package client import ( "errors" "fmt" "io/ioutil" "log" "net" "net/rpc" "os" "path/filepath" "sort" "strconv" "strings" "sync" "time" metrics "github.com/armon/go-metrics" "github.com/boltdb/bolt" consulapi "github.com/hashicorp/consul/api" "github.com/hashicorp/consul/lib" multierror "github.com/hashicorp/go-multierror" "github.com/hashicorp/nomad/client/allocdir" "github.com/hashicorp/nomad/client/config" "github.com/hashicorp/nomad/client/servers" "github.com/hashicorp/nomad/client/stats" cstructs "github.com/hashicorp/nomad/client/structs" "github.com/hashicorp/nomad/client/vaultclient" "github.com/hashicorp/nomad/command/agent/consul" "github.com/hashicorp/nomad/helper" "github.com/hashicorp/nomad/helper/pool" hstats "github.com/hashicorp/nomad/helper/stats" "github.com/hashicorp/nomad/helper/tlsutil" "github.com/hashicorp/nomad/helper/uuid" "github.com/hashicorp/nomad/nomad/structs" nconfig "github.com/hashicorp/nomad/nomad/structs/config" vaultapi "github.com/hashicorp/vault/api" "github.com/shirou/gopsutil/host" ) const ( // clientRPCCache controls how long we keep an idle connection // open to a server clientRPCCache = 5 * time.Minute // clientMaxStreams controls how many idle streams we keep // open to a server clientMaxStreams = 2 // datacenterQueryLimit searches through up to this many adjacent // datacenters looking for the Nomad server service. datacenterQueryLimit = 9 // registerRetryIntv is minimum interval on which we retry // registration. We pick a value between this and 2x this. registerRetryIntv = 15 * time.Second // getAllocRetryIntv is minimum interval on which we retry // to fetch allocations. We pick a value between this and 2x this. getAllocRetryIntv = 30 * time.Second // devModeRetryIntv is the retry interval used for development devModeRetryIntv = time.Second // stateSnapshotIntv is how often the client snapshots state stateSnapshotIntv = 60 * time.Second // initialHeartbeatStagger is used to stagger the interval between // starting and the initial heartbeat. After the initial heartbeat, // we switch to using the TTL specified by the servers. initialHeartbeatStagger = 10 * time.Second // nodeUpdateRetryIntv is how often the client checks for updates to the // node attributes or meta map. nodeUpdateRetryIntv = 5 * time.Second // allocSyncIntv is the batching period of allocation updates before they // are synced with the server. allocSyncIntv = 200 * time.Millisecond // allocSyncRetryIntv is the interval on which we retry updating // the status of the allocation allocSyncRetryIntv = 5 * time.Second ) // ClientStatsReporter exposes all the APIs related to resource usage of a Nomad // Client type ClientStatsReporter interface { // GetAllocStats returns the AllocStatsReporter for the passed allocation. // If it does not exist an error is reported. GetAllocStats(allocID string) (AllocStatsReporter, error) // LatestHostStats returns the latest resource usage stats for the host LatestHostStats() *stats.HostStats } // Client is used to implement the client interaction with Nomad. Clients // are expected to register as a schedulable node to the servers, and to // run allocations as determined by the servers. type Client struct { config *config.Config start time.Time // stateDB is used to efficiently store client state. stateDB *bolt.DB // configCopy is a copy that should be passed to alloc-runners. configCopy *config.Config configLock sync.RWMutex logger *log.Logger connPool *pool.ConnPool // tlsWrap is used to wrap outbound connections using TLS. It should be // accessed using the lock. tlsWrap tlsutil.RegionWrapper tlsWrapLock sync.RWMutex // servers is the list of nomad servers servers *servers.Manager // heartbeat related times for tracking how often to heartbeat lastHeartbeat time.Time heartbeatTTL time.Duration haveHeartbeated bool heartbeatLock sync.Mutex // triggerDiscoveryCh triggers Consul discovery; see triggerDiscovery triggerDiscoveryCh chan struct{} // triggerNodeUpdate triggers the client to mark the Node as changed and // update it. triggerNodeUpdate chan struct{} // triggerEmitNodeEvent sends an event and triggers the client to update the // server for the node event triggerEmitNodeEvent chan *structs.NodeEvent // rpcRetryCh is closed when there an event such as server discovery or a // successful RPC occurring happens such that a retry should happen. Access // should only occur via the getter method rpcRetryCh chan struct{} rpcRetryLock sync.Mutex // allocs maps alloc IDs to their AllocRunner. This map includes all // AllocRunners - running and GC'd - until the server GCs them. allocs map[string]*AllocRunner allocLock sync.RWMutex // allocUpdates stores allocations that need to be synced to the server. allocUpdates chan *structs.Allocation // consulService is Nomad's custom Consul client for managing services // and checks. consulService ConsulServiceAPI // consulCatalog is the subset of Consul's Catalog API Nomad uses. consulCatalog consul.CatalogAPI // HostStatsCollector collects host resource usage stats hostStatsCollector *stats.HostStatsCollector shutdown bool shutdownCh chan struct{} shutdownLock sync.Mutex // vaultClient is used to interact with Vault for token and secret renewals vaultClient vaultclient.VaultClient // garbageCollector is used to garbage collect terminal allocations present // in the node automatically garbageCollector *AllocGarbageCollector // clientACLResolver holds the ACL resolution state clientACLResolver // rpcServer is used to serve RPCs by the local agent. rpcServer *rpc.Server endpoints rpcEndpoints streamingRpcs *structs.StreamingRpcRegistry // baseLabels are used when emitting tagged metrics. All client metrics will // have these tags, and optionally more. baseLabels []metrics.Label } var ( // noServersErr is returned by the RPC method when the client has no // configured servers. This is used to trigger Consul discovery if // enabled. noServersErr = errors.New("no servers") ) // NewClient is used to create a new client from the given configuration func NewClient(cfg *config.Config, consulCatalog consul.CatalogAPI, consulService ConsulServiceAPI, logger *log.Logger) (*Client, error) { // Create the tls wrapper var tlsWrap tlsutil.RegionWrapper if cfg.TLSConfig.EnableRPC { tw, err := cfg.TLSConfiguration().OutgoingTLSWrapper() if err != nil { return nil, err } tlsWrap = tw } // Create the client c := &Client{ config: cfg, consulCatalog: consulCatalog, consulService: consulService, start: time.Now(), connPool: pool.NewPool(cfg.LogOutput, clientRPCCache, clientMaxStreams, tlsWrap), tlsWrap: tlsWrap, streamingRpcs: structs.NewStreamingRpcRegistry(), logger: logger, allocs: make(map[string]*AllocRunner), allocUpdates: make(chan *structs.Allocation, 64), shutdownCh: make(chan struct{}), triggerDiscoveryCh: make(chan struct{}), triggerNodeUpdate: make(chan struct{}, 8), triggerEmitNodeEvent: make(chan *structs.NodeEvent, 8), } // Initialize the server manager c.servers = servers.New(c.logger, c.shutdownCh, c) // Initialize the client if err := c.init(); err != nil { return nil, fmt.Errorf("failed to initialize client: %v", err) } // Setup the clients RPC server c.setupClientRpc() // Initialize the ACL state if err := c.clientACLResolver.init(); err != nil { return nil, fmt.Errorf("failed to initialize ACL state: %v", err) } // Add the stats collector statsCollector := stats.NewHostStatsCollector(logger, c.config.AllocDir) c.hostStatsCollector = statsCollector // Add the garbage collector gcConfig := &GCConfig{ MaxAllocs: cfg.GCMaxAllocs, DiskUsageThreshold: cfg.GCDiskUsageThreshold, InodeUsageThreshold: cfg.GCInodeUsageThreshold, Interval: cfg.GCInterval, ParallelDestroys: cfg.GCParallelDestroys, ReservedDiskMB: cfg.Node.Reserved.DiskMB, } c.garbageCollector = NewAllocGarbageCollector(logger, statsCollector, c, gcConfig) go c.garbageCollector.Run() // Setup the node if err := c.setupNode(); err != nil { return nil, fmt.Errorf("node setup failed: %v", err) } // Store the config copy before restoring state but after it has been // initialized. c.configLock.Lock() c.configCopy = c.config.Copy() c.configLock.Unlock() fingerprintManager := NewFingerprintManager(c.GetConfig, c.configCopy.Node, c.shutdownCh, c.updateNodeFromFingerprint, c.updateNodeFromDriver, c.logger) // Fingerprint the node and scan for drivers if err := fingerprintManager.Run(); err != nil { return nil, fmt.Errorf("fingerprinting failed: %v", err) } // Setup the reserved resources c.reservePorts() // Set the preconfigured list of static servers c.configLock.RLock() if len(c.configCopy.Servers) > 0 { if err := c.setServersImpl(c.configCopy.Servers, true); err != nil { logger.Printf("[WARN] client: None of the configured servers are valid: %v", err) } } c.configLock.RUnlock() // Setup Consul discovery if enabled if c.configCopy.ConsulConfig.ClientAutoJoin != nil && *c.configCopy.ConsulConfig.ClientAutoJoin { go c.consulDiscovery() if c.servers.NumServers() == 0 { // No configured servers; trigger discovery manually c.triggerDiscoveryCh <- struct{}{} } } // Setup the vault client for token and secret renewals if err := c.setupVaultClient(); err != nil { return nil, fmt.Errorf("failed to setup vault client: %v", err) } // Restore the state if err := c.restoreState(); err != nil { logger.Printf("[ERR] client: failed to restore state: %v", err) logger.Printf("[ERR] client: Nomad is unable to start due to corrupt state. "+ "The safest way to proceed is to manually stop running task processes "+ "and remove Nomad's state (%q) and alloc (%q) directories before "+ "restarting. Lost allocations will be rescheduled.", c.config.StateDir, c.config.AllocDir) logger.Printf("[ERR] client: Corrupt state is often caused by a bug. Please " + "report as much information as possible to " + "https://github.com/hashicorp/nomad/issues") return nil, fmt.Errorf("failed to restore state") } // Register and then start heartbeating to the servers. go c.registerAndHeartbeat() // Begin periodic snapshotting of state. go c.periodicSnapshot() // Begin syncing allocations to the server go c.allocSync() // Start the client! go c.run() // Start collecting stats go c.emitStats() c.logger.Printf("[INFO] client: Node ID %q", c.NodeID()) return c, nil } // init is used to initialize the client and perform any setup // needed before we begin starting its various components. func (c *Client) init() error { // Ensure the state dir exists if we have one if c.config.StateDir != "" { if err := os.MkdirAll(c.config.StateDir, 0700); err != nil { return fmt.Errorf("failed creating state dir: %s", err) } } else { // Otherwise make a temp directory to use. p, err := ioutil.TempDir("", "NomadClient") if err != nil { return fmt.Errorf("failed creating temporary directory for the StateDir: %v", err) } p, err = filepath.EvalSymlinks(p) if err != nil { return fmt.Errorf("failed to find temporary directory for the StateDir: %v", err) } c.config.StateDir = p } c.logger.Printf("[INFO] client: using state directory %v", c.config.StateDir) // Create or open the state database db, err := bolt.Open(filepath.Join(c.config.StateDir, "state.db"), 0600, nil) if err != nil { return fmt.Errorf("failed to create state database: %v", err) } c.stateDB = db // Ensure the alloc dir exists if we have one if c.config.AllocDir != "" { if err := os.MkdirAll(c.config.AllocDir, 0711); err != nil { return fmt.Errorf("failed creating alloc dir: %s", err) } } else { // Otherwise make a temp directory to use. p, err := ioutil.TempDir("", "NomadClient") if err != nil { return fmt.Errorf("failed creating temporary directory for the AllocDir: %v", err) } p, err = filepath.EvalSymlinks(p) if err != nil { return fmt.Errorf("failed to find temporary directory for the AllocDir: %v", err) } // Change the permissions to have the execute bit if err := os.Chmod(p, 0711); err != nil { return fmt.Errorf("failed to change directory permissions for the AllocDir: %v", err) } c.config.AllocDir = p } c.logger.Printf("[INFO] client: using alloc directory %v", c.config.AllocDir) return nil } // reloadTLSConnections allows a client to reload its TLS configuration on the // fly func (c *Client) reloadTLSConnections(newConfig *nconfig.TLSConfig) error { var tlsWrap tlsutil.RegionWrapper if newConfig != nil && newConfig.EnableRPC { tw, err := tlsutil.NewTLSConfiguration(newConfig).OutgoingTLSWrapper() if err != nil { return err } tlsWrap = tw } // Store the new tls wrapper. c.tlsWrapLock.Lock() c.tlsWrap = tlsWrap c.tlsWrapLock.Unlock() // Keep the client configuration up to date as we use configuration values to // decide on what type of connections to accept c.configLock.Lock() c.config.TLSConfig = newConfig c.configLock.Unlock() c.connPool.ReloadTLS(tlsWrap) return nil } // Reload allows a client to reload its configuration on the fly func (c *Client) Reload(newConfig *config.Config) error { return c.reloadTLSConnections(newConfig.TLSConfig) } // Leave is used to prepare the client to leave the cluster func (c *Client) Leave() error { // TODO return nil } // GetConfig returns the config of the client func (c *Client) GetConfig() *config.Config { c.configLock.Lock() defer c.configLock.Unlock() return c.configCopy } // Datacenter returns the datacenter for the given client func (c *Client) Datacenter() string { return c.config.Node.Datacenter } // Region returns the region for the given client func (c *Client) Region() string { return c.config.Region } // NodeID returns the node ID for the given client func (c *Client) NodeID() string { return c.config.Node.ID } // secretNodeID returns the secret node ID for the given client func (c *Client) secretNodeID() string { return c.config.Node.SecretID } // RPCMajorVersion returns the structs.ApiMajorVersion supported by the // client. func (c *Client) RPCMajorVersion() int { return structs.ApiMajorVersion } // RPCMinorVersion returns the structs.ApiMinorVersion supported by the // client. func (c *Client) RPCMinorVersion() int { return structs.ApiMinorVersion } // Shutdown is used to tear down the client func (c *Client) Shutdown() error { c.logger.Printf("[INFO] client: shutting down") c.shutdownLock.Lock() defer c.shutdownLock.Unlock() if c.shutdown { return nil } // Defer closing the database defer func() { if err := c.stateDB.Close(); err != nil { c.logger.Printf("[ERR] client: failed to close state database on shutdown: %v", err) } }() // Stop renewing tokens and secrets if c.vaultClient != nil { c.vaultClient.Stop() } // Stop Garbage collector c.garbageCollector.Stop() // Destroy all the running allocations. if c.config.DevMode { for _, ar := range c.getAllocRunners() { ar.Destroy() <-ar.WaitCh() } } c.shutdown = true close(c.shutdownCh) c.connPool.Shutdown() return c.saveState() } // Stats is used to return statistics for debugging and insight // for various sub-systems func (c *Client) Stats() map[string]map[string]string { c.heartbeatLock.Lock() defer c.heartbeatLock.Unlock() stats := map[string]map[string]string{ "client": { "node_id": c.NodeID(), "known_servers": strings.Join(c.GetServers(), ","), "num_allocations": strconv.Itoa(c.NumAllocs()), "last_heartbeat": fmt.Sprintf("%v", time.Since(c.lastHeartbeat)), "heartbeat_ttl": fmt.Sprintf("%v", c.heartbeatTTL), }, "runtime": hstats.RuntimeStats(), } return stats } // CollectAllocation garbage collects a single allocation on a node. Returns // true if alloc was found and garbage collected; otherwise false. func (c *Client) CollectAllocation(allocID string) bool { return c.garbageCollector.Collect(allocID) } // CollectAllAllocs garbage collects all allocations on a node in the terminal // state func (c *Client) CollectAllAllocs() { c.garbageCollector.CollectAll() } // Node returns the locally registered node func (c *Client) Node() *structs.Node { c.configLock.RLock() defer c.configLock.RUnlock() return c.configCopy.Node } // StatsReporter exposes the various APIs related resource usage of a Nomad // client func (c *Client) StatsReporter() ClientStatsReporter { return c } func (c *Client) GetAllocStats(allocID string) (AllocStatsReporter, error) { c.allocLock.RLock() defer c.allocLock.RUnlock() ar, ok := c.allocs[allocID] if !ok { return nil, structs.NewErrUnknownAllocation(allocID) } return ar.StatsReporter(), nil } // HostStats returns all the stats related to a Nomad client func (c *Client) LatestHostStats() *stats.HostStats { return c.hostStatsCollector.Stats() } // ValidateMigrateToken verifies that a token is for a specific client and // allocation, and has been created by a trusted party that has privileged // knowledge of the client's secret identifier func (c *Client) ValidateMigrateToken(allocID, migrateToken string) bool { if !c.config.ACLEnabled { return true } return structs.CompareMigrateToken(allocID, c.secretNodeID(), migrateToken) } // GetAllocFS returns the AllocFS interface for the alloc dir of an allocation func (c *Client) GetAllocFS(allocID string) (allocdir.AllocDirFS, error) { c.allocLock.RLock() defer c.allocLock.RUnlock() ar, ok := c.allocs[allocID] if !ok { return nil, structs.NewErrUnknownAllocation(allocID) } return ar.GetAllocDir(), nil } // GetClientAlloc returns the allocation from the client func (c *Client) GetClientAlloc(allocID string) (*structs.Allocation, error) { all := c.allAllocs() alloc, ok := all[allocID] if !ok { return nil, structs.NewErrUnknownAllocation(allocID) } return alloc, nil } // GetServers returns the list of nomad servers this client is aware of. func (c *Client) GetServers() []string { endpoints := c.servers.GetServers() res := make([]string, len(endpoints)) for i := range endpoints { res[i] = endpoints[i].String() } sort.Strings(res) return res } // SetServers sets a new list of nomad servers to