package nomad import ( "bytes" "context" "fmt" "math/rand" "net" "strings" "sync" "time" "golang.org/x/time/rate" metrics "github.com/armon/go-metrics" log "github.com/hashicorp/go-hclog" memdb "github.com/hashicorp/go-memdb" version "github.com/hashicorp/go-version" "github.com/hashicorp/nomad/helper/uuid" "github.com/hashicorp/nomad/nomad/state" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/raft" "github.com/hashicorp/serf/serf" "github.com/pkg/errors" ) const ( // failedEvalUnblockInterval is the interval at which failed evaluations are // unblocked to re-enter the scheduler. A failed evaluation occurs under // high contention when the schedulers plan does not make progress. failedEvalUnblockInterval = 1 * time.Minute // replicationRateLimit is used to rate limit how often data is replicated // between the authoritative region and the local region replicationRateLimit rate.Limit = 10.0 // barrierWriteTimeout is used to give Raft a chance to process a // possible loss of leadership event if we are unable to get a barrier // while leader. barrierWriteTimeout = 2 * time.Minute ) var minAutopilotVersion = version.Must(version.NewVersion("0.8.0")) var minSchedulerConfigVersion = version.Must(version.NewVersion("0.9.0")) var minClusterIDVersion = version.Must(version.NewVersion("0.10.4")) var minJobRegisterAtomicEvalVersion = version.Must(version.NewVersion("0.12.1")) var minOneTimeAuthenticationTokenVersion = version.Must(version.NewVersion("1.1.0")) // monitorLeadership is used to monitor if we acquire or lose our role // as the leader in the Raft cluster. There is some work the leader is // expected to do, so we must react to changes func (s *Server) monitorLeadership() { var weAreLeaderCh chan struct{} var leaderLoop sync.WaitGroup leaderCh := s.raft.LeaderCh() leaderStep := func(isLeader bool) { if isLeader { if weAreLeaderCh != nil { s.logger.Error("attempted to start the leader loop while running") return } weAreLeaderCh = make(chan struct{}) leaderLoop.Add(1) go func(ch chan struct{}) { defer leaderLoop.Done() s.leaderLoop(ch) }(weAreLeaderCh) s.logger.Info("cluster leadership acquired") return } if weAreLeaderCh == nil { s.logger.Error("attempted to stop the leader loop while not running") return } s.logger.Debug("shutting down leader loop") close(weAreLeaderCh) leaderLoop.Wait() weAreLeaderCh = nil s.logger.Info("cluster leadership lost") } wasLeader := false for { select { case isLeader := <-leaderCh: if wasLeader != isLeader { wasLeader = isLeader // normal case where we went through a transition leaderStep(isLeader) } else if wasLeader && isLeader { // Server lost but then gained leadership immediately. // During this time, this server may have received // Raft transitions that haven't been applied to the FSM // yet. // Ensure that that FSM caught up and eval queues are refreshed s.logger.Warn("cluster leadership lost and gained leadership immediately. Could indicate network issues, memory paging, or high CPU load.") leaderStep(false) leaderStep(true) } else { // Server gained but lost leadership immediately // before it reacted; nothing to do, move on s.logger.Warn("cluster leadership gained and lost leadership immediately. Could indicate network issues, memory paging, or high CPU load.") } case <-s.shutdownCh: if weAreLeaderCh != nil { leaderStep(false) } return } } } // leaderLoop runs as long as we are the leader to run various // maintenance activities func (s *Server) leaderLoop(stopCh chan struct{}) { var reconcileCh chan serf.Member establishedLeader := false RECONCILE: // Setup a reconciliation timer reconcileCh = nil interval := time.After(s.config.ReconcileInterval) // Apply a raft barrier to ensure our FSM is caught up start := time.Now() barrier := s.raft.Barrier(barrierWriteTimeout) if err := barrier.Error(); err != nil { s.logger.Error("failed to wait for barrier", "error", err) goto WAIT } metrics.MeasureSince([]string{"nomad", "leader", "barrier"}, start) // Check if we need to handle initial leadership actions if !establishedLeader { if err := s.establishLeadership(stopCh); err != nil { s.logger.Error("failed to establish leadership", "error", err) // Immediately revoke leadership since we didn't successfully // establish leadership. if err := s.revokeLeadership(); err != nil { s.logger.Error("failed to revoke leadership", "error", err) } goto WAIT } establishedLeader = true defer func() { if err := s.revokeLeadership(); err != nil { s.logger.Error("failed to revoke leadership", "error", err) } }() } // Reconcile any missing data if err := s.reconcile(); err != nil { s.logger.Error("failed to reconcile", "error", err) goto WAIT } // Initial reconcile worked, now we can process the channel // updates reconcileCh = s.reconcileCh // Poll the stop channel to give it priority so we don't waste time // trying to perform the other operations if we have been asked to shut // down. select { case <-stopCh: return default: } WAIT: // Wait until leadership is lost for { select { case <-stopCh: return case <-s.shutdownCh: return case <-interval: goto RECONCILE case member := <-reconcileCh: s.reconcileMember(member) case errCh := <-s.reassertLeaderCh: // Recompute leader state, by asserting leadership and // repopulating leader states. // Check first if we are indeed the leaders first. We // can get into this state when the initial // establishLeadership has failed. // Afterwards we will be waiting for the interval to // trigger a reconciliation and can potentially end up // here. There is no point to reassert because this // agent was never leader in the first place. if !establishedLeader { errCh <- fmt.Errorf("leadership has not been established") continue } // refresh leadership state s.revokeLeadership() err := s.establishLeadership(stopCh) errCh <- err } } } // establishLeadership is invoked once we become leader and are able // to invoke an initial barrier. The barrier is used to ensure any // previously inflight transactions have been committed and that our // state is up-to-date. func (s *Server) establishLeadership(stopCh chan struct{}) error { defer metrics.MeasureSince([]string{"nomad", "leader", "establish_leadership"}, time.Now()) // Generate a leader ACL token. This will allow the leader to issue work // that requires a valid ACL token. s.setLeaderAcl(uuid.Generate()) // Disable workers to free half the cores for use in the plan queue and // evaluation broker for _, w := range s.pausableWorkers() { w.SetPause(true) } // Initialize and start the autopilot routine s.getOrCreateAutopilotConfig() s.autopilot.Start() // Initialize scheduler configuration s.getOrCreateSchedulerConfig() // Initialize the ClusterID _, _ = s.ClusterID() // todo: use cluster ID for stuff, later! // Enable the plan queue, since we are now the leader s.planQueue.SetEnabled(true) // Start the plan evaluator go s.planApply() // Enable the eval broker, since we are now the leader s.evalBroker.SetEnabled(true) // Enable the blocked eval tracker, since we are now the leader s.blockedEvals.SetEnabled(true) s.blockedEvals.SetTimetable(s.fsm.TimeTable()) // Enable the deployment watcher, since we are now the leader s.deploymentWatcher.SetEnabled(true, s.State()) // Enable the NodeDrainer s.nodeDrainer.SetEnabled(true, s.State()) // Enable the volume watcher, since we are now the leader s.volumeWatcher.SetEnabled(true, s.State()) // Restore the eval broker state if err := s.restoreEvals(); err != nil { return err } // Activate the vault client s.vault.SetActive(true) // Enable the periodic dispatcher, since we are now the leader. s.periodicDispatcher.SetEnabled(true) // Activate RPC now that local FSM caught up with Raft (as evident by Barrier call success) // and all leader related components (e.g. broker queue) are enabled. // Auxiliary processes (e.g. background, bookkeeping, and cleanup tasks can start after) s.setConsistentReadReady() // Further clean ups and follow up that don't block RPC consistency // Restore the periodic dispatcher state if err := s.restorePeriodicDispatcher(); err != nil { return err } // Scheduler periodic jobs go s.schedulePeriodic(stopCh) // Reap any failed evaluations go s.reapFailedEvaluations(stopCh) // Reap any duplicate blocked evaluations go s.reapDupBlockedEvaluations(stopCh) // Periodically unblock failed allocations go s.periodicUnblockFailedEvals(stopCh) // Periodically publish job summary metrics go s.publishJobSummaryMetrics(stopCh) // Periodically publish job status metrics go s.publishJobStatusMetrics(stopCh) // Setup the heartbeat timers. This is done both when starting up or when // a leader fail over happens. Since the timers are maintained by the leader // node, effectively this means all the timers are renewed at the time of failover. // The TTL contract is that the session will not be expired before the TTL, // so expiring it later is allowable. // // This MUST be done after the initial barrier to ensure the latest Nodes // are available to be initialized. Otherwise initialization may use stale // data. if err := s.initializeHeartbeatTimers(); err != nil { s.logger.Error("heartbeat timer setup failed", "error", err) return err } // Start replication of ACLs and Policies if they are enabled, // and we are not the authoritative region. if s.config.ACLEnabled && s.config.Region != s.config.AuthoritativeRegion { go s.replicateACLPolicies(stopCh) go s.replicateACLTokens(stopCh) go s.replicateNamespaces(stopCh) } // Setup any enterprise systems required. if err := s.establishEnterpriseLeadership(stopCh); err != nil { return err } // Cleanup orphaned Vault token accessors if err := s.revokeVaultAccessorsOnRestore(); err != nil { return err } // Cleanup orphaned Service Identity token accessors if err := s.revokeSITokenAccessorsOnRestore(); err != nil { return err } return nil } // replicateNamespaces is used to replicate namespaces from the authoritative // region to this region. func (s *Server) replicateNamespaces(stopCh chan struct{}) { req := structs.NamespaceListRequest{ QueryOptions: structs.QueryOptions{ Region: s.config.AuthoritativeRegion, AllowStale: true, }, } limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit)) s.logger.Debug("starting namespace replication from authoritative region", "region", req.Region) START: for { select { case <-stopCh: return default: } // Rate limit how often we attempt replication limiter.Wait(context.Background()) // Fetch the list of namespaces var resp structs.NamespaceListResponse req.AuthToken = s.ReplicationToken() err := s.forwardRegion(s.config.AuthoritativeRegion, "Namespace.ListNamespaces", &req, &resp) if err != nil { s.logger.Error("failed to fetch namespaces from authoritative region", "error", err) goto ERR_WAIT } // Perform a two-way diff delete, update := diffNamespaces(s.State(), req.MinQueryIndex, resp.Namespaces) // Delete namespaces that should not exist if len(delete) > 0 { args := &structs.NamespaceDeleteRequest{ Namespaces: delete, } _, _, err := s.raftApply(structs.NamespaceDeleteRequestType, args) if err != nil { s.logger.Error("failed to delete namespaces", "error", err) goto ERR_WAIT } } // Fetch any outdated namespaces var fetched []*structs.Namespace if len(update) > 0 { req := structs.NamespaceSetRequest{ Namespaces: update, QueryOptions: structs.QueryOptions{ Region: s.config.AuthoritativeRegion, AuthToken: s.ReplicationToken(), AllowStale: true, MinQueryIndex: resp.Index - 1, }, } var reply structs.NamespaceSetResponse if err := s.forwardRegion(s.config.AuthoritativeRegion, "Namespace.GetNamespaces", &req, &reply); err != nil { s.logger.Error("failed to fetch namespaces from authoritative region", "error", err) goto ERR_WAIT } for _, namespace := range reply.Namespaces { fetched = append(fetched, namespace) } } // Update local namespaces if len(fetched) > 0 { args := &structs.NamespaceUpsertRequest{ Namespaces: fetched, } _, _, err := s.raftApply(structs.NamespaceUpsertRequestType, args) if err != nil { s.logger.Error("failed to update namespaces", "error", err) goto ERR_WAIT } } // Update the minimum query index, blocks until there is a change. req.MinQueryIndex = resp.Index } ERR_WAIT: select { case <-time.After(s.config.ReplicationBackoff): goto START case <-stopCh: return } } // diffNamespaces is used to perform a two-way diff between the local namespaces // and the remote namespaces to determine which namespaces need to be deleted or // updated. func diffNamespaces(state *state.StateStore, minIndex uint64, remoteList []*structs.Namespace) (delete []string, update []string) { // Construct a set of the local and remote namespaces local := make(map[string][]byte) remote := make(map[string]struct{}) // Add all the local namespaces iter, err := state.Namespaces(nil) if err != nil { panic("failed to iterate local namespaces") } for { raw := iter.Next() if raw == nil { break } namespace := raw.(*structs.Namespace) local[namespace.Name] = namespace.Hash } // Iterate over the remote namespaces for _, rns := range remoteList { remote[rns.Name] = struct{}{} // Check if the namespace is missing locally if localHash, ok := local[rns.Name]; !ok { update = append(update, rns.Name) // Check if the namespace is newer remotely and there is a hash // mis-match. } else if rns.ModifyIndex > minIndex && !bytes.Equal(localHash, rns.Hash) { update = append(update, rns.Name) } } // Check if namespaces should be deleted for lns := range local { if _, ok := remote[lns]; !ok { delete = append(delete, lns) } } return } // restoreEvals is used to restore pending evaluations into the eval broker and // blocked evaluations into the blocked eval tracker. The broker and blocked // eval tracker is maintained only by the leader, so it must be restored anytime // a leadership transition takes place. func (s *Server) restoreEvals() error { // Get an iterator over every evaluation ws := memdb.NewWatchSet() iter, err := s.fsm.State().Evals(ws) if err != nil { return fmt.Errorf("failed to get evaluations: %v", err) } for { raw := iter.Next() if raw == nil { break } eval := raw.(*structs.Evaluation) if eval.ShouldEnqueue() { s.evalBroker.Enqueue(eval) } else if eval.ShouldBlock() { s.blockedEvals.Block(eval) } } return nil } // revokeVaultAccessorsOnRestore is used to restore Vault accessors that should be // revoked. func (s *Server) revokeVaultAccessorsOnRestore() error { // An accessor should be revoked if its allocation or node is terminal ws := memdb.NewWatchSet() state := s.fsm.State() iter, err := state.VaultAccessors(ws) if err != nil { return fmt.Errorf("failed to get vault accessors: %v", err) } var revoke []*structs.VaultAccessor for { raw := iter.Next() if raw == nil { break } va := raw.(*structs.VaultAccessor) // Check the allocation alloc, err := state.AllocByID(ws, va.AllocID) if err != nil { return fmt.Errorf("failed to lookup allocation %q: %v", va.AllocID, err) } if alloc == nil || alloc.Terminated() { // No longer running and should be revoked revoke = append(revoke, va) continue } // Check the node node, err := state.NodeByID(ws, va.NodeID) if err != nil { return fmt.Errorf("failed to lookup node %q: %v", va.NodeID, err) } if node == nil || node.TerminalStatus() { // Node is terminal so any accessor from it should be revoked revoke = append(revoke, va) continue } } if len(revoke) != 0 { s.logger.Info("revoking vault accessors after becoming leader", "accessors", len(revoke)) if err := s.vault.MarkForRevocation(revoke); err != nil { return fmt.Errorf("failed to revoke tokens: %v", err) } } return nil } // revokeSITokenAccessorsOnRestore is used to revoke Service Identity token // accessors on behalf of allocs that are now gone / terminal. func (s *Server) revokeSITokenAccessorsOnRestore() error { ws := memdb.NewWatchSet() fsmState := s.fsm.State() iter, err := fsmState.SITokenAccessors(ws) if err != nil { return errors.Wrap(err, "failed to get SI token accessors") } var toRevoke []*structs.SITokenAccessor for raw := iter.Next(); raw != nil; raw = iter.Next() { accessor := raw.(*structs.SITokenAccessor) // Check the allocation alloc, err := fsmState.AllocByID(ws, accessor.AllocID) if err != nil { return errors.Wrapf(err, "failed to lookup alloc %q", accessor.AllocID) } if alloc == nil || alloc.Terminated() { // no longer running and associated accessors should be revoked toRevoke = append(toRevoke, accessor) continue } // Check the node node, err := fsmState.NodeByID(ws, accessor.NodeID) if err != nil { return errors.Wrapf(err, "failed to lookup node %q", accessor.NodeID) } if node == nil || node.TerminalStatus() { // node is terminal and associated accessors should be revoked toRevoke = append(toRevoke, accessor) continue } } if len(toRevoke) > 0 { s.logger.Info("revoking consul accessors after becoming leader", "accessors", len(toRevoke)) s.consulACLs.MarkForRevocation(toRevoke) } return nil } // restorePeriodicDispatcher is used to restore all periodic jobs into the // periodic dispatcher. It also determines if a periodic job should have been // created during the leadership transition and force runs them. The periodic // dispatcher is maintained only by the leader, so it must be restored anytime a // leadership transition takes place. func (s *Server) restorePeriodicDispatcher() error { logger := s.logger.Named("periodic") ws := memdb.NewWatchSet() iter, err := s.fsm.State().JobsByPeriodic(ws, true) if err != nil { return fmt.Errorf("failed to get periodic jobs: %v", err) } now := time.Now() for i := iter.Next(); i != nil; i = iter.Next() { job := i.