package client import ( "crypto/md5" "encoding/hex" "fmt" "io/ioutil" "log" "os" "path/filepath" "strings" "sync" "time" "github.com/armon/go-metrics" "github.com/golang/snappy" "github.com/hashicorp/consul-template/signals" "github.com/hashicorp/go-multierror" "github.com/hashicorp/nomad/client/allocdir" "github.com/hashicorp/nomad/client/config" "github.com/hashicorp/nomad/client/driver" "github.com/hashicorp/nomad/client/getter" "github.com/hashicorp/nomad/client/vaultclient" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/nomad/client/driver/env" dstructs "github.com/hashicorp/nomad/client/driver/structs" cstructs "github.com/hashicorp/nomad/client/structs" ) const ( // killBackoffBaseline is the baseline time for exponential backoff while // killing a task. killBackoffBaseline = 5 * time.Second // killBackoffLimit is the limit of the exponential backoff for killing // the task. killBackoffLimit = 2 * time.Minute // killFailureLimit is how many times we will attempt to kill a task before // giving up and potentially leaking resources. killFailureLimit = 5 // vaultBackoffBaseline is the baseline time for exponential backoff when // attempting to retrieve a Vault token vaultBackoffBaseline = 5 * time.Second // vaultBackoffLimit is the limit of the exponential backoff when attempting // to retrieve a Vault token vaultBackoffLimit = 3 * time.Minute // vaultTokenFile is the name of the file holding the Vault token inside the // task's secret directory vaultTokenFile = "vault_token" ) // TaskRunner is used to wrap a task within an allocation and provide the execution context. type TaskRunner struct { config *config.Config updater TaskStateUpdater logger *log.Logger alloc *structs.Allocation restartTracker *RestartTracker // running marks whether the task is running running bool runningLock sync.Mutex resourceUsage *cstructs.TaskResourceUsage resourceUsageLock sync.RWMutex task *structs.Task taskDir *allocdir.TaskDir // taskEnv is the environment variables of the task taskEnv *env.TaskEnvironment taskEnvLock sync.Mutex // updateCh is used to receive updated versions of the allocation updateCh chan *structs.Allocation handle driver.DriverHandle handleLock sync.Mutex // artifactsDownloaded tracks whether the tasks artifacts have been // downloaded // // Must acquire persistLock when accessing artifactsDownloaded bool // taskDirBuilt tracks whether the task has built its directory. // // Must acquire persistLock when accessing taskDirBuilt bool // payloadRendered tracks whether the payload has been rendered to disk payloadRendered bool // vaultFuture is the means to wait for and get a Vault token vaultFuture *tokenFuture // recoveredVaultToken is the token that was recovered through a restore recoveredVaultToken string // vaultClient is used to retrieve and renew any needed Vault token vaultClient vaultclient.VaultClient // templateManager is used to manage any consul-templates this task may have templateManager *TaskTemplateManager // startCh is used to trigger the start of the task startCh chan struct{} // unblockCh is used to unblock the starting of the task unblockCh chan struct{} unblocked bool unblockLock sync.Mutex // restartCh is used to restart a task restartCh chan *structs.TaskEvent // signalCh is used to send a signal to a task signalCh chan SignalEvent destroy bool destroyCh chan struct{} destroyLock sync.Mutex destroyEvent *structs.TaskEvent // waitCh closing marks the run loop as having exited waitCh chan struct{} // serialize SaveState calls persistLock sync.Mutex } // taskRunnerState is used to snapshot the state of the task runner type taskRunnerState struct { Version string Task *structs.Task HandleID string ArtifactDownloaded bool TaskDirBuilt bool PayloadRendered bool } // TaskStateUpdater is used to signal that tasks state has changed. type TaskStateUpdater func(taskName, state string, event *structs.TaskEvent) // SignalEvent is a tuple of the signal and the event generating it type SignalEvent struct { // s is the signal to be sent s os.Signal // e is the task event generating the signal e *structs.TaskEvent // result should be used to send back the result of the signal result chan<- error } // NewTaskRunner is used to create a new task context func NewTaskRunner(logger *log.Logger, config *config.Config, updater TaskStateUpdater, taskDir *allocdir.TaskDir, alloc *structs.Allocation, task *structs.Task, vaultClient vaultclient.VaultClient) *TaskRunner { // Merge in the task resources task.Resources = alloc.TaskResources[task.Name] // Build the restart tracker. tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup) if tg == nil { logger.Printf("[ERR] client: alloc '%s' for missing task group '%s'", alloc.ID, alloc.TaskGroup) return nil } restartTracker := newRestartTracker(tg.RestartPolicy, alloc.Job.Type) tc := &TaskRunner{ config: config, updater: updater, logger: logger, restartTracker: restartTracker, alloc: alloc, task: task, taskDir: taskDir, vaultClient: vaultClient, vaultFuture: NewTokenFuture().Set(""), updateCh: make(chan *structs.Allocation, 64), destroyCh: make(chan struct{}), waitCh: make(chan struct{}), startCh: make(chan struct{}, 1), unblockCh: make(chan struct{}), restartCh: make(chan *structs.TaskEvent), signalCh: make(chan SignalEvent), } return tc } // MarkReceived marks the task as received. func (r *TaskRunner) MarkReceived() { r.updater(r.task.Name, structs.TaskStatePending, structs.NewTaskEvent(structs.TaskReceived)) } // WaitCh returns a channel to wait for termination func (r *TaskRunner) WaitCh() <-chan struct{} { return r.waitCh } // stateFilePath returns the path to our state file func (r *TaskRunner) stateFilePath() string { // Get the MD5 of the task name hashVal := md5.Sum([]byte(r.task.Name)) hashHex := hex.EncodeToString(hashVal[:]) dirName := fmt.Sprintf("task-%s", hashHex) // Generate the path path := filepath.Join(r.config.StateDir, "alloc", r.alloc.ID, dirName, "state.json") return path } // RestoreState is used to restore our state func (r *TaskRunner) RestoreState() error { // Load the snapshot var snap taskRunnerState if err := restoreState(r.stateFilePath(), &snap); err != nil { return err } // Restore fields if snap.Task == nil { return fmt.Errorf("task runner snapshot includes nil Task") } else { r.task = snap.Task } r.artifactsDownloaded = snap.ArtifactDownloaded r.taskDirBuilt = snap.TaskDirBuilt r.payloadRendered = snap.PayloadRendered if err := r.setTaskEnv(); err != nil { return fmt.Errorf("client: failed to create task environment for task %q in allocation %q: %v", r.task.Name, r.alloc.ID, err) } if r.task.Vault != nil { // Read the token from the secret directory tokenPath := filepath.Join(r.taskDir.SecretsDir, vaultTokenFile) data, err := ioutil.ReadFile(tokenPath) if err != nil { if !os.IsNotExist(err) { return fmt.Errorf("failed to read token for task %q in alloc %q: %v", r.task.Name, r.alloc.ID, err) } // Token file doesn't exist } else { // Store the recovered token r.recoveredVaultToken = string(data) } } // Restore the driver if snap.HandleID != "" { d, err := r.createDriver() if err != nil { return err } ctx := driver.NewExecContext(r.taskDir, r.alloc.ID) handle, err := d.Open(ctx, snap.HandleID) // In the case it fails, we relaunch the task in the Run() method. if err != nil { r.logger.Printf("[ERR] client: failed to open handle to task '%s' for alloc '%s': %v", r.task.Name, r.alloc.ID, err) return nil } r.handleLock.Lock() r.handle = handle r.handleLock.Unlock() r.runningLock.Lock() r.running = true r.runningLock.Unlock() } return nil } // SaveState is used to snapshot our state func (r *TaskRunner) SaveState() error { r.persistLock.Lock() defer r.persistLock.Unlock() snap := taskRunnerState{ Task: r.task, Version: r.config.Version, ArtifactDownloaded: r.artifactsDownloaded, TaskDirBuilt: r.taskDirBuilt, PayloadRendered: r.payloadRendered, } r.handleLock.Lock() if r.handle != nil { snap.HandleID = r.handle.ID() } r.handleLock.Unlock() return persistState(r.stateFilePath(), &snap) } // DestroyState is used to cleanup after ourselves func (r *TaskRunner) DestroyState() error { r.persistLock.Lock() defer r.persistLock.Unlock() return os.RemoveAll(r.stateFilePath()) } // setState is used to update the state of the task runner func (r *TaskRunner) setState(state string, event *structs.TaskEvent) { // Persist our state to disk. if err := r.SaveState(); err != nil { r.logger.Printf("[ERR] client: failed to save state of Task Runner for task %q: %v", r.task.Name, err) } // Indicate the task has been updated. r.updater(r.task.Name, state, event) } // setTaskEnv sets the task environment. It returns an error if it could not be // created. func (r *TaskRunner) setTaskEnv() error { r.taskEnvLock.Lock() defer r.taskEnvLock.Unlock() taskEnv, err := driver.GetTaskEnv(r.taskDir, r.config.Node, r.task.Copy(), r.alloc, r.config, r.vaultFuture.Get()) if err != nil { return err } r.taskEnv = taskEnv return nil } // getTaskEnv returns the task environment func (r *TaskRunner) getTaskEnv() *env.TaskEnvironment { r.taskEnvLock.Lock() defer r.taskEnvLock.Unlock() return r.taskEnv } // createDriver makes a driver for the task func (r *TaskRunner) createDriver() (driver.Driver, error) { env := r.getTaskEnv() if env == nil { return nil, fmt.Errorf("task environment not made for task %q in allocation %q", r.task.Name, r.alloc.ID) } // Create a task-specific event emitter callback to expose minimal // state to drivers eventEmitter := func(m string, args ...interface{}) { msg := fmt.Sprintf(m, args...) r.logger.Printf("[DEBUG] client: driver event for alloc %q: %s", r.alloc.ID, msg) r.setState("", structs.NewTaskEvent(structs.TaskDriverMessage).SetDriverMessage(msg)) } driverCtx := driver.NewDriverContext(r.task.Name, r.config, r.config.Node, r.logger, env, eventEmitter) driver, err := driver.NewDriver(r.task.Driver, driverCtx) if err != nil { return nil, fmt.Errorf("failed to create driver '%s' for alloc %s: %v", r.task.Driver, r.alloc.ID, err) } return driver, err } // Run is a long running routine used to manage the task func (r *TaskRunner) Run() { defer close(r.waitCh) r.logger.Printf("[DEBUG] client: starting task context for '%s' (alloc '%s')", r.task.Name, r.alloc.ID) // Create the initial environment, this will be recreated if a Vault token // is needed if err := r.setTaskEnv(); err != nil { r.setState( structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err)) return } if err := r.validateTask(); err != nil { r.setState( structs.TaskStateDead, structs.NewTaskEvent(structs.TaskFailedValidation).SetValidationError(err).SetFailsTask()) return } // If there is no Vault policy leave the static future created in // NewTaskRunner if r.task.Vault != nil { // Start the go-routine to get a Vault token r.vaultFuture.Clear() go r.vaultManager(r.recoveredVaultToken) } // Start the run loop r.run() // Do any cleanup necessary r.postrun() return } // validateTask validates the fields of the task and returns an error if the // task is invalid. func (r *TaskRunner) validateTask() error { var mErr multierror.Error // Validate the user. unallowedUsers := r.config.ReadStringListToMapDefault("user.blacklist", config.DefaultUserBlacklist) checkDrivers := r.config.ReadStringListToMapDefault("user.checked_drivers", config.DefaultUserCheckedDrivers) if _, driverMatch := checkDrivers[r.task.Driver]; driverMatch { if _, unallowed := unallowedUsers[r.task.User]; unallowed { mErr.Errors = append(mErr.Errors, fmt.Errorf("running as user %q is disallowed", r.task.User)) } } // Validate the artifacts for i, artifact := range r.task.Artifacts { // Verify the artifact doesn't escape the task directory. if err := artifact.Validate(); err != nil { // If this error occurs there is potentially a server bug or // mallicious, server spoofing. r.logger.Printf("[ERR] client: allocation %q, task %v, artifact %#v (%v) fails validation: %v", r.alloc.ID, r.task.Name, artifact, i, err) mErr.Errors = append(mErr.Errors, fmt.Errorf("artifact (%d) failed validation: %v", i, err)) } } // Validate the Service names for i, service := range r.task.Services { name := r.taskEnv.ReplaceEnv(service.Name) if err := service.ValidateName(name); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("service (%d) failed validation: %v", i, err)) } } if len(mErr.Errors) == 1 { return mErr.Errors[0] } return mErr.ErrorOrNil() } // tokenFuture stores the Vault token and allows consumers to block till a valid // token exists type tokenFuture struct { waiting []chan struct{} token string set bool m sync.Mutex } // NewTokenFuture returns a new token future without any token set func NewTokenFuture() *tokenFuture { return &tokenFuture{} } // Wait returns a channel that can be waited on. When this channel unblocks, a // valid token will be available via the Get method func (f *tokenFuture) Wait() <-chan struct{} { f.m.Lock() defer f.m.Unlock() c := make(chan struct{}) if f.set { close(c) return c } f.waiting = append(f.waiting, c) return c } // Set sets the token value and unblocks any caller of Wait func (f *tokenFuture) Set(token string) *tokenFuture { f.m.Lock() defer f.m.Unlock() f.set = true f.token = token for _, w := range f.waiting { close(w) } f.waiting = nil return f } // Clear clears the set vault token. func (f *tokenFuture) Clear() *tokenFuture { f.m.Lock() defer f.m.Unlock() f.token = "" f.set = false return f } // Get returns the set Vault token func (f *tokenFuture) Get() string { f.m.Lock() defer f.m.Unlock() return f.token } // vaultManager should be called in a go-routine and manages the derivation, // renewal and handling of errors with the Vault token. The optional parameter // allows setting the initial Vault token. This is useful when the Vault token // is recovered off disk. func (r *TaskRunner) vaultManager(token string) { // updatedToken lets us store state between loops. If true, a new token // has been retrieved and we need to apply the Vault change mode var updatedToken bool OUTER: for { // Check if we should exit select { case <-r.waitCh: return default: } // Clear the token r.vaultFuture.Clear() // Check if there already is a token which can be the case for // restoring the TaskRunner if token == "" { // Get a token var exit bool token, exit = r.deriveVaultToken() if exit { // Exit