connect to. As long as one // server is resolvable no error is returned. func (c *Client) SetServers(in []string) error { return c.setServersImpl(in, false) } // setServersImpl sets a new list of nomad servers to connect to. If force is // set, we add the server to the internal serverlist even if the server could not // be pinged. An error is returned if no endpoints were valid when non-forcing. // // Force should be used when setting the servers from the initial configuration // since the server may be starting up in parallel and initial pings may fail. func (c *Client) setServersImpl(in []string, force bool) error { var mu sync.Mutex var wg sync.WaitGroup var merr multierror.Error endpoints := make([]*servers.Server, 0, len(in)) wg.Add(len(in)) for _, s := range in { go func(srv string) { defer wg.Done() addr, err := resolveServer(srv) if err != nil { c.logger.Printf("[DEBUG] client: ignoring server %s due to resolution error: %v", srv, err) merr.Errors = append(merr.Errors, err) return } // Try to ping to check if it is a real server if err := c.Ping(addr); err != nil { merr.Errors = append(merr.Errors, fmt.Errorf("Server at address %s failed ping: %v", addr, err)) // If we are forcing the setting of the servers, inject it to // the serverlist even if we can't ping immediately. if !force { return } } mu.Lock() endpoints = append(endpoints, &servers.Server{Addr: addr}) mu.Unlock() }(s) } wg.Wait() // Only return errors if no servers are valid if len(endpoints) == 0 { if len(merr.Errors) > 0 { return merr.ErrorOrNil() } return noServersErr } c.servers.SetServers(endpoints) return nil } // restoreState is used to restore our state from the data dir func (c *Client) restoreState() error { if c.config.DevMode { return nil } // COMPAT: Remove in 0.7.0 // 0.6.0 transitioned from individual state files to a single bolt-db. // The upgrade path is to: // Check if old state exists // If so, restore from that and delete old state // Restore using state database // Allocs holds the IDs of the allocations being restored var allocs []string // Upgrading tracks whether this is a pre 0.6.0 upgrade path var upgrading bool // Scan the directory allocDir := filepath.Join(c.config.StateDir, "alloc") list, err := ioutil.ReadDir(allocDir) if err != nil && !os.IsNotExist(err) { return fmt.Errorf("failed to list alloc state: %v", err) } else if err == nil && len(list) != 0 { upgrading = true for _, entry := range list { allocs = append(allocs, entry.Name()) } } else { // Normal path err := c.stateDB.View(func(tx *bolt.Tx) error { allocs, err = getAllAllocationIDs(tx) if err != nil { return fmt.Errorf("failed to list allocations: %v", err) } return nil }) if err != nil { return err } } // Load each alloc back var mErr multierror.Error for _, id := range allocs { alloc := &structs.Allocation{ID: id} // don't worry about blocking/migrating when restoring watcher := noopPrevAlloc{} c.configLock.RLock() ar := NewAllocRunner(c.logger, c.configCopy.Copy(), c.stateDB, c.updateAllocStatus, alloc, c.vaultClient, c.consulService, watcher) c.configLock.RUnlock() c.allocLock.Lock() c.allocs[id] = ar c.allocLock.Unlock() if err := ar.RestoreState(); err != nil { c.logger.Printf("[ERR] client: failed to restore state for alloc %q: %v", id, err) mErr.Errors = append(mErr.Errors, err) } else { go ar.Run() if upgrading { if err := ar.SaveState(); err != nil { c.logger.Printf("[WARN] client: initial save state for alloc %q failed: %v", id, err) } } } } // Delete all the entries if upgrading { if err := os.RemoveAll(allocDir); err != nil { mErr.Errors = append(mErr.Errors, err) } } return mErr.ErrorOrNil() } // saveState is used to snapshot our state into the data dir. func (c *Client) saveState() error { if c.config.DevMode { return nil } var wg sync.WaitGroup var l sync.Mutex var mErr multierror.Error runners := c.getAllocRunners() wg.Add(len(runners)) for id, ar := range runners { go func(id string, ar *AllocRunner) { err := ar.SaveState() if err != nil { c.logger.Printf("[ERR] client: failed to save state for alloc %q: %v", id, err) l.Lock() multierror.Append(&mErr, err) l.Unlock() } wg.Done() }(id, ar) } wg.Wait() return mErr.ErrorOrNil() } // getAllocRunners returns a snapshot of the current set of alloc runners. func (c *Client) getAllocRunners() map[string]*AllocRunner { c.allocLock.RLock() defer c.allocLock.RUnlock() runners := make(map[string]*AllocRunner, len(c.allocs)) for id, ar := range c.allocs { runners[id] = ar } return runners } // NumAllocs returns the number of un-GC'd allocs this client has. Used to // fulfill the AllocCounter interface for the GC. func (c *Client) NumAllocs() int { n := 0 c.allocLock.RLock() for _, a := range c.allocs { if !a.IsDestroyed() { n++ } } c.allocLock.RUnlock() return n } // nodeID restores, or generates if necessary, a unique node ID and SecretID. // The node ID is, if available, a persistent unique ID. The secret ID is a // high-entropy random UUID. func (c *Client) nodeID() (id, secret string, err error) { var hostID string hostInfo, err := host.Info() if !c.config.NoHostUUID && err == nil { if hashed, ok := helper.HashUUID(hostInfo.HostID); ok { hostID = hashed } } if hostID == "" { // Generate a random hostID if no constant ID is available on // this platform. hostID = uuid.Generate() } // Do not persist in dev mode if c.config.DevMode { return hostID, uuid.Generate(), nil } // Attempt to read existing ID idPath := filepath.Join(c.config.StateDir, "client-id") idBuf, err := ioutil.ReadFile(idPath) if err != nil && !os.IsNotExist(err) { return "", "", err } // Attempt to read existing secret ID secretPath := filepath.Join(c.config.StateDir, "secret-id") secretBuf, err := ioutil.ReadFile(secretPath) if err != nil && !os.IsNotExist(err) { return "", "", err } // Use existing ID if any if len(idBuf) != 0 { id = strings.ToLower(string(idBuf)) } else { id = hostID // Persist the ID if err := ioutil.WriteFile(idPath, []byte(id), 0700); err != nil { return "", "", err } } if len(secretBuf) != 0 { secret = string(secretBuf) } else { // Generate new ID secret = uuid.Generate() // Persist the ID if err := ioutil.WriteFile(secretPath, []byte(secret), 0700); err != nil { return "", "", err } } return id, secret, nil } // setupNode is used to setup the initial node func (c *Client) setupNode() error { node := c.config.Node if node == nil { node = &structs.Node{} c.config.Node = node } // Generate an ID and secret for the node id, secretID, err := c.nodeID() if err != nil { return fmt.Errorf("node ID setup failed: %v", err) } node.ID = id node.SecretID = secretID if node.Attributes == nil { node.Attributes = make(map[string]string) } if node.Links == nil { node.Links = make(map[string]string) } if node.Drivers == nil { node.Drivers = make(map[string]*structs.DriverInfo) } if node.Meta == nil { node.Meta = make(map[string]string) } if node.Resources == nil { node.Resources = &structs.Resources{} } if node.Reserved == nil { node.Reserved = &structs.Resources{} } if node.Datacenter == "" { node.Datacenter = "dc1" } if node.Name == "" { node.Name, _ = os.Hostname() } if node.Name == "" { node.Name = node.ID } node.Status = structs.NodeStatusInit return nil } // reservePorts is used to reserve ports on the fingerprinted network devices. func (c *Client) reservePorts() { c.configLock.RLock() defer c.configLock.RUnlock() global := c.config.GloballyReservedPorts if len(global) == 0 { return } node := c.config.Node networks := node.Resources.Networks reservedIndex := make(map[string]*structs.NetworkResource, len(networks)) for _, resNet := range node.Reserved.Networks { reservedIndex[resNet.IP] = resNet } // Go through each network device and reserve ports on it. for _, net := range networks { res, ok := reservedIndex[net.IP] if !ok { res = net.Copy() res.MBits = 0 reservedIndex[net.IP] = res } for _, portVal := range global { p := structs.Port{Value: portVal} res.ReservedPorts = append(res.ReservedPorts, p) } } // Clear the reserved networks. if node.Reserved == nil { node.Reserved = new(structs.Resources) } else { node.Reserved.Networks = nil } // Restore the reserved networks for _, net := range reservedIndex { node.Reserved.Networks = append(node.Reserved.Networks, net) } // Make the changes available to the config copy. c.configCopy = c.config.Copy() } // updateNodeFromFingerprint updates the node with the result of // fingerprinting the node from the diff that was created func (c *Client) updateNodeFromFingerprint(response *cstructs.FingerprintResponse) *structs.Node { c.configLock.Lock() defer c.configLock.Unlock() nodeHasChanged := false for name, newVal := range response.Attributes { oldVal := c.config.Node.Attributes[name] if oldVal == newVal { continue } nodeHasChanged = true if newVal == "" { delete(c.config.Node.Attributes, name) } else { c.config.Node.Attributes[name] = newVal } } // update