// +build codecgen.exec // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec import ( "bytes" "encoding/base64" "errors" "fmt" "go/format" "io" "io/ioutil" "math/rand" "reflect" "regexp" "sort" "strconv" "strings" "sync" "text/template" "time" "unicode" "unicode/utf8" ) // --------------------------------------------------- // codecgen supports the full cycle of reflection-based codec: // - RawExt // - Raw // - Extensions // - (Binary|Text|JSON)(Unm|M)arshal // - generic by-kind // // This means that, for dynamic things, we MUST use reflection to at least get the reflect.Type. // In those areas, we try to only do reflection or interface-conversion when NECESSARY: // - Extensions, only if Extensions are configured. // // However, codecgen doesn't support the following: // - Canonical option. (codecgen IGNORES it currently) // This is just because it has not been implemented. // - MissingFielder implementation. // If a type implements MissingFielder, it is completely ignored by codecgen. // // During encode/decode, Selfer takes precedence. // A type implementing Selfer will know how to encode/decode itself statically. // // The following field types are supported: // array: [n]T // slice: []T // map: map[K]V // primitive: [u]int[n], float(32|64), bool, string // struct // // --------------------------------------------------- // Note that a Selfer cannot call (e|d).(En|De)code on itself, // as this will cause a circular reference, as (En|De)code will call Selfer methods. // Any type that implements Selfer must implement completely and not fallback to (En|De)code. // // In addition, code in this file manages the generation of fast-path implementations of // encode/decode of slices/maps of primitive keys/values. // // Users MUST re-generate their implementations whenever the code shape changes. // The generated code will panic if it was generated with a version older than the supporting library. // --------------------------------------------------- // // codec framework is very feature rich. // When encoding or decoding into an interface, it depends on the runtime type of the interface. // The type of the interface may be a named type, an extension, etc. // Consequently, we fallback to runtime codec for encoding/decoding interfaces. // In addition, we fallback for any value which cannot be guaranteed at runtime. // This allows us support ANY value, including any named types, specifically those which // do not implement our interfaces (e.g. Selfer). // // This explains some slowness compared to other code generation codecs (e.g. msgp). // This reduction in speed is only seen when your refers to interfaces, // e.g. type T struct { A interface{}; B []interface{}; C map[string]interface{} } // // codecgen will panic if the file was generated with an old version of the library in use. // // Note: // It was a conscious decision to have gen.go always explicitly call EncodeNil or TryDecodeAsNil. // This way, there isn't a function call overhead just to see that we should not enter a block of code. // // Note: // codecgen-generated code depends on the variables defined by fast-path.generated.go. // consequently, you cannot run with tags "codecgen notfastpath". // GenVersion is the current version of codecgen. // // NOTE: Increment this value each time codecgen changes fundamentally. // Fundamental changes are: // - helper methods change (signature change, new ones added, some removed, etc) // - codecgen command line changes // // v1: Initial Version // v2: // v3: Changes for Kubernetes: // changes in signature of some unpublished helper methods and codecgen cmdline arguments. // v4: Removed separator support from (en|de)cDriver, and refactored codec(gen) // v5: changes to support faster json decoding. Let encoder/decoder maintain state of collections. // v6: removed unsafe from gen, and now uses codecgen.exec tag // v7: // v8: current - we now maintain compatibility with old generated code. // v9: skipped // v10: modified encDriver and decDriver interfaces. Remove deprecated methods after Jan 1, 2019 const genVersion = 10 const ( genCodecPkg = "codec1978" genTempVarPfx = "yy" genTopLevelVarName = "x" // ignore canBeNil parameter, and always set to true. // This is because nil can appear anywhere, so we should always check. genAnythingCanBeNil = true // if genUseOneFunctionForDecStructMap, make a single codecDecodeSelferFromMap function; // else make codecDecodeSelferFromMap{LenPrefix,CheckBreak} so that conditionals // are not executed a lot. // // From testing, it didn't make much difference in runtime, so keep as true (one function only) genUseOneFunctionForDecStructMap = true ) type genStructMapStyle uint8 const ( genStructMapStyleConsolidated genStructMapStyle = iota genStructMapStyleLenPrefix genStructMapStyleCheckBreak ) var ( errGenAllTypesSamePkg = errors.New("All types must be in the same package") errGenExpectArrayOrMap = errors.New("unexpected type. Expecting array/map/slice") genBase64enc = base64.NewEncoding("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789__") genQNameRegex = regexp.MustCompile(`[A-Za-z_.]