// Enter the main ACL binding rules replication loop that will only exit
// when the stopCh is closed.
//
// Any error encountered will use the replicationBackoffContinue function
// which handles replication backoff and shutdown coordination in the event
// of an error inside the loop.
for {
select {
case <-stopCh:
return
default:
// Rate limit how often we attempt replication. It is OK to ignore
// the error as the context will never be cancelled and the limit
// parameters are controlled internally.
_ = limiter.Wait(context.Background())
if !ServersMeetMinimumVersion(
s.serf.Members(), s.Region(), minACLBindingRuleVersion, true) {
s.logger.Trace(
"all servers must be upgraded to 1.5.0 or later before ACL Binding Rules can be replicated")
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
// Set the replication token on each replication iteration so that
// it is always current and can handle agent SIGHUP reloads.
req.AuthToken = s.ReplicationToken()
var resp structs.ACLBindingRulesListResponse
// Make the list RPC request to the authoritative region, so we
// capture the latest ACL binding rules listing.
err := s.forwardRegion(s.config.AuthoritativeRegion, structs.ACLListBindingRulesRPCMethod, &req, &resp)
if err != nil {
s.logger.Error("failed to fetch ACL binding rules from authoritative region", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
// Perform a two-way diff on the ACL binding rules.
toDelete, toUpdate := diffACLBindingRules(s.State(), req.MinQueryIndex, resp.ACLBindingRules)
// A significant amount of time could pass between the last check
// on whether we should stop the replication process. Therefore, do
// a check here, before calling Raft.
select {
case <-stopCh:
return
default:
}
// If we have ACL binding rules to delete, make this call directly
// to Raft.
if len(toDelete) > 0 {
args := structs.ACLBindingRulesDeleteRequest{ACLBindingRuleIDs: toDelete}
_, _, err := s.raftApply(structs.ACLBindingRulesDeleteRequestType, &args)
// If the error was because we lost leadership while calling
// Raft, avoid logging as this can be confusing to operators.
if err != nil {
if err != raft.ErrLeadershipLost {
s.logger.Error("failed to delete ACL binding rules", "error", err)
}
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
}
// Fetch any outdated binding rules.
var fetched []*structs.ACLBindingRule
if len(toUpdate) > 0 {
req := structs.ACLBindingRulesRequest{
ACLBindingRuleIDs: toUpdate,
QueryOptions: structs.QueryOptions{
Region: s.config.AuthoritativeRegion,
AuthToken: s.ReplicationToken(),
AllowStale: true,
MinQueryIndex: resp.Index - 1,
},
}
var reply structs.ACLBindingRulesResponse
if err := s.forwardRegion(s.config.AuthoritativeRegion, structs.ACLGetBindingRulesRPCMethod, &req, &reply); err != nil {
s.logger.Error("failed to fetch ACL binding rules from authoritative region", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
for _, aclBindingRule := range reply.ACLBindingRules {
fetched = append(fetched, aclBindingRule)
}
}
// Update local binding rules.
if len(fetched) > 0 {
args := structs.ACLBindingRulesUpsertRequest{
ACLBindingRules: fetched,
AllowMissingAuthMethods: true,
}
// Perform the upsert directly via Raft.
_, _, err := s.raftApply(structs.ACLBindingRulesUpsertRequestType, &args)
if err != nil {
s.logger.Error("failed to update ACL binding rules", "error", err)
if s.replicationBackoffContinue(stopCh) {
continue
} else {
return
}
}
}
// Update the minimum query index, blocks until there is a change.
req.MinQueryIndex = resp.Index
}
}
}
// diffACLBindingRules is used to perform a two-way diff between the local ACL
// binding rules and the remote binding rules to determine which ones need to be
// deleted or updated. The returned array's contain ACL binding rule names.
func diffACLBindingRules(
store *state.StateStore, minIndex uint64, remoteList []*structs.ACLBindingRuleListStub) (
delete []string, update []string) {
// The local ACL binding rules tracking is keyed by the name and the value
// is the hash of the auth-method.
local := make(map[string][]byte)
// The remote ACL binding rules tracking is keyed by the name; the value is
// an empty struct as we already have the full object.
remote := make(map[string]struct{})
// Read all the ACL binding rules currently held within our local state.
