open-nomad/command/helpers.go

760 lines
19 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package command
import (
"bufio"
"bytes"
"encoding/json"
"fmt"
"io"
"maps"
"os"
"path/filepath"
"strconv"
"strings"
"time"
gg "github.com/hashicorp/go-getter"
"github.com/hashicorp/nomad/api"
flaghelper "github.com/hashicorp/nomad/helper/flags"
"github.com/hashicorp/nomad/jobspec"
"github.com/hashicorp/nomad/jobspec2"
"github.com/kr/text"
"github.com/mitchellh/cli"
"github.com/posener/complete"
"github.com/ryanuber/columnize"
)
const (
formatJSON = "json"
formatHCL1 = "hcl1"
formatHCL2 = "hcl2"
)
// maxLineLength is the maximum width of any line.
const maxLineLength int = 78
// formatKV takes a set of strings and formats them into properly
// aligned k = v pairs using the columnize library.
func formatKV(in []string) string {
columnConf := columnize.DefaultConfig()
columnConf.Empty = "<none>"
columnConf.Glue = " = "
return columnize.Format(in, columnConf)
}
// formatList takes a set of strings and formats them into properly
// aligned output, replacing any blank fields with a placeholder
// for awk-ability.
func formatList(in []string) string {
columnConf := columnize.DefaultConfig()
columnConf.Empty = "<none>"
return columnize.Format(in, columnConf)
}
// formatListWithSpaces takes a set of strings and formats them into properly
// aligned output. It should be used sparingly since it doesn't replace empty
// values and hence not awk/sed friendly
func formatListWithSpaces(in []string) string {
columnConf := columnize.DefaultConfig()
return columnize.Format(in, columnConf)
}
// Limits the length of the string.
func limit(s string, length int) string {
if len(s) < length {
return s
}
return s[:length]
}
// indentString returns the string s padded with the given number of empty
// spaces before each line except for the first one.
func indentString(s string, pad int) string {
prefix := strings.Repeat(" ", pad)
return strings.Join(strings.Split(s, "\n"), fmt.Sprintf("\n%s", prefix))
}
// wrapAtLengthWithPadding wraps the given text at the maxLineLength, taking
// into account any provided left padding.
func wrapAtLengthWithPadding(s string, pad int) string {
wrapped := text.Wrap(s, maxLineLength-pad)
lines := strings.Split(wrapped, "\n")
for i, line := range lines {
lines[i] = strings.Repeat(" ", pad) + line
}
return strings.Join(lines, "\n")
}
// wrapAtLength wraps the given text to maxLineLength.
func wrapAtLength(s string) string {
return wrapAtLengthWithPadding(s, 0)
}
// formatTime formats the time to string based on RFC822
func formatTime(t time.Time) string {
if t.Unix() < 1 {
// It's more confusing to display the UNIX epoch or a zero value than nothing
return ""
}
// Return ISO_8601 time format GH-3806
return t.Format("2006-01-02T15:04:05Z07:00")
}
// formatUnixNanoTime is a helper for formatting time for output.
func formatUnixNanoTime(nano int64) string {
t := time.Unix(0, nano)
return formatTime(t)
}
// formatTimeDifference takes two times and determines their duration difference
// truncating to a passed unit.
// E.g. formatTimeDifference(first=1m22s33ms, second=1m28s55ms, time.Second) -> 6s
func formatTimeDifference(first, second time.Time, d time.Duration) string {
return second.Truncate(d).Sub(first.Truncate(d)).String()
}
// fmtInt formats v into the tail of buf.
// It returns the index where the output begins.
func fmtInt(buf []byte, v uint64) int {
w := len(buf)
for v > 0 {
w--
buf[w] = byte(v%10) + '0'
v /= 10
}
return w
}
// prettyTimeDiff prints a human readable time difference.