+`) ) type genBuf struct { buf []byte } func (x *genBuf) s(s string) *genBuf { x.buf = append(x.buf, s...); return x } func (x *genBuf) b(s []byte) *genBuf { x.buf = append(x.buf, s...); return x } func (x *genBuf) v() string { return string(x.buf) } func (x *genBuf) f(s string, args ...interface{}) { x.s(fmt.Sprintf(s, args...)) } func (x *genBuf) reset() { if x.buf != nil { x.buf = x.buf[:0] } } // genRunner holds some state used during a Gen run. type genRunner struct { w io.Writer // output c uint64 // counter used for generating varsfx t []reflect.Type // list of types to run selfer on tc reflect.Type // currently running selfer on this type te map[uintptr]bool // types for which the encoder has been created td map[uintptr]bool // types for which the decoder has been created cp string // codec import path im map[string]reflect.Type // imports to add imn map[string]string // package names of imports to add imc uint64 // counter for import numbers is map[reflect.Type]struct{} // types seen during import search bp string // base PkgPath, for which we are generating for cpfx string // codec package prefix tm map[reflect.Type]struct{} // types for which enc/dec must be generated ts []reflect.Type // types for which enc/dec must be generated xs string // top level variable/constant suffix hn string // fn helper type name ti *TypeInfos // rr *rand.Rand // random generator for file-specific types nx bool // no extensions } // Gen will write a complete go file containing Selfer implementations for each // type passed. All the types must be in the same package. // // Library users: DO NOT USE IT DIRECTLY. IT WILL CHANGE CONTINUOUSLY WITHOUT NOTICE. func Gen(w io.Writer, buildTags, pkgName, uid string, noExtensions bool, ti *TypeInfos, typ ...reflect.Type) { // All types passed to this method do not have a codec.Selfer method implemented directly. // codecgen already checks the AST and skips any types that define the codec.Selfer methods. // Consequently, there's no need to check and trim them if they implement codec.Selfer if len(typ) == 0 { return } x := genRunner{ w: w, t: typ, te: make(map[uintptr]bool), td: make(map[uintptr]bool), im: make(map[string]reflect.Type), imn: make(map[string]string), is: make(map[reflect.Type]struct{}), tm: make(map[reflect.Type]struct{}), ts: []reflect.Type{}, bp: genImportPath(typ[0]), xs: uid, ti: ti, nx: noExtensions, } if x.ti == nil { x.ti = defTypeInfos } if x.xs == "" { rr := rand.New(rand.NewSource(time.Now().UnixNano())) x.xs = strconv.FormatInt(rr.Int63n(9999), 10) } // gather imports first: x.cp = genImportPath(reflect.TypeOf(x)) x.imn[x.cp] = genCodecPkg for _, t := range typ { // fmt.Printf("###########: PkgPath: '%v', Name: '%s'\n", genImportPath(t), t.Name()) if genImportPath(t) != x.bp { panic(errGenAllTypesSamePkg) } x.genRefPkgs(t) } if buildTags != "" { x.line("// +build " + buildTags) x.line("") } x.line(` // Code generated by codecgen - DO NOT EDIT. `) x.line("package " + pkgName) x.line("") x.line("import (") if x.cp != x.bp { x.cpfx = genCodecPkg + "." x.linef("%s \"%s\"", genCodecPkg, x.cp) } // use a sorted set of im keys, so that we can get consistent output imKeys := make([]string, 0, len(x.im)) for k := range x.im { imKeys = append(imKeys, k) } sort.Strings(imKeys) for _, k := range imKeys { // for k, _ := range x.im { if k == x.imn[k] { x.linef("\"%s\"", k) } else { x.linef("%s \"%s\"", x.imn[k], k) } } // add required packages for _, k := range [...]string{"runtime", "errors", "strconv"} { // "reflect", "fmt" if _, ok := x.im[k]; !ok { x.line("\"" + k + "\"") } } x.line(")") x.line("") x.line("const (") x.linef("// ----- content types ----") x.linef("codecSelferCcUTF8%s = %v", x.xs, int64(cUTF8)) x.linef("codecSelferCcRAW%s = %v", x.xs, int64(cRAW)) x.linef("// ----- value types used ----") for _, vt := range [...]valueType{ valueTypeArray, valueTypeMap, valueTypeString, valueTypeInt, valueTypeUint, valueTypeFloat} { x.linef("codecSelferValueType%s%s = %v", vt.String(), x.xs, int64(vt)) } x.linef("codecSelferBitsize%s = uint8(32 << (^uint(0) >> 63))", x.xs) x.line(")") x.line("var (") x.line("errCodecSelferOnlyMapOrArrayEncodeToStruct" + x.xs + " = errors.New(`only encoded map or array can be decoded into a struct`)") x.line(")") x.line("") x.hn = "codecSelfer" + x.xs x.line("type " + x.hn + " struct{}") x.line("") x.varsfxreset() x.line("func init() {") x.linef("if %sGenVersion != %v {", x.cpfx, genVersion) x.line("_, file, _, _ := runtime.Caller(0)") x.outf(`panic("codecgen version mismatch: current: %v, need " + strconv.FormatInt(int64(%sGenVersion), 10) + ". Re-generate file: " + file)`, genVersion, x.cpfx) // x.out(`panic(fmt.Errorf("codecgen version mismatch: current: %v, need %v. Re-generate file: %v", `) // x.linef(`%v, %sGenVersion, file))`, genVersion, x.cpfx) x.linef("}") x.line("if false { var _ byte = 0; // reference the types, but skip this branch at build/run time") // x.line("_ = strconv.ParseInt") var n int // for k, t := range x.im { for _, k := range imKeys { t := x.im[k] x.linef("var v%v %s.%s", n, x.imn[k], t.Name()) n++ } if n > 0 { x.out("_") for i := 1; i < n; i++ { x.out(", _") } x.out(" = v0") for i := 1; i < n; i++ { x.outf(", v%v", i) } } x.line("} ") // close if false x.line("}") // close init x.line("") // generate rest of type info for _, t := range typ { x.tc = t x.selfer(true) x.selfer(false) } for _, t := range x.ts { rtid := rt2id(t) // generate enc functions for all these slice/map types. x.varsfxreset() x.linef("func (x %s) enc%s(v %s%s, e *%sEncoder) {", x.hn, x.genMethodNameT(t), x.arr2str(t, "*"), x.genTypeName(t), x.cpfx) x.genRequiredMethodVars(true) switch t.Kind() { case reflect.Array, reflect.Slice, reflect.Chan: x.encListFallback("v", t) case reflect.Map: x.encMapFallback("v", t) default: panic(errGenExpectArrayOrMap) } x.line("}") x.line("") // generate dec functions for all these slice/map types. x.varsfxreset() x.linef("func (x %s) dec%s(v *%s, d *%sDecoder) {", x.hn, x.genMethodNameT(t), x.genTypeName(t), x.cpfx) x.genRequiredMethodVars(false) switch t.Kind() { case reflect.Array, reflect.Slice, reflect.Chan: x.decListFallback("v", rtid, t) case reflect.Map: x.decMapFallback("v", rtid, t) default: panic(errGenExpectArrayOrMap) } x.line("}") x.line("") } x.line("") } func (x *genRunner) checkForSelfer(t reflect.Type, varname string) bool { // return varname != genTopLevelVarName && t != x.tc // the only time we checkForSelfer is if we are not at the TOP of the generated code. return varname != genTopLevelVarName } func (x *genRunner) arr2str(t reflect.Type, s string) string { if t.Kind() == reflect.Array { return s } return "" } func (x *genRunner) genRequiredMethodVars(encode bool) { x.line("var h " + x.hn) if encode { x.line("z, r := " + x.cpfx + "GenHelperEncoder(e)") } else { x.line("z, r := " + x.cpfx + "GenHelperDecoder(d)") } x.line("_, _, _ = h, z, r") } func (x *genRunner) genRefPkgs(t reflect.Type) { if _, ok := x.is[t]; ok { return } x.is[t] = struct{}{} tpkg, tname := genImportPath(t), t.Name() if tpkg != "" && tpkg != x.bp && tpkg != x.cp && tname != "" && tname[0] >= 'A' && tname[0] <= 'Z' { if _, ok := x.im[tpkg]; !ok { x.im[tpkg] = t if idx := strings.LastIndex(tpkg, "/"); idx < 0 { x.imn[tpkg] = tpkg } else { x.imc++ x.imn[tpkg] = "pkg" + strconv.FormatUint(x.imc, 10) + "_" + genGoIdentifier(tpkg[idx+1:], false) } } } switch t.Kind() { case reflect.Array, reflect.Slice, reflect.Ptr, reflect.Chan: x.genRefPkgs(t.Elem()) case reflect.Map: x.genRefPkgs(t.Elem()) x.genRefPkgs(t.Key()) case reflect.Struct: for i := 0; i < t.NumField(); i++ { if fname := t.Field(i).Name; fname != "" && fname[0] >= 'A' && fname[0] <= 'Z' { x.genRefPkgs(t.Field(i).Type) } } } } func (x *genRunner) varsfx() string { x.c++ return strconv.FormatUint(x.c, 10) } func (x *genRunner) varsfxreset() { x.c = 0 } func (x *genRunner) out(s string) { _, err := io.WriteString(x.w, s) if err != nil { panic(err) } } func (x *genRunner) outf(s string, params ...interface{}) { _, err := fmt.Fprintf(x.w, s, params...) if err != nil { panic(err) } } func (x *genRunner) line(s string) { x.out(s) if len(s) == 0 || s[len(s)-1] != '\n' { x.out("\n") } } func (x *genRunner) linef(s string, params ...interface{}) { x.outf(s, params...) if len(s) == 0 || s[len(s)-1] != '\n' { x.out("\n") } } func (x *genRunner) genTypeName(t reflect.Type) (n string) { // defer func() { fmt.Printf(">>>> ####: genTypeName: t: %v, name: '%s'\n", t, n) }() // if the type has a PkgPath, which doesn't match the current package, // then include it. // We cannot depend on t.String() because it includes current package, // or t.PkgPath because it includes full import path, // var ptrPfx string for t.Kind() == reflect.Ptr { ptrPfx += "*" t = t.Elem() } if tn := t.Name(); tn != "" { return ptrPfx + x.genTypeNamePrim(t) } switch t.Kind() { case reflect.Map: return ptrPfx + "map[" + x.genTypeName(t.Key()) + "]" + x.genTypeName(t.Elem()) case reflect.Slice: return ptrPfx + "[]" + x.genTypeName(t.Elem()) case reflect.Array: return ptrPfx + "[" + strconv.FormatInt(int64(t.Len()), 10) + "]" + x.genTypeName(t.Elem()) case reflect.Chan: return ptrPfx + t.ChanDir().String() + " " + x.genTypeName(t.Elem()) default: if t == intfTyp { return ptrPfx + "interface{}" } else { return ptrPfx + x.genTypeNamePrim(t) } } } func (x *genRunner) genTypeNamePrim(t reflect.Type) (n string) { if t.Name() == "" { return t.String() } else if genImportPath(t) == "" || genImportPath(t) == genImportPath(x.tc) { return t.Name() } else { return x.imn[genImportPath(t)] + "." + t.Name() // return t.String() // best way to get the package name inclusive } } func (x *genRunner) genZeroValueR(t reflect.Type) string { // if t is a named type, w switch t.Kind() { case reflect.Ptr, reflect.Interface, reflect.Chan, reflect.Func, reflect.Slice, reflect.Map, reflect.Invalid: return "nil" case reflect.Bool: return "false" case reflect.String: return `""` case reflect.Struct, reflect.Array: return x.genTypeName(t) + "{}" default: // all numbers return "0" } } func (x *genRunner) genMethodNameT(t reflect.Type) (s string) { return genMethodNameT(t, x.tc) } func (x *genRunner) selfer(encode bool) { t := x.tc t0 := t // always make decode use a pointer receiver, // and structs/arrays always use a ptr receiver (encode|decode) isptr := !encode || t.Kind() == reflect.Array || (t.Kind() == reflect.Struct && t != timeTyp) x.varsfxreset() fnSigPfx := "func (" + genTopLevelVarName + " " if isptr { fnSigPfx += "*" } fnSigPfx += x.genTypeName(t) x.out(fnSigPfx) if isptr { t = reflect.PtrTo(t) } if encode { x.line(") CodecEncodeSelf(e *" + x.cpfx + "Encoder) {") x.genRequiredMethodVars(true) x.encVar(genTopLevelVarName, t) } else { x.line(") CodecDecodeSelf(d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) // do not use decVar, as there is no need to check TryDecodeAsNil // or way to elegantly handle that, and also setting it to a // non-nil value doesn't affect the pointer passed. // x.decVar(genTopLevelVarName, t, false) x.dec(genTopLevelVarName, t0, true) } x.line("}") x.line("") if encode || t0.Kind() != reflect.Struct { return } // write is containerMap if genUseOneFunctionForDecStructMap { x.out(fnSigPfx) x.line(") codecDecodeSelfFromMap(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructMap(genTopLevelVarName, "l", rt2id(t0), t0, genStructMapStyleConsolidated) x.line("}") x.line("") } else { x.out(fnSigPfx) x.line(") codecDecodeSelfFromMapLenPrefix(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructMap(genTopLevelVarName, "l", rt2id(t0), t0, genStructMapStyleLenPrefix) x.line("}") x.line("") x.out(fnSigPfx) x.line(") codecDecodeSelfFromMapCheckBreak(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructMap(genTopLevelVarName, "l", rt2id(t0), t0, genStructMapStyleCheckBreak) x.line("}") x.line("") } // write containerArray x.out(fnSigPfx) x.line(") codecDecodeSelfFromArray(l int, d *" + x.cpfx + "Decoder) {") x.genRequiredMethodVars(false) x.decStructArray(genTopLevelVarName, "l", "return", rt2id(t0), t0) x.line("}") x.line("") } // used for chan, array, slice, map func (x *genRunner) xtraSM(varname string, t reflect.Type, encode, isptr bool) { var ptrPfx, addrPfx string if isptr { ptrPfx = "*" } else { addrPfx = "&" } if encode { x.linef("h.enc%s((%s%s)(%s), e)", x.genMethodNameT(t), ptrPfx, x.genTypeName(t), varname) } else { x.linef("h.dec%s((*%s)(%s%s), d)", x.genMethodNameT(t), x.genTypeName(t), addrPfx, varname) } x.registerXtraT(t) } func (x *genRunner) registerXtraT(t reflect.Type) { // recursively register the types if _, ok := x.tm[t]; ok { return } var tkey reflect.Type switch t.Kind() { case