(*structs.Job) // We skip adding parameterized jobs because they themselves aren't // tracked, only the dispatched children are. if job.IsParameterized() { continue } if err := s.periodicDispatcher.Add(job); err != nil { logger.Error("failed to add job to periodic dispatcher", "error", err) continue } // We do not need to force run the job since it isn't active. if !job.IsPeriodicActive() { continue } // If the periodic job has never been launched before, launch will hold // the time the periodic job was added. Otherwise it has the last launch // time of the periodic job. launch, err := s.fsm.State().PeriodicLaunchByID(ws, job.Namespace, job.ID) if err != nil { return fmt.Errorf("failed to get periodic launch time: %v", err) } if launch == nil { return fmt.Errorf("no recorded periodic launch time for job %q in namespace %q", job.ID, job.Namespace) } // nextLaunch is the next launch that should occur. nextLaunch, err := job.Periodic.Next(launch.Launch.In(job.Periodic.GetLocation())) if err != nil { logger.Error("failed to determine next periodic launch for job", "job", job.NamespacedID(), "error", err) continue } // We skip force launching the job if there should be no next launch // (the zero case) or if the next launch time is in the future. If it is // in the future, it will be handled by the periodic dispatcher. if nextLaunch.IsZero() || !nextLaunch.Before(now) { continue } if _, err := s.periodicDispatcher.ForceRun(job.Namespace, job.ID); err != nil { logger.Error("force run of periodic job failed", "job", job.NamespacedID(), "error", err) return fmt.Errorf("force run of periodic job %q failed: %v", job.NamespacedID(), err) } logger.Debug("periodic job force runned during leadership establishment", "job", job.NamespacedID()) } return nil } // schedulePeriodic is used to do periodic job dispatch while we are leader func (s *Server) schedulePeriodic(stopCh chan struct{}) { evalGC := time.NewTicker(s.config.EvalGCInterval) defer evalGC.Stop() nodeGC := time.NewTicker(s.config.NodeGCInterval) defer nodeGC.Stop() jobGC := time.NewTicker(s.config.JobGCInterval) defer jobGC.Stop() deploymentGC := time.NewTicker(s.config.DeploymentGCInterval) defer deploymentGC.Stop() csiPluginGC := time.NewTicker(s.config.CSIPluginGCInterval) defer csiPluginGC.Stop() csiVolumeClaimGC := time.NewTicker(s.config.CSIVolumeClaimGCInterval) defer csiVolumeClaimGC.Stop() oneTimeTokenGC := time.NewTicker(s.config.OneTimeTokenGCInterval) defer oneTimeTokenGC.Stop() // getLatest grabs the latest index from the state store. It returns true if // the index was retrieved successfully. getLatest := func() (uint64, bool) { snapshotIndex, err := s.fsm.State().LatestIndex() if err != nil { s.logger.Error("failed to determine state store's index", "error", err) return 0, false } return snapshotIndex, true } for { select { case <-evalGC.C: if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobEvalGC, index)) } case <-nodeGC.C: if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobNodeGC, index)) } case <-jobGC.C: if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobJobGC, index)) } case <-deploymentGC.C: if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobDeploymentGC, index)) } case <-csiPluginGC.C: if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobCSIPluginGC, index)) } case <-csiVolumeClaimGC.C: if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobCSIVolumeClaimGC, index)) } case <-oneTimeTokenGC.C: if !ServersMeetMinimumVersion(s.Members(), minOneTimeAuthenticationTokenVersion, false) { continue } if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobOneTimeTokenGC, index)) } case <-stopCh: return } } } // coreJobEval returns an evaluation for a core job func (s *Server) coreJobEval(job string, modifyIndex uint64) *structs.Evaluation { return &structs.Evaluation{ ID: uuid.Generate(), Namespace: "-", Priority: structs.CoreJobPriority, Type: structs.JobTypeCore, TriggeredBy: structs.EvalTriggerScheduled, JobID: job, LeaderACL: s.getLeaderAcl(), Status: structs.EvalStatusPending, ModifyIndex: modifyIndex, } } // reapFailedEvaluations is used to reap evaluations that // have reached their delivery limit and should be failed func (s *Server) reapFailedEvaluations(stopCh chan struct{}) { for { select { case <-stopCh: return default: // Scan for a failed evaluation eval, token, err := s.evalBroker.Dequeue([]string{failedQueue}, time.Second) if err != nil { return } if eval == nil { continue } // Update the status to failed updateEval := eval.Copy() updateEval.Status = structs.EvalStatusFailed updateEval.StatusDescription = fmt.Sprintf("evaluation reached delivery limit (%d)", s.config.EvalDeliveryLimit) s.logger.Warn("eval reached delivery limit, marking as failed", "eval", log.Fmt("%#v", updateEval)) // Core job evals that fail or span leader elections will never // succeed because the follow-up doesn't have the leader ACL. We // rely on the leader to schedule new core jobs periodically // instead. if eval.Type != structs.JobTypeCore { // Create a follow-up evaluation that will be used to retry the // scheduling for the job after the cluster is hopefully more stable // due to the fairly large backoff. followupEvalWait := s.config.EvalFailedFollowupBaselineDelay + time.Duration(rand.Int63n(int64(s.config.EvalFailedFollowupDelayRange))) followupEval := eval.CreateFailedFollowUpEval(followupEvalWait) updateEval.NextEval = followupEval.ID updateEval.UpdateModifyTime() // Update via Raft req := structs.EvalUpdateRequest{ Evals: []*structs.Evaluation{updateEval, followupEval}, } if _, _, err := s.raftApply(structs.EvalUpdateRequestType, &req); err != nil { s.logger.Error("failed to update failed eval and create a follow-up", "eval", log.Fmt("%#v", updateEval), "error", err) continue } } // Ack completion s.evalBroker.Ack(eval.ID, token) } } } // reapDupBlockedEvaluations is used to reap duplicate blocked evaluations and // should be cancelled. func (s *Server) reapDupBlockedEvaluations(stopCh chan struct{}) { for { select { case <-stopCh: return default: // Scan for duplicate blocked evals. dups := s.blockedEvals.GetDuplicates(time.Second) if dups == nil { continue } cancel := make([]*structs.Evaluation, len(dups)) for i, dup := range dups { // Update the status to cancelled newEval := dup.Copy() newEval.Status = structs.EvalStatusCancelled newEval.StatusDescription = fmt.Sprintf("existing blocked evaluation exists for job %q", newEval.JobID) newEval.UpdateModifyTime() cancel[i] = newEval } // Update via Raft req := structs.EvalUpdateRequest{ Evals: cancel, } if _, _, err := s.raftApply(structs.EvalUpdateRequestType, &req); err != nil { s.logger.Error("failed to update duplicate evals", "evals", log.Fmt("%#v", cancel), "error", err) continue } } } } // periodicUnblockFailedEvals periodically unblocks failed, blocked evaluations. func (s *Server) periodicUnblockFailedEvals(stopCh chan struct{}) { ticker := time.NewTicker(failedEvalUnblockInterval) defer ticker.Stop() for { select { case <-stopCh: return case <-ticker.C: // Unblock the failed allocations s.blockedEvals.UnblockFailed() } } } // publishJobSummaryMetrics publishes the job summaries as metrics func (s *Server) publishJobSummaryMetrics(stopCh chan struct{}) { timer := time.NewTimer(0) defer timer.Stop() for { select { case <-stopCh: return case <-timer.C: timer.Reset(s.config.StatsCollectionInterval) state, err := s.State().Snapshot() if err != nil { s.logger.Error("failed to get state", "error", err) continue } ws := memdb.NewWatchSet() iter, err := state.JobSummaries(ws) if err != nil { s.logger.Error("failed to get job summaries", "error", err) continue } for { raw := iter.Next() if raw == nil { break } summary := raw.(*structs.JobSummary) if s.config.DisableDispatchedJobSummaryMetrics { job, err := state.JobByID(ws, summary.Namespace, summary.JobID) if err != nil { s.logger.Error("error getting job for summary", "error", err) continue } if job.Dispatched { continue } } s.iterateJobSummaryMetrics(summary) } } } } func (s *Server) iterateJobSummaryMetrics(summary *structs.JobSummary) { for name, tgSummary := range summary.Summary { labels := []metrics.Label{ { Name: "job", Value: summary.JobID, }, { Name: "task_group", Value: name, }, { Name: "namespace", Value: summary.Namespace, }, } if strings.Contains(summary.JobID, "/dispatch-") { jobInfo := strings.Split(summary.JobID, "/dispatch-") labels = append(labels, metrics.Label{ Name: "parent_id", Value: jobInfo[0], }, metrics.Label{ Name: "dispatch_id", Value: jobInfo[1], }) } if strings.Contains(summary.JobID, "/periodic-") { jobInfo := strings.Split(summary.JobID, "/periodic-") labels = append(labels, metrics.Label{ Name: "parent_id", Value: jobInfo[0], }, metrics.Label{ Name: "periodic_id", Value: jobInfo[1], }) } metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "queued"}, float32(tgSummary.Queued), labels) metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "complete"}, float32(tgSummary.Complete), labels) metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "failed"}, float32(tgSummary.Failed), labels) metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "running"}, float32(tgSummary.Running), labels) metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "starting"}, float32(tgSummary.Starting), labels) metrics.SetGaugeWithLabels([]string{"nomad", "job_summary", "lost"}, float32(tgSummary.Lost), labels) } } // publishJobStatusMetrics publishes the job statuses as metrics func (s *Server) publishJobStatusMetrics(stopCh chan struct{}) { timer := time.NewTimer(0) defer timer.Stop() for { select { case <-stopCh: return case <-timer.C: timer.Reset(s.config.StatsCollectionInterval) state, err := s.State().Snapshot() if err != nil { s.logger.Error("failed to get state", "error", err) continue } ws := memdb.NewWatchSet() iter, err := state.Jobs(ws) if err != nil { s.logger.Error("failed to get job statuses", "error", err) continue } s.iterateJobStatusMetrics(&iter) } } } func (s *Server) iterateJobStatusMetrics(jobs *memdb.ResultIterator) { var pending int64 // Sum of all jobs in 'pending' state var running int64 // Sum of all jobs in 'running' state var dead int64 // Sum of all jobs in 'dead' state for { raw := (*jobs).Next() if raw == nil { break } job := raw.(*structs.Job) switch job.Status { case structs.JobStatusPending: pending++ case structs.JobStatusRunning: running++ case structs.JobStatusDead: dead++ } } metrics.SetGauge([]string{"nomad", "job_status", "pending"}, float32(pending)) metrics.SetGauge([]string{"nomad", "job_status", "running"}, float32(running)) metrics.SetGauge([]string{"nomad", "job_status", "dead"}, float32(dead)) } // revokeLeadership is invoked once we step down as leader. // This is used to cleanup any state that may be specific to a leader. func (s *Server) revokeLeadership() error { defer metrics.MeasureSince([]string{"nomad", "leader", "revoke_leadership"}, time.Now()) s.resetConsistentReadReady() // Clear the leader token since we are no longer the leader. s.setLeaderAcl("") // Disable autopilot s.autopilot.Stop() // Disable the plan queue, since we are no longer leader s.planQueue.SetEnabled(false) // Disable the eval broker, since it is only useful as a leader s.evalBroker.SetEnabled(false) // Disable the blocked eval tracker, since it is only useful as a leader