// It uses abbreviated forms for each period - s for seconds, m for minutes, h for hours,
// d for days, mo for months, and y for years. Time difference is rounded to the nearest second,
// and the top two least granular periods are returned. For example, if the time difference
// is 10 months, 12 days, 3 hours and 2 seconds, the string "10mo12d" is returned. Zero values return the empty string
func prettyTimeDiff(first, second time.Time) string {
// handle zero values
if first.IsZero() || first.UnixNano() == 0 {
return ""
}
// round to the nearest second
first = first.Round(time.Second)
second = second.Round(time.Second)
// calculate time difference in seconds
var d time.Duration
messageSuffix := "ago"
if second.Equal(first) || second.After(first) {
d = second.Sub(first)
} else {
d = first.Sub(second)
messageSuffix = "from now"
}
u := uint64(d.Seconds())
var buf [32]byte
w := len(buf)
secs := u % 60
// track indexes of various periods
var indexes []int
if secs > 0 {
w--
buf[w] = 's'
// u is now seconds
w = fmtInt(buf[:w], secs)
indexes = append(indexes, w)
}
u /= 60
// u is now minutes
if u > 0 {
mins := u % 60
if mins > 0 {
w--
buf[w] = 'm'
w = fmtInt(buf[:w], mins)
indexes = append(indexes, w)
}
u /= 60
// u is now hours
if u > 0 {
hrs := u % 24
if hrs > 0 {
w--
buf[w] = 'h'
w = fmtInt(buf[:w], hrs)
indexes = append(indexes, w)
}
u /= 24
}
// u is now days
if u > 0 {
days := u % 30
if days > 0 {
w--
buf[w] = 'd'
w = fmtInt(buf[:w], days)
indexes = append(indexes, w)
}
u /= 30
}
// u is now months
if u > 0 {
months := u % 12
if months > 0 {
w--
buf[w] = 'o'
w--
buf[w] = 'm'
w = fmtInt(buf[:w], months)
indexes = append(indexes, w)
}
u /= 12
}
// u is now years
if u > 0 {
w--
buf[w] = 'y'
w = fmtInt(buf[:w], u)
indexes = append(indexes, w)
}
}
start := w
end := len(buf)
// truncate to the first two periods
num_periods := len(indexes)
if num_periods > 2 {
end = indexes[num_periods-3]
}
if start == end { //edge case when time difference is less than a second
return "0s " + messageSuffix
} else {
return string(buf[start:end]) + " " + messageSuffix
}
}
// getLocalNodeID returns the node ID of the local Nomad Client and an error if
// it couldn't be determined or the Agent is not running in Client mode.
func getLocalNodeID(client *api.Client) (string, error) {
info, err := client.Agent().Self()
if err != nil {
return "", fmt.Errorf("Error querying agent info: %s", err)
}
clientStats, ok := info.Stats["client"]
if !ok {
return "", fmt.Errorf("Nomad not running in client mode")
}
nodeID, ok := clientStats["node_id"]
if !ok {
return "", fmt.Errorf("Failed to determine node ID")
}
return nodeID, nil
}
// evalFailureStatus returns whether the evaluation has failures and a string to
// display when presenting users with whether there are failures for the eval
func evalFailureStatus(eval *api.Evaluation) (string, bool) {
if eval == nil {
return "", false
}
hasFailures := len(eval.FailedTGAllocs) != 0
text := strconv.FormatBool(hasFailures)
if eval.Status == "blocked" {
text = "N/A - In Progress"
}
return text, hasFailures
}
// LineLimitReader wraps another reader and provides `tail -n` like behavior.
// LineLimitReader buffers up to the searchLimit and returns `-n` number of
// lines. After those lines have been returned, LineLimitReader streams the
// underlying ReadCloser
type LineLimitReader struct {
io.ReadCloser
lines int
searchLimit int
timeLimit time.Duration
lastRead time.Time
buffer *bytes.Buffer
bufFiled bool
foundLines bool
}
// NewLineLimitReader takes the ReadCloser to wrap, the number of lines to find
// searching backwards in the first searchLimit bytes. timeLimit can optionally
// be specified by passing a non-zero duration. When set, the search for the
// last n lines is aborted if no data has been read in the duration. This
// can be used to flush what is had if no extra data is being received. When
// used, the underlying reader must not block forever and must periodically
// unblock even when no data has been read.