reflect.Chan, reflect.Slice, reflect.Array: case reflect.Map: tkey = t.Key() default: return } x.tm[t] = struct{}{} x.ts = append(x.ts, t) // check if this refers to any xtra types eg. a slice of array: add the array x.registerXtraT(t.Elem()) if tkey != nil { x.registerXtraT(tkey) } } // encVar will encode a variable. // The parameter, t, is the reflect.Type of the variable itself func (x *genRunner) encVar(varname string, t reflect.Type) { // fmt.Printf(">>>>>> varname: %s, t: %v\n", varname, t) var checkNil bool switch t.Kind() { case reflect.Ptr, reflect.Interface, reflect.Slice, reflect.Map, reflect.Chan: checkNil = true } if checkNil { x.linef("if %s == nil { r.EncodeNil() } else { ", varname) } switch t.Kind() { case reflect.Ptr: telem := t.Elem() tek := telem.Kind() if tek == reflect.Array || (tek == reflect.Struct && telem != timeTyp) { x.enc(varname, genNonPtr(t)) break } i := x.varsfx() x.line(genTempVarPfx + i + " := *" + varname) x.enc(genTempVarPfx+i, genNonPtr(t)) case reflect.Struct, reflect.Array: if t == timeTyp { x.enc(varname, t) break } i := x.varsfx() x.line(genTempVarPfx + i + " := &" + varname) x.enc(genTempVarPfx+i, t) default: x.enc(varname, t) } if checkNil { x.line("}") } } // enc will encode a variable (varname) of type t, where t represents T. // if t is !time.Time and t is of kind reflect.Struct or reflect.Array, varname is of type *T // (to prevent copying), // else t is of type T func (x *genRunner) enc(varname string, t reflect.Type) { rtid := rt2id(t) ti2 := x.ti.get(rtid, t) // We call CodecEncodeSelf if one of the following are honored: // - the type already implements Selfer, call that // - the type has a Selfer implementation just created, use that // - the type is in the list of the ones we will generate for, but it is not currently being generated mi := x.varsfx() // tptr := reflect.PtrTo(t) tk := t.Kind() if x.checkForSelfer(t, varname) { if tk == reflect.Array || (tk == reflect.Struct && rtid != timeTypId) { // varname is of type *T // if tptr.Implements(selferTyp) || t.Implements(selferTyp) { if ti2.isFlag(typeInfoFlagIsZeroerPtr) || ti2.isFlag(typeInfoFlagIsZeroer) { x.line(varname + ".CodecEncodeSelf(e)") return } } else { // varname is of type T if ti2.cs { // t.Implements(selferTyp) { x.line(varname + ".CodecEncodeSelf(e)") return } else if ti2.csp { // tptr.Implements(selferTyp) { x.linef("%ssf%s := &%s", genTempVarPfx, mi, varname) x.linef("%ssf%s.CodecEncodeSelf(e)", genTempVarPfx, mi) return } } if _, ok := x.te[rtid]; ok { x.line(varname + ".CodecEncodeSelf(e)") return } } inlist := false for _, t0 := range x.t { if t == t0 { inlist = true if x.checkForSelfer(t, varname) { x.line(varname + ".CodecEncodeSelf(e)") return } break } } var rtidAdded bool if t == x.tc { x.te[rtid] = true rtidAdded = true } // check if // - type is time.Time, RawExt, Raw // - the type implements (Text|JSON|Binary)(Unm|M)arshal x.line("if false {") //start if block defer func() { x.line("}") }() //end if block if t == timeTyp { x.linef("} else if !z.EncBasicHandle().TimeNotBuiltin { r.EncodeTime(%s)", varname) // return } if t == rawTyp { x.linef("} else { z.EncRaw(%s)", varname) return } if t == rawExtTyp { x.linef("} else { r.EncodeRawExt(%s, e)", varname) return } // only check for extensions if the type is named, and has a packagePath. var arrayOrStruct = tk == reflect.Array || tk == reflect.Struct // meaning varname if of type *T if !x.nx && genImportPath(t) != "" && t.Name() != "" { yy := fmt.Sprintf("%sxt%s", genTempVarPfx, mi) x.linef("} else if %s := z.Extension(z.I2Rtid(%s)); %s != nil { z.EncExtension(%s, %s) ", yy, varname, yy, varname, yy) } if arrayOrStruct { // varname is of type *T if ti2.bm || ti2.bmp { // t.Implements(binaryMarshalerTyp) || tptr.Implements(binaryMarshalerTyp) { x.linef("} else if z.EncBinary() { z.EncBinaryMarshal(%v) ", varname) } if ti2.jm || ti2.jmp { // t.Implements(jsonMarshalerTyp) || tptr.Implements(jsonMarshalerTyp) { x.linef("} else if !z.EncBinary() && z.IsJSONHandle() { z.EncJSONMarshal(%v) ", varname) } else if ti2.tm || ti2.tmp { // t.Implements(textMarshalerTyp) || tptr.Implements(textMarshalerTyp) { x.linef("} else if !z.EncBinary() { z.EncTextMarshal(%v) ", varname) } } else { // varname is of type T if ti2.bm { // t.Implements(binaryMarshalerTyp) { x.linef("} else if z.EncBinary() { z.EncBinaryMarshal(%v) ", varname) } else if ti2.bmp { // tptr.Implements(binaryMarshalerTyp) { x.linef("} else if z.EncBinary() { z.EncBinaryMarshal(&%v) ", varname) } if ti2.jm { // t.Implements(jsonMarshalerTyp) { x.linef("} else if !z.EncBinary() && z.IsJSONHandle() { z.EncJSONMarshal(%v) ", varname) } else if ti2.jmp { // tptr.Implements(jsonMarshalerTyp) { x.linef("} else if !z.EncBinary() && z.IsJSONHandle() { z.EncJSONMarshal(&%v) ", varname) } else if ti2.tm { // t.Implements(textMarshalerTyp) { x.linef("} else if !z.EncBinary() { z.EncTextMarshal(%v) ", varname) } else if ti2.tmp { // tptr.Implements(textMarshalerTyp) { x.linef("} else if !z.EncBinary() { z.EncTextMarshal(&%v) ", varname) } } x.line("} else {") switch t.