node links and resources from the diff created from // fingerprinting for name, newVal := range response.Links { oldVal := c.config.Node.Links[name] if oldVal == newVal { continue } nodeHasChanged = true if newVal == "" { delete(c.config.Node.Links, name) } else { c.config.Node.Links[name] = newVal } } if response.Resources != nil && !resourcesAreEqual(c.config.Node.Resources, response.Resources) { nodeHasChanged = true c.config.Node.Resources.Merge(response.Resources) } if nodeHasChanged { c.updateNodeLocked() } return c.configCopy.Node } // updateNodeFromDriver receives either a fingerprint of the driver or its // health and merges this into a single DriverInfo object func (c *Client) updateNodeFromDriver(name string, fingerprint, health *structs.DriverInfo) *structs.Node { c.configLock.Lock() defer c.configLock.Unlock() var hasChanged bool hadDriver := c.config.Node.Drivers[name] != nil if fingerprint != nil { if !hadDriver { // If the driver info has not yet been set, do that here hasChanged = true c.config.Node.Drivers[name] = fingerprint for attrName, newVal := range fingerprint.Attributes { c.config.Node.Attributes[attrName] = newVal } } else { // The driver info has already been set, fix it up if c.config.Node.Drivers[name].Detected != fingerprint.Detected { hasChanged = true c.config.Node.Drivers[name].Detected = fingerprint.Detected } for attrName, newVal := range fingerprint.Attributes { oldVal := c.config.Node.Drivers[name].Attributes[attrName] if oldVal == newVal { continue } hasChanged = true if newVal == "" { delete(c.config.Node.Attributes, attrName) } else { c.config.Node.Attributes[attrName] = newVal } } } // COMPAT Remove in Nomad 0.10 // We maintain the driver enabled attribute until all drivers expose // their attributes as DriverInfo driverName := fmt.Sprintf("driver.%s", name) if fingerprint.Detected { c.config.Node.Attributes[driverName] = "1" } else { delete(c.config.Node.Attributes, driverName) } } if health != nil { if !hadDriver { hasChanged = true if info, ok := c.config.Node.Drivers[name]; !ok { c.config.Node.Drivers[name] = health } else { info.MergeHealthCheck(health) } } else { oldVal := c.config.Node.Drivers[name] if health.HealthCheckEquals(oldVal) { // Make sure we accurately reflect the last time a health check has been // performed for the driver. oldVal.UpdateTime = health.UpdateTime } else { hasChanged = true // Only emit an event if the health status has changed after node // initial startup (the health description will not get populated until // a health check has run; the initial status is equal to whether the // node is detected or not). if health.Healthy != oldVal.Healthy && health.HealthDescription != "" { event := &structs.NodeEvent{ Subsystem: "Driver", Message: health.HealthDescription, Timestamp: time.Now(), Details: map[string]string{"driver": name}, } c.triggerNodeEvent(event) } // Update the node with the latest information c.config.Node.Drivers[name].MergeHealthCheck(health) } } } if hasChanged { c.config.Node.Drivers[name].UpdateTime = time.Now() c.updateNodeLocked() } return c.configCopy.Node } // resourcesAreEqual is a temporary function to compare whether resources are // equal. We can use this until we change fingerprinters to set pointers on a // return type. func resourcesAreEqual(first, second *structs.Resources) bool { if first.CPU != second.CPU { return false } if first.MemoryMB != second.MemoryMB { return false } if first.DiskMB != second.DiskMB { return false } if first.IOPS != second.IOPS { return false } if len(first.Networks) != len(second.Networks) { return false } for i, e := range first.Networks { if len(second.Networks) < i { return false } f := second.Networks[i] if !e.Equals(f) { return false } } return true } // retryIntv calculates a retry interval value given the base func (c *Client) retryIntv(base time.Duration) time.Duration { if c.config.DevMode { return devModeRetryIntv } return base + lib.RandomStagger(base) } // registerAndHeartbeat is a long lived goroutine used to register the client // and then start heartbeating to the server. func (c *Client) registerAndHeartbeat() { // Register the node c.retryRegisterNode() // Start watching changes for node changes go c.watchNodeUpdates() // Start watching for emitting node events go c.watchNodeEvents() // Setup the heartbeat timer, for the initial registration // we want to do this quickly. We want to do it extra quickly // in development mode. var heartbeat <-chan time.Time if c.config.DevMode { heartbeat = time.After(0) } else { heartbeat = time.After(lib.RandomStagger(initialHeartbeatStagger)) } for { select { case <-c.rpcRetryWatcher(): case <-heartbeat: case <-c.shutdownCh: return } if err := c.updateNodeStatus(); err != nil { // The servers have changed such that this node has not been // registered before if strings.Contains(err.Error(), "node not found") { // Re-register the node c.logger.Printf("[INFO] client: re-registering node") c.retryRegisterNode() heartbeat = time.After(lib.RandomStagger(initialHeartbeatStagger)) } else { intv := c.getHeartbeatRetryIntv(err) c.logger.Printf("[ERR] client: heartbeating failed. Retrying in %v: %v", intv, err) heartbeat = time.After(intv) // If heartbeating fails, trigger Consul discovery c.triggerDiscovery() } } else { c.heartbeatLock.Lock() heartbeat = time.After(c.heartbeatTTL) c.heartbeatLock.Unlock() } } } // getHeartbeatRetryIntv is used to retrieve the time to wait before attempting // another heartbeat. func (c *Client) getHeartbeatRetryIntv(err error) time.Duration { if c.config.DevMode { return devModeRetryIntv } // Collect the useful heartbeat info c.heartbeatLock.Lock() haveHeartbeated := c.haveHeartbeated last := c.lastHeartbeat ttl := c.heartbeatTTL c.heartbeatLock.Unlock() // If we haven't even successfully heartbeated once or there is no leader // treat it as a registration. In the case that there is a leadership loss, // we will have our heartbeat timer reset to a much larger threshold, so // do not put unnecessary pressure on the new leader. if !haveHeartbeated || err == structs.ErrNoLeader { return c.retryIntv(registerRetryIntv) } // Determine how much time we have left to heartbeat left := last.Add(ttl).Sub(time.Now()) // Logic for retrying is: // * Do not retry faster than once a second // * Do not retry less that once every 30 seconds // * If we have missed the heartbeat by more than 30 seconds, start to use // the absolute time since we do not want to retry indefinitely switch { case left < -30*time.Second: // Make left the absolute value so we delay and jitter properly. left *= -1 case left < 0: return time.Second + lib.RandomStagger(time.Second) default: } stagger := lib.RandomStagger(left) switch { case stagger < time.Second: return time.Second + lib.RandomStagger(time.Second) case stagger > 30*time.Second: return 25*time.Second + lib.RandomStagger(5*time.Second) default: return stagger } } // periodicSnapshot is a long lived goroutine used to periodically snapshot the // state of the client func (c *Client) periodicSnapshot() { // Create a snapshot timer snapshot := time.After(stateSnapshotIntv) for { select { case <-snapshot: snapshot = time.After(stateSnapshotIntv) if err := c.saveState(); err != nil { c.logger.Printf("[ERR] client: failed to save state: %v", err) } case <-c.shutdownCh: return } } } // run is a long lived goroutine used to run the client func (c *Client) run() { // Watch for changes in allocations allocUpdates := make(chan *allocUpdates, 8) go c.watchAllocations(allocUpdates) for { select { case update := <-allocUpdates: c.runAllocs(update) case <-c.shutdownCh: return } } } // submitNodeEvents is used to submit a client-side node event. Examples of // these kinds of events include when a driver moves from healthy to unhealthy // (and vice versa) func (c *Client) submitNodeEvents(events []*structs.NodeEvent) error { nodeID := c.NodeID() nodeEvents := map[string][]*structs.NodeEvent{ nodeID: events, } req := structs.EmitNodeEventsRequest{ NodeEvents: nodeEvents, WriteRequest: structs.WriteRequest{Region: c.Region()}, } var resp structs.EmitNodeEventsResponse if err := c.RPC("Node.EmitEvents", &req, &resp); err != nil { return fmt.Errorf("Emitting node events failed: %v", err) } return nil } // watchNodeEvents is a handler which receives node events and on a interval // and submits them in batch format to the server func (c *Client) watchNodeEvents() { // batchEvents stores events that have yet to be published var batchEvents []*structs.NodeEvent // Create and drain the timer timer := time.NewTimer(0) timer.Stop() select { case <-timer.C: default: } defer timer.Stop() for { select { case event := <-c.triggerEmitNodeEvent: if l := len(batchEvents); l <= structs.MaxRetainedNodeEvents { batchEvents = append(batchEvents, event) } else { // Drop the oldest event c.logger.Printf("[WARN] client: dropping node event: %v", batchEvents[0]) batchEvents = append(batchEvents[1:], event) } timer.Reset(c.retryIntv(nodeUpdateRetryIntv)) case <-timer.C: if err := c.submitNodeEvents(batchEvents); err != nil { c.logger.Printf("[ERR] client: submitting node events failed: %v", err) timer.Reset(c.retryIntv(nodeUpdateRetryIntv)) } else { // Reset the events since we successfully sent them. batchEvents = []*structs.NodeEvent{} } case <-c.shutdownCh: return } } } // triggerNodeEvent triggers a emit node event func (c *Client) triggerNodeEvent(nodeEvent *structs.NodeEvent) { select { case c.triggerEmitNodeEvent <- nodeEvent: // emit node event goroutine was released to execute default: // emit node event goroutine was already running } } // retryRegisterNode is used to register the node or update the registration and // retry in case of failure. func (c *Client) retryRegisterNode() { for { err := c.registerNode() if err == nil { // Registered! return } if err == noServersErr { c.logger.Print("[DEBUG] client: registration waiting on servers") c.triggerDiscovery() } else { c.logger.Printf("[ERR] client: registration failure: %v", err) } select { case <-c.rpcRetryWatcher(): case <-time.After(c.retryIntv(registerRetryIntv)): case <-c.shutdownCh: return } } } // registerNode is used to register the node or update the registration func (c *Client) registerNode() error { node := c.Node() req := structs.NodeRegisterRequest{ Node: node, WriteRequest: structs.WriteRequest{Region: c.Region()}, } var resp structs.NodeUpdateResponse if err := c.RPC("Node.Register", &req, &resp); err != nil { return err } // Update the node status to ready after we register. c.configLock.Lock() node.Status = structs.NodeStatusReady c.config.Node.Status = structs.NodeStatusReady c.configLock.Unlock() c.logger.Printf("[INFO] client: node registration complete") if len(resp.EvalIDs) != 0 { c.logger.Printf("[DEBUG] client: %d evaluations triggered by node registration", len(resp.EvalIDs)) } c.heartbeatLock.Lock() defer c.heartbeatLock.Unlock() c.lastHeartbeat = time.Now() c.heartbeatTTL = resp.HeartbeatTTL return nil } // updateNodeStatus is used to heartbeat and update the status of the node func (c *Client) updateNodeStatus() error { start := time.Now() req := structs.NodeUpdateStatusRequest{ NodeID: c.NodeID(), Status: structs.NodeStatusReady, WriteRequest: structs.WriteRequest{Region: c.Region()}, } var resp structs.NodeUpdateResponse if err := c.RPC("Node.UpdateStatus", &req, &resp); err != nil { c.triggerDiscovery() return fmt.Errorf("failed to update status: %v", err) } end := time.Now() if len(resp.EvalIDs) != 0 { c.logger.Printf("[DEBUG] client: %d evaluations triggered by node update", len(resp.EvalIDs)) } // Update the last heartbeat and the new TTL, capturing the old values c.heartbeatLock.Lock() last := c.lastHeartbeat oldTTL := c.heartbeatTTL haveHeartbeated := c.haveHeartbeated c.lastHeartbeat = time.Now() c.heartbeatTTL = resp.HeartbeatTTL c.haveHeartbeated = true c.heartbeatLock.Unlock() c.logger.Printf("[TRACE] client: next heartbeat in %v", resp.HeartbeatTTL) if resp.Index != 0 { c.logger.Printf("[DEBUG] client: state updated to %s", req.Status) // We have potentially missed our TTL log how delayed we were if haveHeartbeated { c.logger.Printf("[WARN] client: heartbeat missed (request took %v). Heartbeat TTL was %v and heartbeated after %v", end.Sub(start), oldTTL, time.Since(last)) } } // Update the number of nodes in the cluster so we can adjust our server // rebalance rate. c.servers.SetNumNodes(resp.NumNodes) // Convert []*NodeServerInfo to []*servers.Server nomadServers := make([]*servers.Server, 0, len(resp.Servers)) for _, s := range resp.Servers { addr, err := resolveServer(s.RPCAdvertiseAddr) if err != nil { c.logger.Printf("[WARN] client: ignoring invalid server %q: %v", s.RPCAdvertiseAddr, err) continue } e := &servers.Server{DC: s.Datacenter, Addr: addr} nomadServers = append(nomadServers, e) } if len(nomadServers) == 0 { return fmt.Errorf("heartbeat response returned no valid servers") } c.servers.SetServers(nomadServers) // Begin polling Consul if there is no Nomad leader. We could be // heartbeating to a Nomad server that is in the minority of a // partition of the Nomad server quorum, but this Nomad Agent still // has connectivity to the existing majority of Nomad Servers, but // only if it queries Consul. if resp.LeaderRPCAddr == "" { c.triggerDiscovery() } return nil } // updateAllocStatus is used to update the status of an allocation func (c *Client) updateAllocStatus(alloc *structs.Allocation) { if alloc.Terminated() { // Terminated, mark for GC if we're still tracking this alloc // runner. If it's not being tracked that means the server has // already GC'd it (see removeAlloc). c.allocLock.RLock() ar, ok := c.allocs[alloc.ID] c.allocLock.RUnlock() if ok { c.garbageCollector.MarkForCollection(ar) // Trigger a GC in case we're over thresholds and just // waiting for eligible allocs. c.garbageCollector.Trigger() } } // Strip all the information that can be reconstructed at the server. Only // send the fields that are updatable by the client. stripped := new(structs.Allocation) stripped.ID = alloc.ID stripped.NodeID = c.NodeID() stripped.TaskStates = alloc.TaskStates stripped.ClientStatus = alloc.ClientStatus stripped.ClientDescription = alloc.ClientDescription stripped.DeploymentStatus = alloc.DeploymentStatus select { case c.allocUpdates <- stripped: case <-c.shutdownCh: } } // allocSync is a long lived function that batches allocation updates to the // server. func (c *Client) allocSync() { staggered := false syncTicker := time.NewTicker(allocSyncIntv) updates := make(map[string]*structs.Allocation) for { select { case <-c.shutdownCh: syncTicker.Stop() return case alloc := <-c.allocUpdates: // Batch the allocation updates until the timer triggers. updates[alloc.ID] = alloc case <-syncTicker.C: // Fast path if there are no updates if len(updates) == 0 { continue } sync := make([]*structs.Allocation, 0, len(updates)) for _, alloc := range updates { sync = append(sync, alloc) } // Send to server. args := structs.AllocUpdateRequest{ Alloc: sync, WriteRequest: structs.WriteRequest{Region: c.Region()}, } var resp structs.GenericResponse if err := c.RPC("Node.UpdateAlloc", &args, &resp); err != nil { c.logger.Printf("[ERR] client: failed to update allocations: %v", err) syncTicker.Stop() syncTicker = time.NewTicker(c.retryIntv(allocSyncRetryIntv)) staggered = true } else { updates = make(map[string]*structs.Allocation) if staggered { syncTicker.Stop() syncTicker = time.NewTicker(allocSyncIntv) staggered = false } } } } } // allocUpdates holds the results of receiving updated allocations from the // servers. type allocUpdates struct { // pulled is the set of allocations that were downloaded from the servers. pulled map[string]*structs.Allocation // filtered is the set of allocations that were not pulled because their // AllocModifyIndex didn't change. filtered map[string]struct{} // migrateTokens are a list of tokens necessary for when clients pull data // from authorized volumes migrateTokens map[string]string } // watchAllocations is used to scan for updates to allocations func (c *Client) watchAllocations(updates chan *allocUpdates) { // The request and response for getting the map of allocations that should // be running on the Node to their AllocModifyIndex which is incremented // when the allocation is updated by the servers. req := structs.NodeSpecificRequest{ NodeID: c.NodeID(), SecretID: c.secretNodeID(), QueryOptions: structs.QueryOptions{ Region: c.Region(), AllowStale: true, }, } var resp structs.NodeClientAllocsResponse // The request and response for pulling down the set of allocations that are // new, or updated server side. allocsReq := structs.AllocsGetRequest{ QueryOptions: structs.QueryOptions{ Region: c.Region(), AllowStale: true, }, } var allocsResp structs.AllocsGetResponse OUTER: for { // Get the allocation modify index map, blocking for updates. We will // use this to determine exactly what allocations need to be downloaded // in full. resp = structs.NodeClientAllocsResponse{} err := c.RPC("Node.GetClientAllocs", &req, &resp) if err != nil { // Shutdown often causes EOF errors, so check for shutdown first select { case <-c.shutdownCh: return default: } // COMPAT: Remove in 0.6. This is to allow the case in which the // servers are not fully upgraded before the clients register. This // can cause the SecretID to be lost if strings.Contains(err.Error(), "node secret ID does not match") { c.logger.Printf("[DEBUG] client: re-registering node as there was a secret ID mismatch: %v", err) c.retryRegisterNode() } else if err != noServersErr { c.logger.Printf("[ERR] client: failed to query for node allocations: %v", err) } retry := c.retryIntv(getAllocRetryIntv) select { case <-c.rpcRetryWatcher(): continue case <-time.After(retry): continue case <-c.shutdownCh: return } } // Check for shutdown select { case <-c.shutdownCh: return default: } // Filter all allocations whose AllocModifyIndex was not incremented. // These are the allocations who have either not been updated, or whose // updates are a result of the client sending an update for the alloc. // This lets us reduce the network traffic to the server as we don't // need to pull all the allocations. var pull []string filtered := make(map[string]struct{}) runners := c.getAllocRunners() var pullIndex uint64 for allocID, modifyIndex := range resp.Allocs { // Pull the allocation if we don't have an alloc runner for the // allocation or if the alloc runner requires an updated allocation. runner, ok := runners[allocID] if !ok || runner.shouldUpdate(modifyIndex) { // Only pull allocs that are required. Filtered // allocs might be at a higher index, so ignore // it. if modifyIndex > pullIndex { pullIndex = modifyIndex } pull = append(pull, allocID) } else { filtered[allocID] = struct{}{} } } // Pull the allocations that passed filtering. allocsResp.Allocs = nil var pulledAllocs map[string]*structs.Allocation if len(pull) != 0 { // Pull the allocations that need to be updated. allocsReq.AllocIDs = pull allocsReq.MinQueryIndex = pullIndex - 1 allocsResp = structs.AllocsGetResponse{} if err := c.RPC("Alloc.GetAllocs", &allocsReq, &allocsResp); err != nil { c.logger.Printf("[ERR] client: failed to query updated allocations: %v", err) retry := c.retryIntv(getAllocRetryIntv) select { case <-c.rpcRetryWatcher(): continue case <-time.After(retry): continue case <-c.shutdownCh: return } } // Ensure that we received all the allocations we wanted pulledAllocs = make(map[string]*structs.Allocation, len(allocsResp.Allocs)) for _, alloc := range allocsResp.Allocs { pulledAllocs[alloc.ID] = alloc } for _, desiredID := range pull { if _, ok := pulledAllocs[desiredID]; !ok { // We didn't get everything we wanted. Do not update the // MinQueryIndex, sleep and then retry. wait := c.retryIntv(2 * time.Second) select { case <-time.After(wait): // Wait for the server we contact to receive the // allocations continue OUTER case <-c.shutdownCh: return } } } // Check for shutdown select { case <-c.shutdownCh: return default: } } c.logger.Printf("[DEBUG] client: updated allocations at index %d (total %d) (pulled %d) (filtered %d)", resp.Index, len(resp.Allocs), len(allocsResp.Allocs), len(filtered)) // Update the query index. if resp.Index > req.MinQueryIndex { req.MinQueryIndex = resp.Index } // Push the updates. update := &allocUpdates{ filtered: filtered, pulled: pulledAllocs, migrateTokens: resp.MigrateTokens, } select { case updates <- update: case <-c.shutdownCh: return } } } // updateNode updates the Node copy and triggers the client to send the updated // Node to the server. This should be done while the caller holds the // configLock lock. func (c *Client) updateNodeLocked() { // Update the config copy. node := c.config.Node.Copy() c.configCopy.Node = node select { case c.triggerNodeUpdate <- struct{}{}: // Node update goroutine was released to execute default: // Node update goroutine was already running } } // watchNodeUpdates blocks until it is edge triggered. Once triggered, // it will update the client node copy and re-register the node. func (c *Client) watchNodeUpdates() { var hasChanged bool timer := time.NewTimer(c.retryIntv(nodeUpdateRetryIntv)) defer timer.Stop() for { select { case <-timer.C: c.logger.Printf("[DEBUG] client: state changed, updating node and re-registering.") c.retryRegisterNode() hasChanged = false case <-c.triggerNodeUpdate: if hasChanged { continue } hasChanged = true timer.Reset(c.retryIntv(nodeUpdateRetryIntv)) case <-c.shutdownCh: return } } } // runAllocs is invoked when we get an updated set of allocations func (c *Client) runAllocs(update *allocUpdates) { // Get the existing allocs c.allocLock.RLock() exist := make([]*structs.Allocation, 0, len(c.allocs)) for _, ar := range c.allocs { exist = append(exist, ar.alloc) } c.allocLock.RUnlock() // Diff the existing and updated allocations diff := diffAllocs(exist, update) c.logger.Printf("[DEBUG] client: %#v", diff) // Remove the old allocations for _, remove := range diff.removed { c.removeAlloc(remove) } // Update the existing allocations for _, update := range diff.updated { if err := c.updateAlloc(update.exist, update.updated); err != nil { c.logger.Printf("[ERR] client: failed to update alloc %q: %v", update.exist.ID, err) } } // Make room for new allocations before running if err := c.garbageCollector.MakeRoomFor(diff.added); err != nil { c.logger.Printf("[ERR] client: error making room for new allocations: %v", err) } // Start the new allocations for _, add := range diff.added { migrateToken := update.migrateTokens[add.ID] if err := c.addAlloc(add, migrateToken); err != nil { c.logger.Printf("[ERR] client: failed to add alloc '%s': %v", add.ID, err) } } // Trigger the GC once more now that new allocs are started that could // have caused thresholds to be exceeded c.garbageCollector.Trigger() } // removeAlloc is invoked when we should remove an allocation because it has // been removed by the server. func (c *Client) removeAlloc(alloc *structs.Allocation) { c.allocLock.Lock() ar, ok := c.allocs[alloc.ID] if !ok { c.allocLock.Unlock() c.logger.Printf("[WARN] client: missing context for alloc '%s'", alloc.ID) return } // Stop tracking alloc runner as it's been GC'd by the server delete(c.allocs, alloc.ID) c.allocLock.Unlock() // Ensure the GC has a reference and then collect. Collecting through the GC // applies rate limiting c.garbageCollector.MarkForCollection(ar) // GC immediately since the server has GC'd it go c.garbageCollector.Collect(alloc.ID) } // updateAlloc is invoked when we should update an allocation func (c *Client) updateAlloc(exist, update *structs.Allocation) error { c.allocLock.RLock() ar, ok := c.allocs[exist.ID] c.allocLock.RUnlock() if !ok { c.logger.Printf("[WARN] client: missing context for alloc '%s'", exist.ID) return nil } ar.Update(update) return nil } // addAlloc is invoked when we should add an allocation func (c *Client) addAlloc(alloc *structs.Allocation, migrateToken string) error { // Check if we already have an alloc runner c.allocLock.Lock() defer c.allocLock.Unlock() if _, ok := c.allocs[alloc.ID]; ok { c.logger.Printf("[DEBUG]: client: dropping duplicate add allocation request: %q", alloc.ID) return nil } // get the previous alloc runner - if one exists - for the // blocking/migrating watcher var prevAR *AllocRunner if alloc.PreviousAllocation != "" { prevAR = c.allocs[alloc.PreviousAllocation] } c.configLock.RLock() prevAlloc := newAllocWatcher(alloc, prevAR, c, c.configCopy, c.logger, migrateToken) // Copy the config since the node can be swapped out as it is being updated. // The long term fix is to pass in the config and node separately and then // we don't have to do a copy. ar := NewAllocRunner(c.logger, c.configCopy.Copy(), c.stateDB, c.updateAllocStatus, alloc, c.vaultClient, c.consulService, prevAlloc) c.configLock.RUnlock() // Store the alloc runner. c.allocs[alloc.ID] = ar if err := ar.SaveState(); err != nil { c.logger.Printf("[WARN] client: initial save state for alloc %q failed: %v", alloc.ID, err) } go ar.Run() return nil } // setupVaultClient creates an object to periodically renew tokens and secrets // with vault. func (c *Client) setupVaultClient() error { var err error c.vaultClient, err = vaultclient.NewVaultClient(c.config.VaultConfig, c.logger, c.deriveToken) if err != nil { return err } if c.vaultClient == nil { c.logger.Printf("[ERR] client: failed to create vault client") return fmt.Errorf("failed to create vault client") } // Start renewing tokens and secrets c.vaultClient.Start() return nil } // deriveToken takes in an allocation and a set of tasks and derives vault // tokens for each of the tasks, unwraps all of them using the supplied vault // client and returns a map of unwrapped tokens, indexed by the task name. func (c *Client) deriveToken(alloc *structs.Allocation, taskNames []string, vclient *vaultapi.Client) (map[string]string, error) { if alloc == nil { return nil, fmt.Errorf("nil allocation") } if taskNames == nil || len(taskNames) == 0 { return nil, fmt.Errorf("missing task names") } group := alloc.Job.LookupTaskGroup(alloc.TaskGroup) if group == nil { return nil, fmt.Errorf("group name in allocation is not present in job") } verifiedTasks := []string{} // Check if the given task names actually exist in the allocation for _, taskName := range taskNames { found := false for _, task := range group.Tasks { if task.Name == taskName { found = true } } if !found { c.logger.Printf("[ERR] task %q not found in the allocation", taskName) return nil, fmt.Errorf("task %q not found in the