// This panic will only happen as a developer making a mistake with naming
// the index to use.
iter, err := store.GetACLBindingRules(nil)
if err != nil {
panic(fmt.Sprintf("failed to iterate local ACL binding rules: %v", err))
}
// Iterate the local ACL binding rules and add them to our tracking of
// local binding rules.
for raw := iter.Next(); raw != nil; raw = iter.Next() {
aclBindingRule := raw.(*structs.ACLBindingRule)
local[aclBindingRule.ID] = aclBindingRule.Hash
}
// Iterate over the remote ACL binding rules.
for _, remoteACLBindingRule := range remoteList {
remote[remoteACLBindingRule.ID] = struct{}{}
// Identify whether the ACL auth-method is within the local state. If
// it is not, add this to our update list.
if localHash, ok := local[remoteACLBindingRule.ID]; !ok {
update = append(update, remoteACLBindingRule.ID)
// Check if the ACL binding rule is newer remotely and there is a
// hash mismatch.
} else if remoteACLBindingRule.ModifyIndex > minIndex && !bytes.Equal(localHash, remoteACLBindingRule.Hash) {
update = append(update, remoteACLBindingRule.ID)
}
}
// If we have ACL binding rules within state which are no longer present in
// the authoritative region we should delete them.
for localACLBindingRules := range local {
if _, ok := remote[localACLBindingRules]; !ok {
delete = append(delete, localACLBindingRules)
}
}
return
}
// replicationBackoffContinue should be used when a replication loop encounters
// an error and wants to wait until either the backoff time has been met, or
// the stopCh has been closed. The boolean indicates whether the replication
// process should continue.
//
// Typical use:
//
// if s.replicationBackoffContinue(stopCh) {
// continue
// } else {
// return
// }
func (s *Server) replicationBackoffContinue(stopCh chan struct{}) bool {
timer, timerStopFn := helper.NewSafeTimer(s.config.ReplicationBackoff)
defer timerStopFn()
select {
case <-timer.C:
return true
case <-stopCh:
return false
}
}
// getOrCreateAutopilotConfig is used to get the autopilot config, initializing it if necessary
func (s *Server) getOrCreateAutopilotConfig() *structs.AutopilotConfig {
state := s.fsm.State()
_, config, err := state.AutopilotConfig()
if err != nil {
s.logger.Named("autopilot").Error("failed to get autopilot config", "error", err)
return nil
}
if config != nil {
return config
}
if !ServersMeetMinimumVersion(s.Members(), AllRegions, minAutopilotVersion, false) {
s.logger.Named("autopilot").Warn("can't initialize until all servers are above minimum version", "min_version", minAutopilotVersion)
return nil
}
config = s.config.AutopilotConfig
req := structs.AutopilotSetConfigRequest{Config: *config}
if _, _, err = s.raftApply(structs.AutopilotRequestType, req); err != nil {
s.logger.Named("autopilot").Error("failed to initialize config", "error", err)
return nil
}
return config
}
// getOrCreateSchedulerConfig is used to get the scheduler config. We create a default
// config if it doesn't already exist for bootstrapping an empty cluster
func (s *Server) getOrCreateSchedulerConfig() *structs.SchedulerConfiguration {
state := s.fsm.State()
_, config, err := state.SchedulerConfig()
if err != nil {
s.logger.Named("core").Error("failed to get scheduler config", "error", err)
return nil
}
if config != nil {
return config
}
if !ServersMeetMinimumVersion(s.Members(), s.Region(), minSchedulerConfigVersion, false) {
s.logger.Named("core").Warn("can't initialize scheduler config until all servers are above minimum version", "min_version", minSchedulerConfigVersion)
return nil
}
req := structs.SchedulerSetConfigRequest{Config: s.config.DefaultSchedulerConfig}
if _, _, err = s.raftApply(structs.SchedulerConfigRequestType, req); err != nil {
s.logger.Named("core").Error("failed to initialize config", "error", err)
return nil
}
return config
}
var minVersionKeyring = version.Must(version.NewVersion("1.4.0"))
// initializeKeyring creates the first root key if the leader doesn't
// already have one. The metadata will be replicated via raft and then
// the followers will get the key material from their own key
// replication.