s.blockedEvals.SetEnabled(false) // Disable the periodic dispatcher, since it is only useful as a leader s.periodicDispatcher.SetEnabled(false) // Disable the Vault client as it is only useful as a leader. s.vault.SetActive(false) // Disable the deployment watcher as it is only useful as a leader. s.deploymentWatcher.SetEnabled(false, nil) // Disable the node drainer s.nodeDrainer.SetEnabled(false, nil) // Disable the volume watcher s.volumeWatcher.SetEnabled(false, nil) // Disable any enterprise systems required. if err := s.revokeEnterpriseLeadership(); err != nil { return err } // Clear the heartbeat timers on either shutdown or step down, // since we are no longer responsible for TTL expirations. if err := s.clearAllHeartbeatTimers(); err != nil { s.logger.Error("clearing heartbeat timers failed", "error", err) return err } // Unpause our worker if we paused previously for _, w := range s.pausableWorkers() { w.SetPause(false) } return nil } // pausableWorkers returns a slice of the workers // to pause on leader transitions. // // Upon leadership establishment, pause workers to free half // the cores for use in the plan queue and evaluation broker func (s *Server) pausableWorkers() []*Worker { n := len(s.workers) if n <= 1 { return []*Worker{} } // Disabling 3/4 of the workers frees CPU for raft and the // plan applier which uses 1/2 the cores. return s.workers[:3*n/4] } // reconcile is used to reconcile the differences between Serf // membership and what is reflected in our strongly consistent store. func (s *Server) reconcile() error { defer metrics.MeasureSince([]string{"nomad", "leader", "reconcile"}, time.Now()) members := s.serf.Members() for _, member := range members { if err := s.reconcileMember(member); err != nil { return err } } return nil } // reconcileMember is used to do an async reconcile of a single serf member func (s *Server) reconcileMember(member serf.Member) error { // Check if this is a member we should handle valid, parts := isNomadServer(member) if !valid || parts.Region != s.config.Region { return nil } defer metrics.MeasureSince([]string{"nomad", "leader", "reconcileMember"}, time.Now()) var err error switch member.Status { case serf.StatusAlive: err = s.addRaftPeer(member, parts) case serf.StatusLeft, StatusReap: err = s.removeRaftPeer(member, parts) } if err != nil { s.logger.Error("failed to reconcile member", "member", member, "error", err) return err } return nil } // addRaftPeer is used to add a new Raft peer when a Nomad server joins func (s *Server) addRaftPeer(m serf.Member, parts *serverParts) error { // Check for possibility of multiple bootstrap nodes members := s.serf.Members() if parts.Bootstrap { for _, member := range members { valid, p := isNomadServer(member) if valid && member.Name != m.Name && p.Bootstrap { s.logger.Error("skipping adding Raft peer because an existing peer is in bootstrap mode and only one server should be in bootstrap mode", "existing_peer", member.Name, "joining_peer", m.Name) return nil } } } // Processing ourselves could result in trying to remove ourselves to // fix up our address, which would make us step down. This is only // safe to attempt if there are multiple servers available. addr := (&net.TCPAddr{IP: m.Addr, Port: parts.Port}).String() configFuture := s.raft.GetConfiguration() if err := configFuture.Error(); err != nil { s.logger.Error("failed to get raft configuration", "error", err) return err } if m.Name == s.config.NodeName { if l := len(configFuture.Configuration().Servers); l < 3 { s.logger.Debug("skipping self join check for peer since the cluster is too small", "peer", m.Name) return nil } } // See if it's already in the configuration. It's harmless to re-add it // but we want to avoid doing that if possible to prevent useless Raft // log entries. If the address is the same but the ID changed, remove the // old server before adding the new one. minRaftProtocol, err := s.autopilot.MinRaftProtocol() if err != nil { return err } for _, server := range configFuture.Configuration().Servers { // No-op if the raft version is too low if server.Address == raft.ServerAddress(addr) && (minRaftProtocol < 2 || parts.RaftVersion < 3) { return nil } // If the address or ID matches an existing server, see if we need to remove the old one first if server.Address == raft.ServerAddress(addr) || server.ID == raft.ServerID(parts.ID) { // Exit with no-op if this is being called on an existing server and both the ID and address match if server.Address == raft.ServerAddress(addr) && server.ID == raft.ServerID(parts.ID) { return nil } future := s.raft.RemoveServer(server.ID, 0, 0) if server.Address == raft.ServerAddress(addr) { if err := future.Error(); err != nil { return fmt.Errorf("error removing server with duplicate address %q: %s", server.Address, err) } s.logger.Info("removed server with duplicate address", "address", server.Address) } else { if err := future.Error(); err != nil { return fmt.Errorf("error removing server with duplicate ID %q: %s", server.ID, err) } s.logger.Info("removed server with duplicate ID", "id", server.ID) } } } // Attempt to add as a peer switch { case minRaftProtocol >= 3: addFuture := s.raft.AddNonvoter(raft.ServerID(parts.ID), raft.ServerAddress(addr), 0, 0) if err := addFuture.Error(); err != nil { s.logger.Error("failed to add raft peer", "error", err) return err } case minRaftProtocol == 2 && parts.RaftVersion >= 3: addFuture := s.raft.AddVoter(raft.ServerID(parts.ID), raft.ServerAddress(addr), 0, 0) if err := addFuture.Error(); err != nil { s.logger.Error("failed to add raft peer", "error", err) return err } default: addFuture := s.raft.AddPeer(raft.ServerAddress(addr)) if err := addFuture.Error(); err != nil { s.logger.Error("failed to add raft