allocation", taskName) } verifiedTasks = append(verifiedTasks, taskName) } // DeriveVaultToken of nomad server can take in a set of tasks and // creates tokens for all the tasks. req := &structs.DeriveVaultTokenRequest{ NodeID: c.NodeID(), SecretID: c.secretNodeID(), AllocID: alloc.ID, Tasks: verifiedTasks, QueryOptions: structs.QueryOptions{ Region: c.Region(), AllowStale: false, }, } // Derive the tokens var resp structs.DeriveVaultTokenResponse if err := c.RPC("Node.DeriveVaultToken", &req, &resp); err != nil { c.logger.Printf("[ERR] client.vault: DeriveVaultToken RPC failed: %v", err) return nil, fmt.Errorf("DeriveVaultToken RPC failed: %v", err) } if resp.Error != nil { c.logger.Printf("[ERR] client.vault: failed to derive vault tokens: %v", resp.Error) return nil, structs.NewWrappedServerError(resp.Error) } if resp.Tasks == nil { c.logger.Printf("[ERR] client.vault: failed to derive vault token: invalid response") return nil, fmt.Errorf("failed to derive vault tokens: invalid response") } unwrappedTokens := make(map[string]string) // Retrieve the wrapped tokens from the response and unwrap it for _, taskName := range verifiedTasks { // Get the wrapped token wrappedToken, ok := resp.Tasks[taskName] if !ok { c.logger.Printf("[ERR] client.vault: wrapped token missing for task %q", taskName) return nil, fmt.Errorf("wrapped token missing for task %q", taskName) } // Unwrap the vault token unwrapResp, err := vclient.Logical().Unwrap(wrappedToken) if err != nil { if structs.VaultUnrecoverableError.MatchString(err.Error()) { return nil, err } // The error is recoverable return nil, structs.NewRecoverableError( fmt.Errorf("failed to unwrap the token for task %q: %v", taskName, err), true) } // Validate the response var validationErr error if unwrapResp == nil { validationErr = fmt.Errorf("Vault returned nil secret when unwrapping") } else if unwrapResp.Auth == nil { validationErr = fmt.Errorf("Vault returned unwrap secret with nil Auth. Secret warnings: %v", unwrapResp.Warnings) } else if unwrapResp.Auth.ClientToken == "" { validationErr = fmt.Errorf("Vault returned unwrap secret with empty Auth.ClientToken. Secret warnings: %v", unwrapResp.Warnings) } if validationErr != nil { c.logger.Printf("[WARN] client.vault: failed to unwrap token: %v", err) return nil, structs.NewRecoverableError(validationErr, true) } // Append the unwrapped token to the return value unwrappedTokens[taskName] = unwrapResp.Auth.ClientToken } return unwrappedTokens, nil } // triggerDiscovery causes a Consul discovery to begin (if one hasn't already) func (c *Client) triggerDiscovery() { select { case c.triggerDiscoveryCh <- struct{}{}: // Discovery goroutine was released to execute default: // Discovery goroutine was already running } } // consulDiscovery waits for the signal to attempt server discovery via Consul. // It's intended to be started in a goroutine. See triggerDiscovery() for // causing consul discovery from other code locations. func (c *Client) consulDiscovery() { for { select { case <-c.triggerDiscoveryCh: if err := c.consulDiscoveryImpl(); err != nil { c.logger.Printf("[ERR] client.consul: error discovering nomad servers: %v", err) } case <-c.shutdownCh: return } } } func (c *Client) consulDiscoveryImpl() error { // Acquire heartbeat lock to prevent heartbeat from running // concurrently with discovery. Concurrent execution is safe, however // discovery is usually triggered when heartbeating has failed so // there's no point in allowing it. c.heartbeatLock.Lock() defer c.heartbeatLock.Unlock() dcs, err := c.consulCatalog.Datacenters() if err != nil { return fmt.Errorf("client.consul: unable to query Consul datacenters: %v", err) } if len(dcs) > 2 { // Query the local DC first, then shuffle the // remaining DCs. Future heartbeats will cause Nomad // Clients to fixate on their local datacenter so // it's okay to talk with remote DCs. If the no // Nomad servers are available within // datacenterQueryLimit, the next heartbeat will pick // a new set of servers so it's okay. shuffleStrings(dcs[1:]) dcs = dcs[0:lib.MinInt(len(dcs), datacenterQueryLimit)] } // Query for servers in this client's region only region := c.Region() rpcargs := structs.GenericRequest{ QueryOptions: structs.QueryOptions{ Region: region, }, } serviceName := c.configCopy.ConsulConfig.ServerServiceName var mErr multierror.Error var nomadServers servers.Servers c.logger.Printf("[DEBUG] client.consul: bootstrap contacting following Consul DCs: %+q", dcs) DISCOLOOP: for _, dc := range dcs { consulOpts := &consulapi.QueryOptions{ AllowStale: true, Datacenter: dc, Near: "_agent", WaitTime: consul.DefaultQueryWaitDuration, } consulServices, _, err := c.consulCatalog.Service(serviceName, consul.ServiceTagRPC, consulOpts) if err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("unable to query service %+q from Consul datacenter %+q: %v", serviceName, dc, err)) continue } for _, s := range consulServices { port := strconv.Itoa(s.ServicePort) addrstr := s.ServiceAddress if addrstr == "" { addrstr = s.Address } addr, err := net.ResolveTCPAddr("tcp", net.JoinHostPort(addrstr, port)) if err != nil { mErr.Errors = append(mErr.Errors, err) continue } var peers []string if err := c.connPool.RPC(region, addr, c.RPCMajorVersion(), "Status.Peers", rpcargs, &peers); err != nil { mErr.Errors = append(mErr.Errors, err) continue } // Successfully received the Server peers list of the correct // region for _, p := range peers { addr, err := net.ResolveTCPAddr("tcp", p) if err != nil { mErr.Errors = append(mErr.Errors, err) } srv := &servers.Server{Addr: addr} nomadServers = append(nomadServers, srv) } if len(nomadServers) > 0 { break DISCOLOOP } } } if len(nomadServers) == 0 { if len(mErr.Errors) > 0 { return mErr.ErrorOrNil() } return fmt.Errorf("no Nomad Servers advertising service %q in Consul datacenters: %+q", serviceName, dcs) } c.logger.Printf("[INFO] client.consul: discovered following Servers: %s", nomadServers) // Fire the retry trigger if we have updated the set of servers. if c.servers.SetServers(nomadServers) { // Start rebalancing c.servers.RebalanceServers() // Notify waiting rpc calls. If a goroutine just failed an RPC call and // isn't receiving on this chan yet they'll still retry eventually. // This is a shortcircuit for the longer retry intervals. c.fireRpcRetryWatcher() } return nil } // emitStats collects host resource usage stats periodically func (c *Client) emitStats() { // Assign labels directly before emitting stats so the information expected // is ready c.baseLabels = []metrics.Label{{Name: "node_id", Value: c.NodeID()}, {Name: "datacenter", Value: c.Datacenter()}} // Start collecting host stats right away and then keep collecting every // collection interval next := time.NewTimer(0) defer next.Stop() for { select { case <-next.C: err := c.hostStatsCollector.Collect() next.Reset(c.config.StatsCollectionInterval) if err != nil { c.logger.Printf("[WARN] client: error fetching host resource usage stats: %v", err) continue } // Publish Node metrics if operator has opted in if c.config.PublishNodeMetrics { c.emitHostStats() } c.emitClientMetrics() case <-c.shutdownCh: return } } } // setGaugeForMemoryStats proxies metrics for memory specific statistics func (c *Client) setGaugeForMemoryStats(nodeID string, hStats *stats.HostStats) { if !c.config.DisableTaggedMetrics { metrics.SetGaugeWithLabels([]string{"client", "host", "memory", "total"}, float32(hStats.Memory.Total), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "host", "memory", "available"}, float32(hStats.Memory.Available), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "host", "memory", "used"}, float32(hStats.Memory.Used), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "host", "memory", "free"}, float32(hStats.Memory.Free), c.baseLabels) } if c.config.BackwardsCompatibleMetrics { metrics.SetGauge([]string{"client", "host", "memory", nodeID, "total"}, float32(hStats.Memory.Total)) metrics.SetGauge([]string{"client", "host", "memory", nodeID, "available"}, float32(hStats.Memory.Available)) metrics.SetGauge([]string{"client", "host", "memory", nodeID, "used"}, float32(hStats.Memory.Used)) metrics.SetGauge([]string{"client", "host", "memory", nodeID, "free"}, float32(hStats.Memory.Free)) } } // setGaugeForCPUStats proxies metrics for CPU specific statistics func (c *Client) setGaugeForCPUStats(nodeID string, hStats *stats.HostStats) { for _, cpu := range hStats.CPU { if !c.config.DisableTaggedMetrics { labels := append(c.baseLabels, metrics.Label{ Name: "cpu", Value: cpu.CPU, }) metrics.SetGaugeWithLabels([]string{"client", "host", "cpu", "total"}, float32(cpu.Total), labels) metrics.SetGaugeWithLabels([]string{"client", "host", "cpu", "user"}, float32(cpu.User), labels) metrics.SetGaugeWithLabels([]string{"client", "host", "cpu", "idle"}, float32(cpu.Idle), labels) metrics.SetGaugeWithLabels([]string{"client", "host", "cpu", "system"}, float32(cpu.System), labels) } if