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: x.line("r.EncodeInt(int64(" + varname + "))") case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: x.line("r.EncodeUint(uint64(" + varname + "))") case reflect.Float32: x.line("r.EncodeFloat32(float32(" + varname + "))") case reflect.Float64: x.line("r.EncodeFloat64(float64(" + varname + "))") case reflect.Bool: x.line("r.EncodeBool(bool(" + varname + "))") case reflect.String: x.linef("if z.EncBasicHandle().StringToRaw { r.EncodeStringBytesRaw(z.BytesView(string(%s))) } else { r.EncodeStringEnc(codecSelferCcUTF8%s, string(%s)) }", varname, x.xs, varname) case reflect.Chan: x.xtraSM(varname, t, true, false) // x.encListFallback(varname, rtid, t) case reflect.Array: x.xtraSM(varname, t, true, true) case reflect.Slice: // if nil, call dedicated function // if a []uint8, call dedicated function // if a known fastpath slice, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. if rtid == uint8SliceTypId { x.line("r.EncodeStringBytesRaw([]byte(" + varname + "))") } else if fastpathAV.index(rtid) != -1 { g := x.newGenV(t) x.line("z.F." + g.MethodNamePfx("Enc", false) + "V(" + varname + ", e)") } else { x.xtraSM(varname, t, true, false) // x.encListFallback(varname, rtid, t) } case reflect.Map: // if nil, call dedicated function // if a known fastpath map, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. // x.line("if " + varname + " == nil { \nr.EncodeNil()\n } else { ") if fastpathAV.index(rtid) != -1 { g := x.newGenV(t) x.line("z.F." + g.MethodNamePfx("Enc", false) + "V(" + varname + ", e)") } else { x.xtraSM(varname, t, true, false) // x.encMapFallback(varname, rtid, t) } case reflect.Struct: if !inlist { delete(x.te, rtid) x.line("z.EncFallback(" + varname + ")") break } x.encStruct(varname, rtid, t) default: if rtidAdded { delete(x.te, rtid) } x.line("z.EncFallback(" + varname + ")") } } func (x *genRunner) encZero(t reflect.Type) { switch t.Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: x.line("r.EncodeInt(0)") case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: x.line("r.EncodeUint(0)") case reflect.Float32: x.line("r.EncodeFloat32(0)") case reflect.Float64: x.line("r.EncodeFloat64(0)") case reflect.Bool: x.line("r.EncodeBool(false)") case reflect.String: x.linef(`if z.EncBasicHandle().StringToRaw { r.EncodeStringBytesRaw([]byte{}) } else { r.EncodeStringEnc(codecSelferCcUTF8%s, "") }`, x.xs) default: x.line("r.EncodeNil()") } } func (x *genRunner) encOmitEmptyLine(t2 reflect.StructField, varname string, buf *genBuf) { // smartly check omitEmpty on a struct type, as it may contain uncomparable map/slice/etc. // also, for maps/slices/arrays, check if len ! 0 (not if == zero value) varname2 := varname + "." + t2.Name switch t2.Type.Kind() { case reflect.Struct: rtid2 := rt2id(t2.Type) ti2 := x.ti.get(rtid2, t2.Type) // fmt.Printf(">>>> structfield: omitempty: type: %s, field: %s\n", t2.Type.Name(), t2.Name) if ti2.rtid == timeTypId { buf.s("!(").s(varname2).s(".IsZero())") break } if ti2.isFlag(typeInfoFlagIsZeroerPtr) || ti2.isFlag(typeInfoFlagIsZeroer) { buf.s("!(").s(varname2).s(".IsZero())") break } if ti2.isFlag(typeInfoFlagComparable) { buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type)) break } // buf.s("(") buf.s("false") for i, n := 0, t2.Type.NumField(); i < n; i++ { f := t2.Type.Field(i) if f.PkgPath != "" { // unexported continue } buf.s(" || ") x.encOmitEmptyLine(f, varname2, buf) } //buf.s(")") case reflect.Bool: buf.s(varname2) case reflect.Map, reflect.Slice, reflect.Array, reflect.Chan: buf.s("len(").s(varname2).s(") != 0") default: buf.s(varname2).s(" != ").s(x.genZeroValueR(t2.Type)) } } func (x *genRunner) encStruct(varname string, rtid uintptr, t reflect.Type) { // Use knowledge from structfieldinfo (mbs, encodable fields. Ignore omitempty. ) // replicate code in kStruct i.e. for each field, deref type to non-pointer, and call x.enc on it // if t === type currently running selfer on, do for all ti := x.ti.get(rtid, t) i := x.varsfx() sepVarname := genTempVarPfx + "sep" + i numfieldsvar := genTempVarPfx + "q" + i ti2arrayvar := genTempVarPfx + "r" + i struct2arrvar := genTempVarPfx + "2arr" + i x.line(sepVarname + " := !z.EncBinary()") x.linef("%s := z.EncBasicHandle().StructToArray", struct2arrvar) x.linef("_, _ = %s, %s", sepVarname, struct2arrvar) x.linef("const %s bool = %v // struct tag has 'toArray'", ti2arrayvar, ti.toArray) tisfi := ti.sfiSrc // always use sequence from file. decStruct expects same thing. // var nn int // due to omitEmpty, we need to calculate the // number of non-empty things we write out first. // This is required as we need to pre-determine the size of the container, // to support length-prefixing. if ti.anyOmitEmpty { x.linef("var %s = [%v]bool{ // should field at this index be written?", numfieldsvar, len(tisfi)) for j, si := range tisfi { _ = j if !si.omitEmpty() { // x.linef("%s[%v] = true // %s", numfieldsvar, j, si.fieldName) x.linef("true, // %s", si.fieldName) // nn++ continue } var t2 reflect.StructField var omitline genBuf { t2typ := t varname3 := varname // go through the loop, record the t2 field explicitly, // and gather the omit line if embedded in pointers. for ij, ix := range si.is { if uint8(ij) == si.nis { break } for t2typ.Kind() == reflect.Ptr { t2typ = t2typ.Elem() } t2 = t2typ.Field(int(ix)) t2typ = t2.Type varname3 = varname3 + "." + t2.Name // do not include actual field in the omit line. // that is done subsequently (right after - below). if uint8(ij+1) < si.nis && t2typ.Kind() == reflect.Ptr { omitline.s(varname3).s(" != nil && ") } } } x.encOmitEmptyLine(t2, varname, &omitline) x.linef("%s, // %s", omitline.v(), si.fieldName) } x.line("}") x.linef("_ = %s", numfieldsvar) } // x.linef("var %snn%s int", genTempVarPfx, i) x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray { x.linef("r.WriteArrayStart(%d)", len(tisfi)) x.linef("} else {") // if not ti.toArray if ti.anyOmitEmpty { // nn = 0 // x.linef("var %snn%s = %v", genTempVarPfx, i, nn) x.linef("var %snn%s int", genTempVarPfx, i) x.linef("for _, b := range %s { if b { %snn%s++ } }", numfieldsvar, genTempVarPfx, i) x.linef("r.WriteMapStart(%snn%s)", genTempVarPfx, i) x.linef("%snn%s = %v", genTempVarPfx, i, 0) } else { x.linef("r.WriteMapStart(%d)", len(tisfi)) } x.line("}") // close if not StructToArray for j, si := range tisfi { i := x.varsfx() isNilVarName := genTempVarPfx + "n" + i var labelUsed bool var t2 reflect.StructField { t2typ := t varname3 := varname for ij, ix := range si.is { if uint8(ij) == si.nis { break } for t2typ.Kind() == reflect.Ptr { t2typ = t2typ.Elem() } t2 = t2typ.Field(int(ix)) t2typ = t2.Type varname3 = varname3 + "." + t2.Name if t2typ.Kind() == reflect.Ptr { if !labelUsed { x.line("var " + isNilVarName + " bool") } x.line("if " + varname3 + " == nil { " + isNilVarName + " = true ") x.line("goto LABEL" + i) x.line("}") labelUsed = true // "varname3 = new(" + x.genTypeName(t3.Elem()) + ") }") } } // t2 = t.FieldByIndex(si.is) } if labelUsed { x.line("LABEL" + i + ":") } // if the type of the field is a Selfer, or one of the ones x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray if labelUsed { x.linef("if %s { r.WriteArrayElem(); r.EncodeNil() } else { ", isNilVarName) } x.line("r.WriteArrayElem()") if si.omitEmpty() { x.linef("if %s[%v] {", numfieldsvar, j) } x.encVar(varname+"."