peer", "error", err) return err } } return nil } // removeRaftPeer is used to remove a Raft peer when a Nomad server leaves // or is reaped func (s *Server) removeRaftPeer(m serf.Member, parts *serverParts) error { addr := (&net.TCPAddr{IP: m.Addr, Port: parts.Port}).String() // See if it's already in the configuration. It's harmless to re-remove it // but we want to avoid doing that if possible to prevent useless Raft // log entries. configFuture := s.raft.GetConfiguration() if err := configFuture.Error(); err != nil { s.logger.Error("failed to get raft configuration", "error", err) return err } minRaftProtocol, err := s.autopilot.MinRaftProtocol() if err != nil { return err } // Pick which remove API to use based on how the server was added. for _, server := range configFuture.Configuration().Servers { // If we understand the new add/remove APIs and the server was added by ID, use the new remove API if minRaftProtocol >= 2 && server.ID == raft.ServerID(parts.ID) { s.logger.Info("removing server by ID", "id", server.ID) future := s.raft.RemoveServer(raft.ServerID(parts.ID), 0, 0) if err := future.Error(); err != nil { s.logger.Error("failed to remove raft peer", "id", server.ID, "error", err) return err } break } else if server.Address == raft.ServerAddress(addr) { // If not, use the old remove API s.logger.Info("removing server by address", "address", server.Address) future := s.raft.RemovePeer(raft.ServerAddress(addr)) if err := future.Error(); err != nil { s.logger.Error("failed to remove raft peer", "address", addr, "error", err) return err } break } } return nil } // replicateACLPolicies is used to replicate ACL policies from // the authoritative region to this region. func (s *Server) replicateACLPolicies(stopCh chan struct{}) { req := structs.ACLPolicyListRequest{ QueryOptions: structs.QueryOptions{ Region: s.config.AuthoritativeRegion, AllowStale: true, }, } limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit)) s.logger.Debug("starting ACL policy replication from authoritative region", "authoritative_region", req.Region) START: for { select { case <-stopCh: return default: // Rate limit how often we attempt replication limiter.Wait(context.Background()) // Fetch the list of policies var resp structs.ACLPolicyListResponse req.AuthToken = s.ReplicationToken() err := s.forwardRegion(s.config.AuthoritativeRegion, "ACL.ListPolicies", &req, &resp) if err != nil { s.logger.Error("failed to fetch policies from authoritative region", "error", err) goto ERR_WAIT } // Perform a two-way diff delete, update := diffACLPolicies(s.State(), req.MinQueryIndex, resp.Policies) // Delete policies that should not exist if len(delete) > 0 { args := &structs.ACLPolicyDeleteRequest{ Names: delete, } _, _, err := s.raftApply(structs.ACLPolicyDeleteRequestType, args) if err != nil { s.logger.Error("failed to delete policies", "error", err) goto ERR_WAIT } } // Fetch any outdated policies var fetched []*structs.ACLPolicy if len(update) > 0 { req := structs.ACLPolicySetRequest{ Names: update, QueryOptions: structs.QueryOptions{ Region: s.config.AuthoritativeRegion, AuthToken: s.ReplicationToken(), AllowStale: true, MinQueryIndex: resp.Index - 1, }, } var reply structs.ACLPolicySetResponse if err := s.forwardRegion(s.config.AuthoritativeRegion, "ACL.GetPolicies", &req, &reply); err != nil { s.logger.Error("failed to fetch policies from authoritative region", "error", err) goto ERR_WAIT } for _, policy := range reply.Policies { fetched = append(fetched, policy) } } // Update local policies if len(fetched) > 0 { args := &structs.ACLPolicyUpsertRequest{ Policies: fetched, } _, _, err := s.raftApply(structs.ACLPolicyUpsertRequestType, args) if err != nil { s.logger.Error("failed to update policies", "error", err) goto ERR_WAIT } } // Update the minimum query index, blocks until there // is a change. req.MinQueryIndex = resp.Index } } ERR_WAIT: select { case <-time.After(s.config.ReplicationBackoff): goto START case <-stopCh: return } } // diffACLPolicies is used to perform a two-way diff between the local // policies and the remote policies to determine which policies need to // be deleted or updated. func diffACLPolicies(state *state.StateStore, minIndex uint64, remoteList []*structs.ACLPolicyListStub) (delete []string, update []string) { // Construct a set of the local and remote policies local := make(map[string][]byte) remote := make(map[string]struct{}) // Add all the local policies iter, err := state.ACLPolicies(nil) if err != nil { panic("failed to iterate local policies") } for { raw := iter.Next() if raw == nil { break } policy := raw.(*structs.ACLPolicy) local[policy.Name] = policy.Hash } // Iterate over the remote policies for _, rp := range remoteList { remote[rp.Name] = struct{}{} // Check if the policy is missing locally if localHash, ok := local[rp.Name]; !ok { update = append(update, rp.Name) // Check if policy is newer remotely and there is a hash mis-match. } else if rp.ModifyIndex > minIndex && !bytes.Equal(localHash, rp.Hash) { update = append(update, rp.Name) } } // Check if policy should be deleted for lp := range local { if _, ok := remote[lp]; !ok { delete = append(delete, lp) } } return } // replicateACLTokens is used to replicate global ACL tokens from // the authoritative region to this region. func (s *Server) replicateACLTokens(stopCh chan struct{}) { req := structs.ACLTokenListRequest{ GlobalOnly: true, QueryOptions: structs.QueryOptions{ Region: s.config.AuthoritativeRegion, AllowStale: true, }, } limiter := rate.NewLimiter(replicationRateLimit, int(replicationRateLimit)) s.logger.Debug("starting ACL token replication from authoritative region", "authoritative_region", req.Region) START: for { select { case <-stopCh: return default: // Rate limit