c.config.BackwardsCompatibleMetrics { metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "total"}, float32(cpu.Total)) metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "user"}, float32(cpu.User)) metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "idle"}, float32(cpu.Idle)) metrics.SetGauge([]string{"client", "host", "cpu", nodeID, cpu.CPU, "system"}, float32(cpu.System)) } } } // setGaugeForDiskStats proxies metrics for disk specific statistics func (c *Client) setGaugeForDiskStats(nodeID string, hStats *stats.HostStats) { for _, disk := range hStats.DiskStats { if !c.config.DisableTaggedMetrics { labels := append(c.baseLabels, metrics.Label{ Name: "disk", Value: disk.Device, }) metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "size"}, float32(disk.Size), labels) metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "used"}, float32(disk.Used), labels) metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "available"}, float32(disk.Available), labels) metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "used_percent"}, float32(disk.UsedPercent), labels) metrics.SetGaugeWithLabels([]string{"client", "host", "disk", "inodes_percent"}, float32(disk.InodesUsedPercent), labels) } if c.config.BackwardsCompatibleMetrics { metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "size"}, float32(disk.Size)) metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "used"}, float32(disk.Used)) metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "available"}, float32(disk.Available)) metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "used_percent"}, float32(disk.UsedPercent)) metrics.SetGauge([]string{"client", "host", "disk", nodeID, disk.Device, "inodes_percent"}, float32(disk.InodesUsedPercent)) } } } // setGaugeForAllocationStats proxies metrics for allocation specific statistics func (c *Client) setGaugeForAllocationStats(nodeID string) { c.configLock.RLock() node := c.configCopy.Node c.configLock.RUnlock() total := node.Resources res := node.Reserved allocated := c.getAllocatedResources(node) // Emit allocated if !c.config.DisableTaggedMetrics { metrics.SetGaugeWithLabels([]string{"client", "allocated", "memory"}, float32(allocated.MemoryMB), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "allocated", "disk"}, float32(allocated.DiskMB), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "allocated", "cpu"}, float32(allocated.CPU), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "allocated", "iops"}, float32(allocated.IOPS), c.baseLabels) } if c.config.BackwardsCompatibleMetrics { metrics.SetGauge([]string{"client", "allocated", "memory", nodeID}, float32(allocated.MemoryMB)) metrics.SetGauge([]string{"client", "allocated", "disk", nodeID}, float32(allocated.DiskMB)) metrics.SetGauge([]string{"client", "allocated", "cpu", nodeID}, float32(allocated.CPU)) metrics.SetGauge([]string{"client", "allocated", "iops", nodeID}, float32(allocated.IOPS)) } for _, n := range allocated.Networks { if !c.config.DisableTaggedMetrics { labels := append(c.baseLabels, metrics.Label{ Name: "device", Value: n.Device, }) metrics.SetGaugeWithLabels([]string{"client", "allocated", "network"}, float32(n.MBits), labels) } if c.config.BackwardsCompatibleMetrics { metrics.SetGauge([]string{"client", "allocated", "network", n.Device, nodeID}, float32(n.MBits)) } } // Emit unallocated unallocatedMem := total.MemoryMB - res.MemoryMB - allocated.MemoryMB unallocatedDisk := total.DiskMB - res.DiskMB - allocated.DiskMB unallocatedCpu := total.CPU - res.CPU - allocated.CPU unallocatedIops := total.IOPS - res.IOPS - allocated.IOPS if !c.config.DisableTaggedMetrics { metrics.SetGaugeWithLabels([]string{"client", "unallocated", "memory"}, float32(unallocatedMem), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "unallocated", "disk"}, float32(unallocatedDisk), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "unallocated", "cpu"}, float32(unallocatedCpu), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "unallocated", "iops"}, float32(unallocatedIops), c.baseLabels) } if c.config.BackwardsCompatibleMetrics { metrics.SetGauge([]string{"client", "unallocated", "memory", nodeID}, float32(unallocatedMem)) metrics.SetGauge([]string{"client", "unallocated", "disk", nodeID}, float32(unallocatedDisk)) metrics.SetGauge([]string{"client", "unallocated", "cpu", nodeID}, float32(unallocatedCpu)) metrics.SetGauge([]string{"client", "unallocated", "iops", nodeID}, float32(unallocatedIops)) } for _, n := range allocated.Networks { totalIdx := total.NetIndex(n) if totalIdx != -1 { continue } totalMbits := total.Networks[totalIdx].MBits unallocatedMbits := totalMbits - n.MBits if !c.config.DisableTaggedMetrics { labels := append(c.baseLabels, metrics.Label{ Name: "device", Value: n.Device, }) metrics.SetGaugeWithLabels([]string{"client", "unallocated", "network"}, float32(unallocatedMbits), labels) } if c.config.BackwardsCompatibleMetrics { metrics.SetGauge([]string{"client", "unallocated", "network", n.Device, nodeID}, float32(unallocatedMbits)) } } } // No labels are required so we emit with only a key/value syntax func (c *Client) setGaugeForUptime(hStats *stats.HostStats) { if !c.config.DisableTaggedMetrics { metrics.SetGaugeWithLabels([]string{"client", "uptime"}, float32(hStats.Uptime), c.baseLabels) } if c.config.BackwardsCompatibleMetrics { metrics.SetGauge([]string{"client", "uptime"}, float32(hStats.Uptime)) } } // emitHostStats pushes host resource usage stats to remote metrics collection sinks func (c *Client) emitHostStats() { nodeID := c.NodeID() hStats := c.hostStatsCollector.Stats() c.setGaugeForMemoryStats(nodeID, hStats) c.setGaugeForUptime(hStats) c.setGaugeForCPUStats(nodeID, hStats) c.setGaugeForDiskStats(nodeID, hStats) } // emitClientMetrics emits lower volume client metrics func (c *Client) emitClientMetrics() { nodeID := c.NodeID() c.setGaugeForAllocationStats(nodeID) // Emit allocation metrics blocked, migrating, pending, running, terminal := 0, 0, 0, 0, 0 for _, ar := range c.getAllocRunners() { switch ar.Alloc().ClientStatus { case structs.AllocClientStatusPending: switch { case ar.IsWaiting(): blocked++ case ar.IsMigrating(): migrating++ default: pending++ } case structs.AllocClientStatusRunning: running++ case structs.AllocClientStatusComplete, structs.AllocClientStatusFailed: terminal++ } } if !c.config.DisableTaggedMetrics { metrics.SetGaugeWithLabels([]string{"client", "allocations", "migrating"}, float32(migrating), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "allocations", "blocked"}, float32(blocked), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "allocations", "pending"}, float32(pending), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "allocations", "running"}, float32(running), c.baseLabels) metrics.SetGaugeWithLabels([]string{"client", "allocations", "terminal"}, float32(terminal), c.baseLabels) } if c.config.BackwardsCompatibleMetrics { metrics.SetGauge([]string{"client", "allocations", "migrating", nodeID}, float32(migrating)) metrics.SetGauge([]string{"client", "allocations", "blocked", nodeID}, float32(blocked)) metrics.SetGauge([]string{"client", "allocations", "pending", nodeID}, float32(pending)) metrics.SetGauge([]string{"client", "allocations", "running", nodeID}, float32(running)) metrics.SetGauge([]string{"client", "allocations", "terminal", nodeID}, float32(terminal)) } } func (c *Client) getAllocatedResources(selfNode *structs.Node) *structs.Resources { // Unfortunately the allocs only have IP so we need to match them to the // device cidrToDevice := make(map[*net.IPNet]string, len(selfNode.Resources.Networks)) for _, n := range selfNode.Resources.Networks { _, ipnet, err := net.ParseCIDR(n.CIDR) if err != nil { continue } cidrToDevice[ipnet] = n.Device } // Sum the allocated resources allocs := c.allAllocs() var allocated structs.Resources allocatedDeviceMbits := make(map[string]int) for _, alloc := range allocs { if !alloc.TerminalStatus() { allocated.Add(alloc.Resources) for _, allocatedNetwork := range alloc.Resources.Networks { for cidr, dev := range cidrToDevice { ip := net.ParseIP(allocatedNetwork.IP) if cidr.Contains(ip) { allocatedDeviceMbits[dev] += allocatedNetwork.MBits break } } } } } // Clear the networks allocated.Networks = nil for dev, speed := range allocatedDeviceMbits { net := &structs.NetworkResource{ Device: dev, MBits: speed, } allocated.Networks = append(allocated.Networks, net) } return &allocated } // allAllocs returns all the allocations managed by the client func (c *Client) allAllocs() map[string]*structs.Allocation { ars := c.getAllocRunners() allocs := make(map[string]*structs.Allocation, len(ars)) for _, ar := range c.getAllocRunners() { a := ar.Alloc() allocs[a.ID] = a } return allocs }