func NewLineLimitReader(r io.ReadCloser, lines, searchLimit int, timeLimit time.Duration) *LineLimitReader {
return &LineLimitReader{
ReadCloser: r,
searchLimit: searchLimit,
timeLimit: timeLimit,
lines: lines,
buffer: bytes.NewBuffer(make([]byte, 0, searchLimit)),
}
}
func (l *LineLimitReader) Read(p []byte) (n int, err error) {
// Fill up the buffer so we can find the correct number of lines.
if !l.bufFiled {
b := make([]byte, len(p))
n, err := l.ReadCloser.Read(b)
if n > 0 {
if _, err := l.buffer.Write(b[:n]); err != nil {
return 0, err
}
}
if err != nil {
if err != io.EOF {
return 0, err
}
l.bufFiled = true
goto READ
}
if l.buffer.Len() >= l.searchLimit {
l.bufFiled = true
goto READ
}
if l.timeLimit.Nanoseconds() > 0 {
if l.lastRead.IsZero() {
l.lastRead = time.Now()
return 0, nil
}
now := time.Now()
if n == 0 {
// We hit the limit
if l.lastRead.Add(l.timeLimit).Before(now) {
l.bufFiled = true
goto READ
} else {
return 0, nil
}
} else {
l.lastRead = now
}
}
return 0, nil
}
READ:
if l.bufFiled && l.buffer.Len() != 0 {
b := l.buffer.Bytes()
// Find the lines
if !l.foundLines {
found := 0
i := len(b) - 1
sep := byte('\n')
lastIndex := len(b) - 1
for ; found < l.lines && i >= 0; i-- {
if b[i] == sep {
lastIndex = i
// Skip the first one
if i != len(b)-1 {
found++
}
}
}
// We found them all
if found == l.lines {
// Clear the buffer until the last index
l.buffer.Next(lastIndex + 1)
}
l.foundLines = true
}
// Read from the buffer
n := copy(p, l.buffer.Next(len(p)))
return n, nil
}
// Just stream from the underlying reader now
return l.ReadCloser.Read(p)
}
// JobGetter provides helpers for retrieving and parsing a jobpsec.
type JobGetter struct {
HCL1 bool
Vars flaghelper.StringFlag
VarFiles flaghelper.StringFlag
Strict bool
JSON bool
// The fields below can be overwritten for tests
testStdin io.Reader
}
func (j *JobGetter) Validate() error {
if j.HCL1 && j.Strict {
return fmt.Errorf("cannot parse job file as HCLv1 and HCLv2 strict.")
}
if j.HCL1 && j.JSON {
return fmt.Errorf("cannot parse job file as HCL and JSON.")
}
if len(j.Vars) > 0 && j.JSON {
return fmt.Errorf("cannot use variables with JSON files.")
}
if len(j.VarFiles) > 0 && j.JSON {
return fmt.Errorf("cannot use variables with JSON files.")
}
if len(j.Vars) > 0 && j.HCL1 {
return fmt.Errorf("cannot use variables with HCLv1.")
}
if len(j.VarFiles) > 0 && j.HCL1 {
return fmt.Errorf("cannot use variables with HCLv1.")
}
return nil
}
// ApiJob returns the Job struct from jobfile.
func (j *JobGetter) ApiJob(jpath string) (*api.JobSubmission, *api.Job, error) {
return j.Get(jpath)
}
func (j *JobGetter) Get(jpath string) (*api.JobSubmission, *api.Job, error) {
var jobfile io.Reader
pathName := filepath.Base(jpath)
switch jpath {
case "-":
if j.testStdin != nil {
jobfile = j.testStdin
} else {
jobfile = os.Stdin
}
pathName = "stdin"
default:
if len(jpath) == 0 {
return nil, nil, fmt.Errorf("Error jobfile path has to be specified.")