the manager return } // Write the token to disk if err := r.writeToken(token); err != nil { e := fmt.Errorf("failed to write Vault token to disk") r.logger.Printf("[ERR] client: %v for task %v on alloc %q: %v", e, r.task.Name, r.alloc.ID, err) r.Kill("vault", e.Error(), true) return } } // Start the renewal process renewCh, err := r.vaultClient.RenewToken(token, 30) // An error returned means the token is not being renewed if err != nil { r.logger.Printf("[ERR] client: failed to start renewal of Vault token for task %v on alloc %q: %v", r.task.Name, r.alloc.ID, err) token = "" goto OUTER } // The Vault token is valid now, so set it r.vaultFuture.Set(token) if updatedToken { switch r.task.Vault.ChangeMode { case structs.VaultChangeModeSignal: s, err := signals.Parse(r.task.Vault.ChangeSignal) if err != nil { e := fmt.Errorf("failed to parse signal: %v", err) r.logger.Printf("[ERR] client: %v", err) r.Kill("vault", e.Error(), true) return } if err := r.Signal("vault", "new Vault token acquired", s); err != nil { r.logger.Printf("[ERR] client: failed to send signal to task %v for alloc %q: %v", r.task.Name, r.alloc.ID, err) r.Kill("vault", fmt.Sprintf("failed to send signal to task: %v", err), true) return } case structs.VaultChangeModeRestart: r.Restart("vault", "new Vault token acquired") case structs.VaultChangeModeNoop: fallthrough default: r.logger.Printf("[ERR] client: Invalid Vault change mode: %q", r.task.Vault.ChangeMode) } // We have handled it updatedToken = false // Call the handler r.updatedTokenHandler() } // Start watching for renewal errors select { case err := <-renewCh: // Clear the token token = "" r.logger.Printf("[ERR] client: failed to renew Vault token for task %v on alloc %q: %v", r.task.Name, r.alloc.ID, err) // Check if we have to do anything if r.task.Vault.ChangeMode != structs.VaultChangeModeNoop { updatedToken = true } case <-r.waitCh: return } } } // deriveVaultToken derives the Vault token using exponential backoffs. It // returns the Vault token and whether the manager should exit. func (r *TaskRunner) deriveVaultToken() (token string, exit bool) { attempts := 0 for { tokens, err := r.vaultClient.DeriveToken(r.alloc, []string{r.task.Name}) if err == nil { return tokens[r.task.Name], false } // Check if we can't recover from the error if rerr, ok := err.(*structs.RecoverableError); !ok || !rerr.Recoverable { r.logger.Printf("[ERR] client: failed to derive Vault token for task %v on alloc %q: %v", r.task.Name, r.alloc.ID, err) r.Kill("vault", fmt.Sprintf("failed to derive token: %v", err), true) return "", true } // Handle the retry case backoff := (1 << (2 * uint64(attempts))) * vaultBackoffBaseline if backoff > vaultBackoffLimit { backoff = vaultBackoffLimit } r.logger.Printf("[ERR] client: failed to derive Vault token for task %v on alloc %q: %v; retrying in %v", r.task.Name, r.alloc.ID, err, backoff) attempts++ // Wait till retrying select { case <-r.waitCh: return "", true case <-time.After(backoff): } } } // writeToken writes the given token to disk func (r *TaskRunner) writeToken(token string) error { tokenPath := filepath.Join(r.taskDir.SecretsDir, vaultTokenFile) if err := ioutil.WriteFile(tokenPath, []byte(token), 0777); err != nil { return fmt.Errorf("failed to save Vault tokens to secret dir for task %q in alloc %q: %v", r.task.Name, r.alloc.ID, err) } return nil } // updatedTokenHandler is called when a new Vault token is retrieved. Things // that rely on the token should be updated here. func (r *TaskRunner) updatedTokenHandler() { // Update the tasks environment if err := r.setTaskEnv(); err != nil { r.setState( structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask()) return } if r.templateManager != nil { r.templateManager.Stop() // Create a new templateManager var err error r.templateManager, err = NewTaskTemplateManager(r, r.task.Templates, r.config, r.vaultFuture.Get(), r.taskDir.Dir, r.getTaskEnv()) if err != nil { err := fmt.Errorf("failed to build task's template manager: %v", err) r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask()) r.logger.Printf("[ERR] client: alloc %q, task %q %v", r.alloc.ID, r.task.Name, err) r.Kill("vault", err.Error(), true) return } } } // prestart handles life-cycle tasks that occur before the task has started. func (r *TaskRunner) prestart(resultCh chan bool) { if r.task.Vault != nil { // Wait for the token r.logger.Printf("[DEBUG] client: waiting for Vault token for task %v in alloc %q", r.task.Name, r.alloc.ID) tokenCh := r.vaultFuture.Wait() select { case <-tokenCh: case <-r.waitCh: resultCh <- false return } r.logger.Printf("[DEBUG] client: retrieved Vault token for task %v in alloc %q", r.task.Name, r.alloc.ID) } if err := r.setTaskEnv(); err != nil { r.setState( structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask()) resultCh <- false return } // If the job is a dispatch job and there is a payload write it to disk requirePayload := len(r.alloc.Job.Payload) != 0 && (r.task.DispatchInput != nil && r.task.DispatchInput.File != "") if !r.payloadRendered && requirePayload { renderTo := filepath.Join(r.taskDir.LocalDir, r.task.DispatchInput.File) decoded, err := snappy.Decode(nil, r.alloc.Job.Payload) if err != nil { r.setState( structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask()) resultCh <- false return } if err := ioutil.WriteFile(renderTo, decoded, 0777); err != nil { r.setState( structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask()) resultCh <- false return } r.payloadRendered = true } for { r.persistLock.Lock() downloaded := r.artifactsDownloaded r.persistLock.Unlock() // Download the task's artifacts if !downloaded && len(r.task.Artifacts) > 0 { r.setState(structs.TaskStatePending, structs.NewTaskEvent(structs.TaskDownloadingArtifacts)) for _, artifact := range r.task.Artifacts { if err := getter.GetArtifact(r.getTaskEnv(), artifact, r.taskDir.Dir); err != nil { wrapped := fmt.Errorf("failed to download artifact %q: %v", artifact.GetterSource, err) r.setState(structs.TaskStatePending, structs.NewTaskEvent(structs.TaskArtifactDownloadFailed).SetDownloadError(wrapped)) r.restartTracker.SetStartError(structs.NewRecoverableError(wrapped, true)) goto RESTART } } r.persistLock.Lock() r.artifactsDownloaded = true r.persistLock.Unlock() } // We don't have to wait for any template if len(r.task.Templates) == 0 { // Send the start signal select { case r.startCh <- struct{}{}: default: } resultCh <- true return } // Build the template manager if r.templateManager == nil { var err error r.templateManager, err = NewTaskTemplateManager(r, r.task.Templates, r.config, r.vaultFuture.Get(), r.taskDir.Dir, r.getTaskEnv()) if err != nil { err := fmt.Errorf("failed to build task's template manager: %v", err) r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskSetupFailure).SetSetupError(err).SetFailsTask()) r.logger.Printf("[ERR] client: alloc %q, task %q %v", r.alloc.ID, r.task.Name, err) resultCh <- false return } } // Block for consul-template // TODO Hooks should register themselves as blocking and then we can // perioidcally enumerate what we are still blocked on select { case <-r.unblockCh: // Send the start signal select { case r.startCh <- struct{}{}: default: } resultCh <- true return case <-r.waitCh: // The run loop has exited so exit too resultCh <- false return } RESTART: restart := r.shouldRestart() if !restart { resultCh <- false return } } } // postrun is used to do any cleanup that is necessary after exiting the runloop func (r *TaskRunner) postrun() { // Stop the template manager if r.templateManager != nil { r.templateManager.Stop() } } // run is the main run loop that handles starting the application, destroying // it, restarts and signals. func (r *TaskRunner) run() { // Predeclare things so we can jump to the RESTART var stopCollection chan struct{} var handleWaitCh chan *dstructs.WaitResult for { // Do the prestart activities prestartResultCh := make(chan bool, 1) go r.prestart(prestartResultCh) WAIT: for { select { case success := <-prestartResultCh: if !success { r.setState(structs.TaskStateDead, nil) return } case <-r.startCh: // Start the task if not yet started or it is being forced. This logic // is necessary because in the case of a restore the handle already // exists. r.handleLock.Lock() handleEmpty := r.handle == nil r.handleLock.Unlock() if handleEmpty { startErr := r.startTask() r.restartTracker.SetStartError(startErr) if startErr != nil { r.setState("", structs.NewTaskEvent(structs.TaskDriverFailure).SetDriverError(startErr)) goto RESTART } // Mark the task as started r.setState(structs.TaskStateRunning, structs.NewTaskEvent(structs.TaskStarted)) r.runningLock.Lock() r.running = true r.runningLock.Unlock() } if stopCollection == nil { stopCollection = make(chan struct{}) go r.collectResourceUsageStats(stopCollection) } handleWaitCh = r.handle.WaitCh() case waitRes := <-handleWaitCh: if waitRes == nil { panic("nil wait") } r.runningLock.Lock() r.running = false r.runningLock.Unlock() // Stop collection of the task's resource usage close(stopCollection) // Log whether the task was successful or not. r.restartTracker.SetWaitResult(waitRes) r.setState("", r.waitErrorToEvent(waitRes)) if !waitRes.Successful() { r.logger.Printf("[INFO] client: task %q for alloc %q failed: %v", r.task.Name, r.alloc.ID, waitRes) } else { r.logger.Printf("[INFO] client: task %q for alloc %q completed successfully", r.task.Name, r.alloc.ID) } break WAIT case update := <-r.updateCh: if err := r.handleUpdate(update); err != nil { r.logger.Printf("[ERR] client: update to task %q failed: %v", r.task.Name, err) } case se := <-r.signalCh: r.logger.Printf("[DEBUG] client: task being signalled with %v: %s", se.s, se.e.TaskSignalReason) r.setState(structs.TaskStateRunning, se.e) res := r.handle.Signal(se.s) se.result <- res case event := <-r.restartCh: r.logger.Printf("[DEBUG] client: task being restarted: %s", event.RestartReason) r.setState(structs.TaskStateRunning, event) r.killTask(nil) close(stopCollection) if handleWaitCh != nil { <-handleWaitCh } // Since the restart isn't from a failure, restart immediately // and don't count against the restart policy r.restartTracker.SetRestartTriggered() break WAIT case <-r.destroyCh: r.runningLock.Lock() running := r.running r.runningLock.Unlock() if !running { r.setState(structs.TaskStateDead, r.destroyEvent) return } // Store the task event that provides context on the task // destroy. The Killed event is set from the alloc_runner and // doesn't add detail var killEvent *structs.TaskEvent if r.destroyEvent.Type != structs.TaskKilled { if r.destroyEvent.Type == structs.TaskKilling { killEvent = r.destroyEvent } else { r.setState(structs.TaskStateRunning, r.destroyEvent) } } r.killTask(killEvent) close(stopCollection) r.setState(structs.TaskStateDead, nil) return } } RESTART: restart := r.shouldRestart() if !restart { r.setState(structs.TaskStateDead, nil) return } // Clear the handle so a new driver will be created. r.handleLock.Lock() r.handle = nil handleWaitCh = nil stopCollection = nil r.handleLock.Unlock() } } // shouldRestart returns if the task should restart. If the return value is // true, the task's restart policy has already been considered and any wait time // between restarts has been applied. func (r *TaskRunner) shouldRestart() bool { state, when := r.restartTracker.GetState() reason := r.restartTracker.GetReason() switch state { case structs.TaskNotRestarting, structs.TaskTerminated: r.logger.Printf("[INFO] client: Not restarting task: %v for alloc: %v ", r.task.Name, r.alloc.ID) if state == structs.TaskNotRestarting { r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskNotRestarting). SetRestartReason(reason).SetFailsTask()) } return false case structs.TaskRestarting: r.logger.Printf("[INFO] client: Restarting task %q for alloc %q in %v", r.task.Name, r.alloc.ID, when) r.setState(structs.TaskStatePending, structs.NewTaskEvent(structs.TaskRestarting). SetRestartDelay(when). SetRestartReason(reason)) default: r.logger.Printf("[ERR] client: restart tracker returned unknown state: %q", state) return false } // Sleep but watch for destroy events. select { case <-time.After(when): case <-r.destroyCh: } // Destroyed while we were waiting to restart, so abort. r.destroyLock.Lock() destroyed := r.destroy r.destroyLock.Unlock() if destroyed { r.logger.Printf("[DEBUG] client: Not restarting task: %v because it has been destroyed", r.task.Name) r.setState(structs.TaskStateDead, r.destroyEvent) return false } return true } // killTask kills the running task. A killing event can optionally be passed and // this event is used to mark the task as being killed. It provides a means to // store extra information. func (r *TaskRunner) killTask(killingEvent *structs.TaskEvent) { r.runningLock.Lock() running := r.running r.runningLock.Unlock() if !running { return } // Get the kill timeout timeout := driver.GetKillTimeout(r.task.KillTimeout, r.config.MaxKillTimeout) // Build the event var event *structs.TaskEvent if killingEvent != nil { event = killingEvent event.Type = structs.TaskKilling } else { event = structs.NewTaskEvent(structs.TaskKilling) } event.SetKillTimeout(timeout) // Mark that we received the kill event r.setState(structs.TaskStateRunning, event) // Kill the task using an exponential backoff in-case of failures. destroySuccess, err := r.handleDestroy() if !destroySuccess { // We couldn't successfully destroy the resource created. r.logger.Printf("[ERR] client: failed to kill task %q. Resources may have been leaked: %v", r.task.Name, err) } r.runningLock.Lock() r.running = false r.runningLock.Unlock() // Store that the task has been destroyed and any associated error. r.setState("", structs.NewTaskEvent(structs.TaskKilled).SetKillError(err)) } // startTask creates the driver, task dir, and starts the task. func (r *TaskRunner) startTask() error { // Create a driver drv, err := r.createDriver() if err != nil { return fmt.Errorf("failed to create driver of task %q for alloc %q: %v", r.task.Name, r.alloc.ID, err) } // Build base task directory structure regardless of FS isolation abilities if err := r.buildTaskDir(drv.FSIsolation()); err != nil { return fmt.Errorf("failed to build task directory for %q: %v", r.task.Name, err) } // Run prestart ctx := driver.NewExecContext(r.taskDir, r.alloc.ID) if err := drv.Prestart(ctx, r.task); err != nil { wrapped := fmt.Errorf("failed to initialize task %q for alloc %q: %v", r.task.Name, r.alloc.ID, err) r.logger.Printf("[WARN] client: %v", wrapped) if rerr, ok := err.