func (s *Server) initializeKeyring(stopCh <-chan struct{}) {
logger := s.logger.Named("keyring")
store := s.fsm.State()
keyMeta, err := store.GetActiveRootKeyMeta(nil)
if err != nil {
logger.Error("failed to get active key: %v", err)
return
}
if keyMeta != nil {
return
}
logger.Trace("verifying cluster is ready to initialize keyring")
for {
select {
case <-stopCh:
return
default:
}
if ServersMeetMinimumVersion(s.serf.Members(), s.Region(), minVersionKeyring, true) {
break
}
}
// we might have lost leadership during the version check
if !s.IsLeader() {
return
}
logger.Trace("initializing keyring")
rootKey, err := structs.NewRootKey(structs.EncryptionAlgorithmAES256GCM)
rootKey.Meta.SetActive()
if err != nil {
logger.Error("could not initialize keyring: %v", err)
return
}
err = s.encrypter.AddKey(rootKey)
if err != nil {
logger.Error("could not add initial key to keyring: %v", err)
return
}
if _, _, err = s.raftApply(structs.RootKeyMetaUpsertRequestType,
structs.KeyringUpdateRootKeyMetaRequest{
RootKeyMeta: rootKey.Meta,
}); err != nil {
logger.Error("could not initialize keyring: %v", err)
return
}
logger.Info("initialized keyring", "id", rootKey.Meta.KeyID)
}
func (s *Server) generateClusterID() (string, error) {
if !ServersMeetMinimumVersion(s.Members(), AllRegions, minClusterIDVersion, false) {
s.logger.Named("core").Warn("cannot initialize cluster ID until all servers are above minimum version", "min_version", minClusterIDVersion)
return "", fmt.Errorf("cluster ID cannot be created until all servers are above minimum version %s", minClusterIDVersion)
}
newMeta := structs.ClusterMetadata{ClusterID: uuid.Generate(), CreateTime: time.Now().UnixNano()}
if _, _, err := s.raftApply(structs.ClusterMetadataRequestType, newMeta); err != nil {
s.logger.Named("core").Error("failed to create cluster ID", "error", err)
return "", fmt.Errorf("failed to create cluster ID: %w", err)
}
s.logger.Named("core").Info("established cluster id", "cluster_id", newMeta.ClusterID, "create_time", newMeta.CreateTime)
return newMeta.ClusterID, nil
}
// handleEvalBrokerStateChange handles changing the evalBroker and blockedEvals
// enabled status based on the passed scheduler configuration. The boolean
// response indicates whether the caller needs to call restoreEvals() due to
// the brokers being enabled. It is for use when the change must take the
// scheduler configuration into account. This is not needed when calling
// revokeLeadership, as the configuration doesn't matter, and we need to ensure
// the brokers are stopped.
//
// The function checks the server is the leader and uses a mutex to avoid any
// potential timings problems. Consider the following timings:
// - operator updates the configuration via the API
// - the RPC handler applies the change via Raft
// - leadership transitions with write barrier
// - the RPC handler call this function to enact the change
//
// The mutex also protects against a situation where leadership is revoked
// while this function is being called. Ensuring the correct series of actions
// occurs so that state stays consistent.
func (s *Server) handleEvalBrokerStateChange(schedConfig *structs.SchedulerConfiguration) bool {
// Grab the lock first. Once we have this we can be sure to run everything
// needed before any leader transition can attempt to modify the state.
s.brokerLock.Lock()
defer s.brokerLock.Unlock()
// If we are no longer the leader, exit early.
if !s.IsLeader() {
return false
}
// enableEvalBroker tracks whether the evalBroker and blockedEvals
// processes should be enabled or not. It allows us to answer this question
// whether using a persisted Raft configuration, or the default bootstrap
// config.
var enableBrokers, restoreEvals bool
// The scheduler config can only be persisted to Raft once quorum has been
// established. If this is a fresh cluster, we need to use the default
// scheduler config, otherwise we can use the persisted object.
switch schedConfig {
case nil:
enableBrokers = !s.config.DefaultSchedulerConfig.PauseEvalBroker
default:
enableBrokers = !schedConfig.PauseEvalBroker
}
// If the evalBroker status is changing, set the new state.
if enableBrokers != s.evalBroker.Enabled() {
s.logger.Info("eval broker status modified", "paused", !enableBrokers)
s.evalBroker.SetEnabled(enableBrokers)
restoreEvals = enableBrokers
}
// If the blockedEvals status is changing, set the new state.
if enableBrokers != s.blockedEvals.Enabled() {
s.logger.Info("blocked evals status modified", "paused", !enableBrokers)
s.blockedEvals.SetEnabled(enableBrokers)
restoreEvals = enableBrokers
if enableBrokers {
s.blockedEvals.SetTimetable(s.fsm.TimeTable())
}
}
return restoreEvals
}