}
jobFile, err := os.CreateTemp("", "jobfile")
if err != nil {
return nil, nil, err
}
defer os.Remove(jobFile.Name())
if err := jobFile.Close(); err != nil {
return nil, nil, err
}
// Get the pwd
pwd, err := os.Getwd()
if err != nil {
return nil, nil, err
}
client := &gg.Client{
Src: jpath,
Pwd: pwd,
Dst: jobFile.Name(),
// This will prevent copying or writing files through symlinks
DisableSymlinks: true,
}
if err := client.Get(); err != nil {
return nil, nil, fmt.Errorf("Error getting jobfile from %q: %v", jpath, err)
} else {
file, err := os.Open(jobFile.Name())
if err != nil {
return nil, nil, fmt.Errorf("Error opening file %q: %v", jpath, err)
}
defer file.Close()
jobfile = file
}
}
// Parse the JobFile
var jobStruct *api.Job // deserialized destination
var source bytes.Buffer // tee the original
var jobSubmission *api.JobSubmission // store the original and format
jobfile = io.TeeReader(jobfile, &source)
var err error
switch {
case j.HCL1:
jobStruct, err = jobspec.Parse(jobfile)
// include the hcl1 source as the submission
jobSubmission = &api.JobSubmission{
Source: source.String(),
Format: formatHCL1,
}
case j.JSON:
// Support JSON files with both a top-level Job key as well as
// ones without.
eitherJob := struct {
NestedJob *api.Job `json:"Job"`
api.Job
}{}
if err := json.NewDecoder(jobfile).Decode(&eitherJob); err != nil {
return nil, nil, fmt.Errorf("Failed to parse JSON job: %w", err)
}
if eitherJob.NestedJob != nil {
jobStruct = eitherJob.NestedJob
} else {
jobStruct = &eitherJob.Job
}
// include the json source as the submission
jobSubmission = &api.JobSubmission{
Source: source.String(),
Format: formatJSON,
}
default:
// we are parsing HCL2
// make a copy of the job file (or stdio)
if _, err = io.Copy(&source, jobfile); err != nil {
return nil, nil, fmt.Errorf("Failed to parse HCL job: %w", err)
}
// Perform the environment listing here as it is used twice beyond this
// point.
osEnv := os.Environ()
// we are parsing HCL2, whether from a file or stdio
jobStruct, err = jobspec2.ParseWithConfig(&jobspec2.ParseConfig{
Path: pathName,
Body: source.Bytes(),
ArgVars: j.Vars,
AllowFS: true,
VarFiles: j.VarFiles,
Envs: osEnv,
Strict: j.Strict,
})
var varFileCat string
var readVarFileErr error
if err == nil {
// combine any -var-file data into one big blob
varFileCat, readVarFileErr = extractVarFiles(j.VarFiles)
if readVarFileErr != nil {
return nil, nil, fmt.Errorf("Failed to read var file(s): %w", readVarFileErr)
}
}
// Extract variables declared by the -var flag and as environment
// variables.
extractedVarFlags := extractVarFlags(j.Vars)
extractedEnvVars := extractJobSpecEnvVars(osEnv)
// Merge the two maps ensuring that variables defined by -var flags
// take precedence.
maps.Copy(extractedEnvVars, extractedVarFlags)
// submit the job with the submission with content from -var flags
jobSubmission = &api.JobSubmission{
VariableFlags: extractedEnvVars,
Variables: varFileCat,
Source: source.String(),
Format: formatHCL2,
}
if err != nil {
if _, merr := jobspec.Parse(&source); merr == nil {
return nil, nil, fmt.Errorf("Failed to parse using HCL 2. Use the HCL 1 parser with `nomad run -hcl1`, or address the following issues:\n%v", err)
}
}
}
if err != nil {
return nil, nil, fmt.Errorf("Error parsing job file from %s:\n%v", jpath, err)
}
return jobSubmission, jobStruct, nil
}
// extractVarFiles concatenates the content of each file in filenames and
// returns it all as one big content blob
func extractVarFiles(filenames []string) (string, error) {
var sb strings.Builder
for _, filename := range filenames {
b, err := os.ReadFile(filename)
if err != nil {
return "", err
}
sb.WriteString(string(b))
sb.WriteString("\n")
}
return sb.String(), nil
}
// extractVarFlags is used to parse the values of -var command line arguments
// and turn them into a map to be used for submission. The result is never
// nil for convenience.