how often we attempt replication limiter.Wait(context.Background()) // Fetch the list of tokens var resp structs.ACLTokenListResponse req.AuthToken = s.ReplicationToken() err := s.forwardRegion(s.config.AuthoritativeRegion, "ACL.ListTokens", &req, &resp) if err != nil { s.logger.Error("failed to fetch tokens from authoritative region", "error", err) goto ERR_WAIT } // Perform a two-way diff delete, update := diffACLTokens(s.State(), req.MinQueryIndex, resp.Tokens) // Delete tokens that should not exist if len(delete) > 0 { args := &structs.ACLTokenDeleteRequest{ AccessorIDs: delete, } _, _, err := s.raftApply(structs.ACLTokenDeleteRequestType, args) if err != nil { s.logger.Error("failed to delete tokens", "error", err) goto ERR_WAIT } } // Fetch any outdated policies. var fetched []*structs.ACLToken if len(update) > 0 { req := structs.ACLTokenSetRequest{ AccessorIDS: update, QueryOptions: structs.QueryOptions{ Region: s.config.AuthoritativeRegion, AuthToken: s.ReplicationToken(), AllowStale: true, MinQueryIndex: resp.Index - 1, }, } var reply structs.ACLTokenSetResponse if err := s.forwardRegion(s.config.AuthoritativeRegion, "ACL.GetTokens", &req, &reply); err != nil { s.logger.Error("failed to fetch tokens from authoritative region", "error", err) goto ERR_WAIT } for _, token := range reply.Tokens { fetched = append(fetched, token) } } // Update local tokens if len(fetched) > 0 { args := &structs.ACLTokenUpsertRequest{ Tokens: fetched, } _, _, err := s.raftApply(structs.ACLTokenUpsertRequestType, args) if err != nil { s.logger.Error("failed to update tokens", "error", err) goto ERR_WAIT } } // Update the minimum query index, blocks until there // is a change. req.MinQueryIndex = resp.Index } } ERR_WAIT: select { case <-time.After(s.config.ReplicationBackoff): goto START case <-stopCh: return } } // diffACLTokens is used to perform a two-way diff between the local // tokens and the remote tokens to determine which tokens need to // be deleted or updated. func diffACLTokens(state *state.StateStore, minIndex uint64, remoteList []*structs.ACLTokenListStub) (delete []string, update []string) { // Construct a set of the local and remote policies local := make(map[string][]byte) remote := make(map[string]struct{}) // Add all the local global tokens iter, err := state.ACLTokensByGlobal(nil, true) if err != nil { panic("failed to iterate local tokens") } for { raw := iter.Next() if raw == nil { break } token := raw.(*structs.ACLToken) local[token.AccessorID] = token.Hash } // Iterate over the remote tokens for _, rp := range remoteList { remote[rp.AccessorID] = struct{}{} // Check if the token is missing locally if localHash, ok := local[rp.AccessorID]; !ok { update = append(update, rp.AccessorID) // Check if policy is newer remotely and there is a hash mis-match. } else if rp.ModifyIndex > minIndex && !bytes.Equal(localHash, rp.Hash) { update = append(update, rp.AccessorID) } } // Check if local token should be deleted for lp := range local { if _, ok := remote[lp]; !ok { delete = append(delete, lp) } } return } // getOrCreateAutopilotConfig is used to get the autopilot config, initializing it if necessary func (s *Server) getOrCreateAutopilotConfig() *structs.AutopilotConfig { state := s.fsm.State() _, config, err := state.AutopilotConfig() if err != nil { s.logger.Named("autopilot").Error("failed to get autopilot config", "error", err) return nil } if config != nil { return config } if !ServersMeetMinimumVersion(s.Members(), minAutopilotVersion, false) { s.logger.Named("autopilot").Warn("can't initialize until all servers are above minimum version", "min_version", minAutopilotVersion) return nil } config = s.config.AutopilotConfig req := structs.AutopilotSetConfigRequest{Config: *config} if _, _, err = s.raftApply(structs.AutopilotRequestType, req); err != nil { s.logger.Named("autopilot").Error("failed to initialize config", "error", err) return nil } return config } // getOrCreateSchedulerConfig is used to get the scheduler config. We create a default // config if it doesn't already exist for bootstrapping an empty cluster func (s *Server) getOrCreateSchedulerConfig() *structs.SchedulerConfiguration { state := s.fsm.State() _, config, err := state.SchedulerConfig() if err != nil { s.logger.Named("core").Error("failed to get scheduler config", "error", err) return nil } if config != nil { return config } if !ServersMeetMinimumVersion(s.Members(), minSchedulerConfigVersion, false) { s.logger.Named("core").Warn("can't initialize scheduler config until all servers are above minimum version", "min_version", minSchedulerConfigVersion) return nil } req := structs.SchedulerSetConfigRequest{Config: s.config.DefaultSchedulerConfig} if _, _, err = s.raftApply(structs.SchedulerConfigRequestType, req); err != nil { s.logger.Named("core").Error("failed to initialize config", "error", err) return nil } return config } func (s *Server) generateClusterID() (string, error) { if !ServersMeetMinimumVersion(s.Members(), minClusterIDVersion, false) { s.logger.Named("core").Warn("cannot initialize cluster ID until all servers are above minimum version", "min_version", minClusterIDVersion) return "", errors.Errorf("cluster ID cannot be created until all servers are above minimum version %s", minClusterIDVersion) } newMeta := structs.ClusterMetadata{ClusterID: uuid.Generate(), CreateTime: time.Now().UnixNano()} if _, _, err := s.raftApply(structs.ClusterMetadataRequestType, newMeta); err != nil { s.logger.Named("core").Error("failed to create cluster ID", "error", err) return "", errors.Wrap(err, "failed to create cluster ID") } s.logger.Named("core").Info("established cluster id", "cluster_id", newMeta.ClusterID, "create_time", newMeta.CreateTime) return newMeta.ClusterID, nil }