(*structs.RecoverableError); ok { return structs.NewRecoverableError(wrapped, rerr.Recoverable) } return wrapped } // Start the job handle, err := drv.Start(ctx, r.task) if err != nil { wrapped := fmt.Errorf("failed to start task %q for alloc %q: %v", r.task.Name, r.alloc.ID, err) r.logger.Printf("[WARN] client: %v", wrapped) if rerr, ok := err.(*structs.RecoverableError); ok { return structs.NewRecoverableError(wrapped, rerr.Recoverable) } return wrapped } r.handleLock.Lock() r.handle = handle r.handleLock.Unlock() return nil } // buildTaskDir creates the task directory before driver.Prestart. It is safe // to call multiple times as its state is persisted. func (r *TaskRunner) buildTaskDir(fsi cstructs.FSIsolation) error { r.persistLock.Lock() if r.taskDirBuilt { // Already built! Nothing to do. r.persistLock.Unlock() return nil } r.persistLock.Unlock() chroot := config.DefaultChrootEnv if len(r.config.ChrootEnv) > 0 { chroot = r.config.ChrootEnv } if err := r.taskDir.Build(chroot, fsi); err != nil { return err } // Mark task dir as successfully built r.persistLock.Lock() r.taskDirBuilt = true r.persistLock.Unlock() return nil } // collectResourceUsageStats starts collecting resource usage stats of a Task. // Collection ends when the passed channel is closed func (r *TaskRunner) collectResourceUsageStats(stopCollection <-chan struct{}) { // start collecting the stats right away and then start collecting every // collection interval next := time.NewTimer(0) defer next.Stop() for { select { case <-next.C: next.Reset(r.config.StatsCollectionInterval) if r.handle == nil { continue } ru, err := r.handle.Stats() if err != nil { // We do not log when the plugin is shutdown as this is simply a // race between the stopCollection channel being closed and calling // Stats on the handle. if !strings.Contains(err.Error(), "connection is shut down") { r.logger.Printf("[WARN] client: error fetching stats of task %v: %v", r.task.Name, err) } continue } r.resourceUsageLock.Lock() r.resourceUsage = ru r.resourceUsageLock.Unlock() if ru != nil { r.emitStats(ru) } case <-stopCollection: return } } } // LatestResourceUsage returns the last resource utilization datapoint collected func (r *TaskRunner) LatestResourceUsage() *cstructs.TaskResourceUsage { r.resourceUsageLock.RLock() defer r.resourceUsageLock.RUnlock() r.runningLock.Lock() defer r.runningLock.Unlock() // If the task is not running there can be no latest resource if !r.running { return nil } return r.resourceUsage } // handleUpdate takes an updated allocation and updates internal state to // reflect the new config for the task. func (r *TaskRunner) handleUpdate(update *structs.Allocation) error { // Extract the task group from the alloc. tg := update.Job.LookupTaskGroup(update.TaskGroup) if tg == nil { return fmt.Errorf("alloc '%s' missing task group '%s'", update.ID, update.TaskGroup) } // Extract the task. var updatedTask *structs.Task for _, t := range tg.Tasks { if t.Name == r.task.Name { updatedTask = t.Copy() } } if updatedTask == nil { return fmt.Errorf("task group %q doesn't contain task %q", tg.Name, r.task.Name) } // Merge in the task resources updatedTask.Resources = update.TaskResources[updatedTask.Name] // Update will update resources and store the new kill timeout. var mErr multierror.Error r.handleLock.Lock() if r.handle != nil { if err := r.handle.Update(updatedTask); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("updating task resources failed: %v", err)) } } r.handleLock.Unlock() // Update the restart policy. if r.restartTracker != nil { r.restartTracker.SetPolicy(tg.RestartPolicy) } // Store the updated alloc. r.alloc = update r.task = updatedTask return mErr.ErrorOrNil() } // handleDestroy kills the task handle. In the case that killing fails, // handleDestroy will retry with an exponential backoff and will give up at a // given limit. It returns whether the task was destroyed and the error // associated with the last kill attempt. func (r *TaskRunner) handleDestroy() (destroyed bool, err error) { // Cap the number of times we attempt to kill the task. for i := 0; i < killFailureLimit; i++ { if err = r.handle.Kill(); err != nil { // Calculate the new backoff backoff := (1 << (2 * uint64(i))) * killBackoffBaseline if backoff > killBackoffLimit { backoff = killBackoffLimit } r.logger.Printf("[ERR] client: failed to kill task '%s' for alloc %q. Retrying in %v: %v", r.task.Name, r.alloc.ID, backoff, err) time.Sleep(time.Duration(backoff)) } else { // Kill was successful return true, nil } } return } // Restart will restart the task func (r *TaskRunner) Restart(source, reason string) { reasonStr := fmt.Sprintf("%s: %s", source, reason) event := structs.NewTaskEvent(structs.TaskRestartSignal).SetRestartReason(reasonStr) r.logger.Printf("[DEBUG] client: restarting task %v for alloc %q: %v", r.task.Name, r.alloc.ID, reasonStr) r.runningLock.Lock() running := r.running r.runningLock.Unlock() // Drop the restart event if !running { r.logger.Printf("[DEBUG] client: skipping restart since task isn't running") return } select { case r.restartCh <- event: case <-r.waitCh: } } // Signal will send a signal to the task func (r *TaskRunner) Signal(source, reason string, s os.Signal) error { reasonStr := fmt.Sprintf("%s: %s", source, reason) event := structs.NewTaskEvent(structs.TaskSignaling).SetTaskSignal(s).SetTaskSignalReason(reasonStr) r.logger.Printf("[DEBUG] client: sending signal %v to task %v for alloc %q", s, r.task.Name, r.alloc.ID) r.runningLock.Lock() running := r.running r.runningLock.Unlock() // Drop the restart event if !running { r.logger.Printf("[DEBUG] client: skipping signal since task isn't running") return nil } resCh := make(chan error) se := SignalEvent{ s: s, e: event, result: resCh, } select { case r.signalCh <- se: case <-r.waitCh: } return <-resCh } // Kill will kill a task and store the error, no longer restarting the task. If // fail is set, the task is marked as having failed. func (r *TaskRunner) Kill(source, reason string, fail bool) { reasonStr := fmt.Sprintf("%s: %s", source, reason) event := structs.NewTaskEvent(structs.TaskKilling).SetKillReason(reasonStr) if fail { event.SetFailsTask() } r.logger.Printf("[DEBUG] client: killing task %v for alloc %q: %v", r.task.Name, r.alloc.ID, reasonStr) r.Destroy(event) } // UnblockStart unblocks the starting of the task. It currently assumes only // consul-template will unblock func (r *TaskRunner) UnblockStart(source string) { r.unblockLock.Lock() defer r.unblockLock.Unlock() if r.unblocked { return } r.logger.Printf("[DEBUG] client: unblocking task %v for alloc %q: %v", r.task.Name, r.alloc.ID, source) r.unblocked = true close(r.unblockCh) } // Helper function for converting a WaitResult into a TaskTerminated event. func (r *TaskRunner) waitErrorToEvent(res *dstructs.WaitResult) *structs.TaskEvent { return structs.NewTaskEvent(structs.TaskTerminated). SetExitCode(res.ExitCode). SetSignal(res.Signal). SetExitMessage(res.Err) } // Update is used to update the task of the context func (r *TaskRunner) Update(update *structs.Allocation) { select { case r.updateCh <- update: default: r.logger.Printf("[ERR] client: dropping task update '%s' (alloc '%s')", r.task.Name, r.alloc.ID) } } // Destroy is used to indicate that the task context should be destroyed. The // event parameter provides a context for the destroy. func (r *TaskRunner) Destroy(event *structs.TaskEvent) { r.destroyLock.Lock() defer r.destroyLock.Unlock() if r.destroy { return } r.destroy = true r.destroyEvent = event close(r.destroyCh) } // emitStats emits resource usage stats of tasks to remote metrics collector // sinks func (r *TaskRunner) emitStats(ru *cstructs.TaskResourceUsage) { if ru.ResourceUsage.MemoryStats != nil && r.config.PublishAllocationMetrics { metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "rss"}, float32(ru.ResourceUsage.MemoryStats.RSS)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "cache"}, float32(ru.ResourceUsage.MemoryStats.Cache)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "swap"}, float32(ru.ResourceUsage.MemoryStats.Swap)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "max_usage"}, float32(ru.ResourceUsage.MemoryStats.MaxUsage)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "kernel_usage"}, float32(ru.ResourceUsage.MemoryStats.KernelUsage)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "kernel_max_usage"}, float32(ru.ResourceUsage.MemoryStats.KernelMaxUsage)) } if ru.ResourceUsage.CpuStats != nil && r.config.PublishAllocationMetrics { metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "total_percent"}, float32(ru.ResourceUsage.CpuStats.Percent)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "system"}, float32(ru.ResourceUsage.CpuStats.SystemMode)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "user"}, float32(ru.ResourceUsage.CpuStats.UserMode)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "throttled_time"}, float32(ru.ResourceUsage.CpuStats.ThrottledTime)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "throttled_periods"}, float32(ru.ResourceUsage.CpuStats.ThrottledPeriods)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "total_ticks"}, float32(ru.ResourceUsage.CpuStats.TotalTicks)) } }