package structs import ( crand "crypto/rand" "fmt" "math" ) // RemoveAllocs is used to remove any allocs with the given IDs // from the list of allocations func RemoveAllocs(alloc []*Allocation, remove []*Allocation) []*Allocation { // Convert remove into a set removeSet := make(map[string]struct{}) for _, remove := range remove { removeSet[remove.ID] = struct{}{} } n := len(alloc) for i := 0; i < n; i++ { if _, ok := removeSet[alloc[i].ID]; ok { alloc[i], alloc[n-1] = alloc[n-1], nil i-- n-- } } alloc = alloc[:n] return alloc } // FilterTerminalAllocs filters out all allocations in a terminal state func FilterTerminalAllocs(allocs []*Allocation) []*Allocation { n := len(allocs) for i := 0; i < n; i++ { if allocs[i].TerminalStatus() { allocs[i], allocs[n-1] = allocs[n-1], nil i-- n-- } } return allocs[:n] } // AllocsFit checks if a given set of allocations will fit on a node. // The netIdx can optionally be provided if its already been computed. // If the netIdx is provided, it is assumed that the client has already // ensured there are no collisions. func AllocsFit(node *Node, allocs []*Allocation, netIdx *NetworkIndex) (bool, string, *Resources, error) { // Compute the utilization from zero used := new(Resources) // Add the reserved resources of the node if node.Reserved != nil { if err := used.Add(node.Reserved); err != nil { return false, "", nil, err } } // For each alloc, add the resources for _, alloc := range allocs { if err := used.Add(alloc.Resources); err != nil { return false, "", nil, err } } // Check that the node resources are a super set of those // that are being allocated if superset, dimension := node.Resources.Superset(used); !superset { return false, dimension, used, nil } // Create the network index if missing if netIdx == nil { netIdx = NewNetworkIndex() if netIdx.SetNode(node) || netIdx.AddAllocs(allocs) { return false, "reserved port collision", used, nil } } // Check if the network is overcommitted if netIdx.Overcommitted() { return false, "bandwidth exceeded", used, nil } // Allocations fit! return true, "", used, nil } // ScoreFit is used to score the fit based on the Google work published here: // http://www.columbia.edu/~cs2035/courses/ieor4405.S13/datacenter_scheduling.ppt // This is equivalent to their BestFit v3 func ScoreFit(node *Node, util *Resources) float64 { // Determine the node availability nodeCpu := float64(node.Resources.CPU) if node.Reserved != nil { nodeCpu -= float64(node.Reserved.CPU) } nodeMem := float64(node.Resources.MemoryMB) if node.Reserved != nil { nodeMem -= float64(node.Reserved.MemoryMB) } // Compute the free percentage freePctCpu := 1 - (float64(util.CPU) / nodeCpu) freePctRam := 1 - (float64(util.MemoryMB) / nodeMem) // Total will be "maximized" the smaller the value is. // At 100% utilization, the total is 2, while at 0% util it is 20. total := math.Pow(10, freePctCpu) + math.Pow(10, freePctRam) // Invert so that the "maximized" total represents a high-value // score. Because the floor is 20, we simply use that as an anchor. // This means at a perfect fit, we return 18 as the score. score := 20.0 - total // Bound the score, just in case // If the score is over 18, that means we've overfit the node. if score > 18.0 { score = 18.0 } else if score < 0 { score = 0 } return score } // GenerateUUID is used to generate a random UUID func GenerateUUID() string { buf := make([]byte, 16) if _, err := crand.Read(buf); err != nil { panic(fmt.Errorf("failed to read random bytes: %v", err)) } return fmt.Sprintf("%08x-%04x-%04x-%04x-%12x", buf[0:4], buf[4:6], buf[6:8], buf[8:10], buf[10:16]) }