func extractVarFlags(slice []string) map[string]string {
m := make(map[string]string, len(slice))
for _, s := range slice {
if tokens := strings.SplitN(s, "=", 2); len(tokens) == 1 {
m[tokens[0]] = ""
} else {
m[tokens[0]] = tokens[1]
}
}
return m
}
// extractJobSpecEnvVars is used to extract Nomad specific HCL variables from
// the OS environment. The input envVars parameter is expected to be generated
// from the os.Environment function call. The result is never nil for
// convenience.
func extractJobSpecEnvVars(envVars []string) map[string]string {
m := make(map[string]string)
for _, raw := range envVars {
if !strings.HasPrefix(raw, jobspec2.VarEnvPrefix) {
continue
}
// Trim the prefix, so we just have the raw key=value variable
// remaining.
raw = raw[len(jobspec2.VarEnvPrefix):]
// Identify the index of the equals sign which is where we split the
// variable k/v pair. -1 indicates the equals sign is not found and
// therefore the var is not valid.
if eq := strings.Index(raw, "="); eq == -1 {
continue
} else if raw[:eq] != "" {
m[raw[:eq]] = raw[eq+1:]
}
}
return m
}
// mergeAutocompleteFlags is used to join multiple flag completion sets.
func mergeAutocompleteFlags(flags ...complete.Flags) complete.Flags {
merged := make(map[string]complete.Predictor, len(flags))
for _, f := range flags {
for k, v := range f {
merged[k] = v
}
}
return merged
}
// sanitizeUUIDPrefix is used to sanitize a UUID prefix. The returned result
// will be a truncated version of the prefix if the prefix would not be
// queryable.
func sanitizeUUIDPrefix(prefix string) string {
hyphens := strings.Count(prefix, "-")
length := len(prefix) - hyphens
remainder := length % 2
return prefix[:len(prefix)-remainder]
}
// commandErrorText is used to easily render the same messaging across commands
// when an error is printed.
func commandErrorText(cmd NamedCommand) string {
return fmt.Sprintf("For additional help try 'nomad %s -help'", cmd.Name())
}
// uiErrorWriter is a io.Writer that wraps underlying ui.ErrorWriter().
// ui.ErrorWriter expects full lines as inputs and it emits its own line breaks.
//
// uiErrorWriter scans input for individual lines to pass to ui.ErrorWriter. If data
// doesn't contain a new line, it buffers result until next new line or writer is closed.
type uiErrorWriter struct {
ui cli.Ui
buf bytes.Buffer
}
func (w *uiErrorWriter) Write(data []byte) (int, error) {
read := 0
for len(data) != 0 {
a, token, err := bufio.ScanLines(data, false)
if err != nil {
return read, err
}
if a == 0 {
r, err := w.buf.Write(data)
return read + r, err
}
w.ui.Error(w.buf.String() + string(token))
data = data[a:]
w.buf.Reset()
read += a
}
return read, nil
}
func (w *uiErrorWriter) Close() error {
// emit what's remaining
if w.buf.Len() != 0 {
w.ui.Error(w.buf.String())
w.buf.Reset()
}
return nil
}
func loadDataSource(data string, testStdin io.Reader) (string, error) {
// Handle empty quoted shell parameters
if len(data) == 0 {
return "", nil
}
switch data[0] {
case '@':
return loadFromFile(data[1:])
case '-':
if len(data) > 1 {
return data, nil
}
return loadFromStdin(testStdin)
default:
return data, nil
}
}
func loadFromFile(path string) (string, error) {
data, err := os.ReadFile(path)
if err != nil {
return "", fmt.Errorf("Failed to read file: %v", err)
}
return string(data), nil
}
func loadFromStdin(testStdin io.Reader) (string, error) {
var stdin io.Reader = os.Stdin
if testStdin != nil {
stdin = testStdin
}
var b bytes.Buffer
if _, err := io.Copy(&b, stdin); err != nil {
return "", fmt.Errorf("Failed to read stdin: %v", err)
}
return b.String(), nil
}