+t2.Name, t2.Type) if si.omitEmpty() { x.linef("} else {") x.encZero(t2.Type) x.linef("}") } if labelUsed { x.line("}") } x.linef("} else {") // if not ti.toArray if si.omitEmpty() { x.linef("if %s[%v] {", numfieldsvar, j) } x.line("r.WriteMapElemKey()") // emulate EncStructFieldKey switch ti.keyType { case valueTypeInt: x.linef("r.EncodeInt(z.M.Int(strconv.ParseInt(`%s`, 10, 64)))", si.encName) case valueTypeUint: x.linef("r.EncodeUint(z.M.Uint(strconv.ParseUint(`%s`, 10, 64)))", si.encName) case valueTypeFloat: x.linef("r.EncodeFloat64(z.M.Float(strconv.ParseFloat(`%s`, 64)))", si.encName) default: // string if si.encNameAsciiAlphaNum { x.linef(`if z.IsJSONHandle() { z.WriteStr("\"%s\"") } else { `, si.encName) } x.linef("r.EncodeStringEnc(codecSelferCcUTF8%s, `%s`)", x.xs, si.encName) if si.encNameAsciiAlphaNum { x.linef("}") } } // x.linef("r.EncStructFieldKey(codecSelferValueType%s%s, `%s`)", ti.keyType.String(), x.xs, si.encName) x.line("r.WriteMapElemValue()") if labelUsed { x.line("if " + isNilVarName + " { r.EncodeNil() } else { ") x.encVar(varname+"."+t2.Name, t2.Type) x.line("}") } else { x.encVar(varname+"."+t2.Name, t2.Type) } if si.omitEmpty() { x.line("}") } x.linef("} ") // end if/else ti.toArray } x.linef("if %s || %s {", ti2arrayvar, struct2arrvar) // if ti.toArray { x.line("r.WriteArrayEnd()") x.line("} else {") x.line("r.WriteMapEnd()") x.line("}") } func (x *genRunner) encListFallback(varname string, t reflect.Type) { elemBytes := t.Elem().Kind() == reflect.Uint8 if t.AssignableTo(uint8SliceTyp) { x.linef("r.EncodeStringBytesRaw([]byte(%s))", varname) return } if t.Kind() == reflect.Array && elemBytes { x.linef("r.EncodeStringBytesRaw(((*[%d]byte)(%s))[:])", t.Len(), varname) return } i := x.varsfx() if t.Kind() == reflect.Chan { type ts struct { Label, Chan, Slice, Sfx string } tm, err := template.New("").Parse(genEncChanTmpl) if err != nil { panic(err) } x.linef("if %s == nil { r.EncodeNil() } else { ", varname) x.linef("var sch%s []%s", i, x.genTypeName(t.Elem())) err = tm.Execute(x.w, &ts{"Lsch" + i, varname, "sch" + i, i}) if err != nil { panic(err) } // x.linef("%s = sch%s", varname, i) if elemBytes { x.linef("r.EncodeStringBytesRaw([]byte(%s))", "sch"+i) x.line("}") return } varname = "sch" + i } x.line("r.WriteArrayStart(len(" + varname + "))") x.linef("for _, %sv%s := range %s {", genTempVarPfx, i, varname) x.line("r.WriteArrayElem()") x.encVar(genTempVarPfx+"v"+i, t.Elem()) x.line("}") x.line("r.WriteArrayEnd()") if t.Kind() == reflect.Chan { x.line("}") } } func (x *genRunner) encMapFallback(varname string, t reflect.Type) { // TODO: expand this to handle canonical. i := x.varsfx() x.line("r.WriteMapStart(len(" + varname + "))") x.linef("for %sk%s, %sv%s := range %s {", genTempVarPfx, i, genTempVarPfx, i, varname) x.line("r.WriteMapElemKey()") x.encVar(genTempVarPfx+"k"+i, t.Key()) x.line("r.WriteMapElemValue()") x.encVar(genTempVarPfx+"v"+i, t.Elem()) x.line("}") x.line("r.WriteMapEnd()") } func (x *genRunner) decVarInitPtr(varname, nilvar string, t reflect.Type, si *structFieldInfo, newbuf, nilbuf *genBuf) (t2 reflect.StructField) { //we must accommodate anonymous fields, where the embedded field is a nil pointer in the value. // t2 = t.FieldByIndex(si.is) t2typ := t varname3 := varname t2kind := t2typ.Kind() var nilbufed bool if si != nil { for ij, ix := range si.is { if uint8(ij) == si.nis { break } for t2typ.Kind() == reflect.Ptr { t2typ = t2typ.Elem() } t2 = t2typ.Field(int(ix)) t2typ = t2.Type varname3 = varname3 + "." + t2.Name t2kind = t2typ.Kind() if t2kind != reflect.Ptr { continue } if newbuf != nil { newbuf.f("if %s == nil { %s = new(%s) }\n", varname3, varname3, x.genTypeName(t2typ.Elem())) } if nilbuf != nil { if !nilbufed { nilbuf.s("if true") nilbufed = true } nilbuf.s(" && ").s(varname3).s(" != nil") } } } // if t2typ.Kind() == reflect.Ptr { // varname3 = varname3 + t2.Name // } if nilbuf != nil { if nilbufed { nilbuf.s(" { ") } if nilvar != "" { nilbuf.s(nilvar).s(" = true") } else if tk := t2typ.Kind(); tk == reflect.Ptr { if strings.IndexByte(varname3, '.') != -1 || strings.IndexByte(varname3, '[') != -1 { nilbuf.s(varname3).s(" = nil") } else { nilbuf.s("*").s(varname3).s(" = ").s(x.genZeroValueR(t2typ.Elem())) } } else { nilbuf.s(varname3).s(" = ").s(x.genZeroValueR(t2typ)) } if nilbufed { nilbuf.s("}") } } return t2 } // decVar takes a variable called varname, of type t func (x *genRunner) decVarMain(varname, rand string, t reflect.Type, checkNotNil bool) { // We only encode as nil if a nillable value. // This removes some of the wasted checks for TryDecodeAsNil. // We need to think about this more, to see what happens if omitempty, etc // cause a nil value to be stored when something is expected. // This could happen when decoding from a struct encoded as an array. // For that, decVar should be called with canNil=true, to force true as its value. var varname2 string if t.Kind() != reflect.Ptr { if t.PkgPath() != "" || !x.decTryAssignPrimitive(varname, t, false) { x.dec(varname, t, false) } } else { if checkNotNil { x.linef("if %s == nil { %s = new(%s) }", varname, varname, x.genTypeName(t.Elem())) } // Ensure we set underlying ptr to a non-nil value (so we can deref to it later). // There's a chance of a **T in here which is nil. var ptrPfx string for t = t.Elem(); t.Kind() == reflect.Ptr; t = t.Elem() { ptrPfx += "*" if checkNotNil { x.linef("if %s%s == nil { %s%s = new(%s)}", ptrPfx, varname, ptrPfx, varname, x.genTypeName(t)) } } // Should we create temp var if a slice/map indexing? No. dec(...) can now handle it. if ptrPfx == "" { x.dec(varname, t, true) } else { varname2 = genTempVarPfx + "z" + rand x.line(varname2 + " := " + ptrPfx + varname) x.dec(varname2, t, true) } } } // decVar takes a variable called varname, of type t func (x *genRunner) decVar(varname, nilvar string, t reflect.Type, canBeNil, checkNotNil bool) { i := x.varsfx() // We only encode as nil if a nillable value. // This removes some of the wasted checks for TryDecodeAsNil. // We need to think about this more, to see what happens if omitempty, etc // cause a nil value to be stored when something is expected. // This could happen when decoding from a struct encoded as an array. // For that, decVar should be called with canNil=true, to force true as its value. if !canBeNil { canBeNil = genAnythingCanBeNil || !genIsImmutable(t) } if canBeNil { var buf genBuf x.decVarInitPtr(varname, nilvar, t, nil, nil, &buf) x.linef("if r.TryDecodeAsNil() { %s } else {", buf.buf) } else { x.line("// cannot be nil") } x.decVarMain(varname, i, t, checkNotNil) if canBeNil { x.line("} ") } } // dec will decode a variable (varname) of type t or ptrTo(t) if isptr==true. // t is always a basetype (i.e. not of kind reflect.Ptr). func (x *genRunner) dec(varname string, t reflect.Type, isptr bool) { // assumptions: // - the varname is to a pointer already. No need to take address of it // - t is always a baseType T (not a *T, etc). rtid := rt2id(t) ti2 := x.ti.get(rtid, t) // tptr := reflect.PtrTo(t) if x.checkForSelfer(t, varname) { if ti2.cs || ti2.csp { // t.Implements(selferTyp) || tptr.Implements(selferTyp) { x.line(varname + ".CodecDecodeSelf(d)") return } if _, ok := x.td[rtid]; ok { x.line(varname + ".CodecDecodeSelf(d)") return } } inlist := false for _, t0 := range x.t { if t == t0 { inlist = true if x.checkForSelfer(t, varname) { x.line(varname + ".CodecDecodeSelf(d)") return } break } } var rtidAdded bool if t == x.tc { x.td[rtid] = true rtidAdded = true } // check if // - type is time.Time, Raw, RawExt // - the type implements (Text|JSON|Binary)(Unm|M)arshal mi := x.varsfx() // x.linef("%sm%s := z.DecBinary()", genTempVarPfx, mi) // x.linef("_ = %sm%s", genTempVarPfx, mi) x.line("if false {") //start if block defer func() { x.line("}") }() //end if block var ptrPfx, addrPfx string if isptr { ptrPfx = "*" } else { addrPfx = "&" } if t == timeTyp { x.linef("} else if !z.DecBasicHandle().TimeNotBuiltin { %s%v = r.DecodeTime()", ptrPfx, varname) // return } if t == rawTyp { x.linef("} else { %s%v = z.DecRaw()", ptrPfx, varname) return } if t == rawExtTyp { x.linef("} else { r.DecodeExt(%s%v, 0, nil)", addrPfx, varname) return } // only check for extensions if the type is named, and has a packagePath. if !x.nx && genImportPath(t) != "" && t.Name() != "" { // first check if extensions are configued, before doing the interface conversion // x.linef("} else if z.HasExtensions() && z.DecExt(%s) {", varname) yy := fmt.Sprintf("%sxt%s", genTempVarPfx, mi) x.linef("} else if %s := z.Extension(z.I2Rtid(%s)); %s != nil { z.DecExtension(%s, %s) ", yy, varname, yy, varname, yy) } if ti2.bu || ti2.bup { // t.Implements(binaryUnmarshalerTyp) || tptr.Implements(binaryUnmarshalerTyp) { x.linef("} else if z.DecBinary() { z.DecBinaryUnmarshal(%s%v) ", addrPfx, varname) } if ti2.ju || ti2.jup { // t.Implements(jsonUnmarshalerTyp) || tptr.Implements(jsonUnmarshalerTyp) { x.linef("} else if !z.DecBinary() && z.IsJSONHandle() { z.DecJSONUnmarshal(%s%v)", addrPfx, varname) } else if ti2.tu || ti2.tup { // t.Implements(textUnmarshalerTyp) || tptr.Implements(textUnmarshalerTyp) { x.linef("} else if !z.DecBinary() { z.DecTextUnmarshal(%s%v)", addrPfx, varname) } x.line("} else {") if x.decTryAssignPrimitive(varname, t, isptr) { return } switch t.Kind() { case reflect.Array, reflect.Chan: x.xtraSM(varname, t, false, isptr) case reflect.Slice: // if a []uint8, call dedicated function // if a known fastpath slice, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. if rtid == uint8SliceTypId { x.linef("%s%s = r.DecodeBytes(%s(%s[]byte)(%s), false)", ptrPfx, varname, ptrPfx, ptrPfx, varname) } else if fastpathAV.index(rtid) != -1 { g := x.newGenV(t) x.linef("z.F.%sX(%s%s, d)", g.MethodNamePfx("Dec", false), addrPfx, varname) } else { x.xtraSM(varname, t, false, isptr) // x.decListFallback(varname, rtid, false, t) } case reflect.Map: // if a known fastpath map, call dedicated function // else write encode function in-line. // - if elements are primitives or Selfers, call dedicated function on each member. // - else call Encoder.encode(XXX) on it. if fastpathAV.index(rtid) != -1 { g := x.newGenV(t) x.linef("z.F.%sX(%s%s, d)", g.MethodNamePfx("Dec", false), addrPfx, varname) } else { x.xtraSM(varname, t, false, isptr) // x.decMapFallback(varname, rtid, t) } case reflect.Struct: if inlist { // no need to create temp variable if isptr, or x.F or x[F] if isptr || strings.IndexByte(varname, '.') != -1 || strings.IndexByte(varname, '[') != -1 { x.decStruct(varname, rtid, t) } else { varname2 := genTempVarPfx + "j" + mi x.line(varname2 + " := &" + varname) x.decStruct(varname2, rtid, t) } } else { // delete(x.td, rtid) x.line("z.DecFallback(" + addrPfx + varname + ", false)") } default: if rtidAdded { delete(x.te, rtid) } x.line("z.DecFallback(" + addrPfx + varname + ", true)") } } func (x *genRunner) decTryAssignPrimitive(varname string, t reflect.Type, isptr bool) (done bool) { // This should only be used for exact primitives (ie un-named types). // Named types may be implementations of Selfer, Unmarshaler, etc. // They should be handled by dec(...) var ptr string if isptr { ptr = "*" } switch t.Kind() { case reflect.Int: x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs) case reflect.Int8: x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 8))", ptr, varname, x.genTypeName(t)) case reflect.Int16: x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 16))", ptr, varname, x.genTypeName(t)) case reflect.Int32: x.linef("%s%s = (%s)(z.C.IntV(r.DecodeInt64(), 32))", ptr, varname, x.genTypeName(t)) case reflect.Int64: x.linef("%s%s = (%s)(r.DecodeInt64())", ptr, varname, x.genTypeName(t)) case reflect.Uint: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs) case reflect.Uint8: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 8))", ptr, varname, x.genTypeName(t)) case reflect.Uint16: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 16))", ptr, varname, x.genTypeName(t)) case reflect.Uint32: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), 32))", ptr, varname, x.genTypeName(t)) case reflect.Uint64: x.linef("%s%s = (%s)(r.DecodeUint64())", ptr, varname, x.genTypeName(t)) case reflect.Uintptr: x.linef("%s%s = (%s)(z.C.UintV(r.DecodeUint64(), codecSelferBitsize%s))", ptr, varname, x.genTypeName(t), x.xs) case reflect.Float32: x.linef("%s%s = (%s)(r.DecodeFloat32As64())", ptr, varname, x.genTypeName(t)) case reflect.Float64: x.linef("%s%s = (%s)(r.DecodeFloat64())", ptr, varname, x.genTypeName(t)) case reflect.Bool: x.linef("%s%s = (%s)(r.DecodeBool())", ptr, varname, x.genTypeName(t)) case reflect.String: x.linef("%s%s = (%s)(r.DecodeString())", ptr, varname, x.genTypeName(t)) default: return false } return true } func (x *genRunner) decListFallback(varname string, rtid uintptr, t reflect.Type) { if t.AssignableTo(uint8SliceTyp) { x.line("*" + varname + " = r.DecodeBytes(*((*[]byte)(" + varname + ")), false)") return } if t.Kind() == reflect.Array && t.Elem().Kind() == reflect.Uint8 { x.linef("r.DecodeBytes( ((*[%d]byte)(%s))[:], true)", t.Len(), varname) return } type tstruc struct { TempVar string Rand string Varname string CTyp string Typ string Immutable bool Size int } telem := t.Elem() ts := tstruc{genTempVarPfx, x.varsfx(), varname, x.genTypeName(t), x.genTypeName(telem), genIsImmutable(telem), int(telem.Size())} funcs := make(template.FuncMap) funcs["decLineVar"] = func(varname string) string { x.decVar(varname, "", telem, false, true) return "" } funcs["var"] = func(s string) string { return ts.TempVar + s + ts.Rand } funcs["zero"] = func() string { return x.genZeroValueR(telem) } funcs["isArray"] = func() bool { return t.Kind() == reflect.Array } funcs["isSlice"] = func() bool { return t.Kind() == reflect.Slice } funcs["isChan"] = func() bool { return t.Kind() == reflect.Chan } tm, err := template.New("").Funcs(funcs).Parse(genDecListTmpl) if err != nil { panic(err) } if err = tm.Execute(x.w, &ts); err != nil { panic(err) } } func (x *genRunner) decMapFallback(varname string, rtid uintptr, t reflect.Type) { type tstruc struct { TempVar string Sfx string Rand string Varname string KTyp string Typ string Size int } telem := t.Elem() tkey := t.Key() ts := tstruc{ genTempVarPfx, x.xs, x.varsfx(), varname, x.genTypeName(tkey), x.genTypeName(telem), int(telem.Size() + tkey.Size()), } funcs := make(template.FuncMap) funcs["decElemZero"] = func() string { return x.genZeroValueR(telem) } funcs["decElemKindImmutable"] = func() bool { return genIsImmutable(telem) } funcs["decElemKindPtr"] = func() bool { return telem.Kind() == reflect.Ptr } funcs["decElemKindIntf"] = func() bool { return telem.Kind() == reflect.Interface } funcs["decLineVarK"] = func(varname string) string { x.decVar(varname, "", tkey, false, true) return "" } funcs["decLineVar"] = func(varname, decodedNilVarname string) string { x.decVar(varname, decodedNilVarname, telem, false, true) return "" } funcs["var"] = func(s string) string { return ts.TempVar + s + ts.Rand } tm, err := template.New("").Funcs(funcs).Parse(genDecMapTmpl) if err != nil { panic(err) } if err = tm.Execute(x.w, &ts); err != nil { panic(err) } } func (x *genRunner) decStructMapSwitch(kName string, varname string, rtid uintptr, t reflect.Type) { ti := x.ti.get(rtid, t) tisfi := ti.sfiSrc // always use sequence from file. decStruct expects same thing. x.line("switch (" + kName + ") {") var newbuf, nilbuf genBuf for _, si := range tisfi { x.line("case \"" + si.encName + "\":") newbuf.reset() nilbuf.reset() t2 := x.decVarInitPtr(varname, "", t, si, &newbuf, &nilbuf) x.linef("if r.TryDecodeAsNil() { %s } else { %s", nilbuf.buf, newbuf.buf) x.decVarMain(varname+"."+t2.Name, x.varsfx(), t2.Type, false) x.line("}") } x.line("default:") // pass the slice here, so that the string will not escape, and maybe save allocation x.line("z.DecStructFieldNotFound(-1, " + kName + ")") x.line("} // end switch " + kName) } func (x *genRunner) decStructMap(varname, lenvarname string, rtid uintptr, t reflect.Type, style genStructMapStyle) { tpfx := genTempVarPfx ti := x.ti.get(rtid, t) i := x.varsfx() kName := tpfx + "s" + i switch style { case genStructMapStyleLenPrefix: x.linef("for %sj%s := 0; %sj%s < %s; %sj%s++ {", tpfx, i, tpfx, i, lenvarname, tpfx, i) case genStructMapStyleCheckBreak: x.linef("for %sj%s := 0; !r.CheckBreak(); %sj%s++ {", tpfx, i, tpfx, i) default: // 0, otherwise. x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length x.linef("for %sj%s := 0; ; %sj%s++ {", tpfx, i, tpfx, i) x.linef("if %shl%s { if %sj%s >= %s { break }", tpfx, i, tpfx, i, lenvarname) x.line("} else { if r.CheckBreak() { break }; }") } x.line("r.ReadMapElemKey()") // emulate decstructfieldkey switch ti.keyType { case valueTypeInt: x.linef("%s := z.StringView(strconv.AppendInt(z.DecScratchArrayBuffer()[:0], r.DecodeInt64(), 10))", kName) case valueTypeUint: x.linef("%s := z.StringView(strconv.AppendUint(z.DecScratchArrayBuffer()[:0], r.DecodeUint64(), 10))", kName) case valueTypeFloat: x.linef("%s := z.StringView(strconv.AppendFloat(z.DecScratchArrayBuffer()[:0], r.DecodeFloat64(), 'f', -1, 64))", kName) default: // string x.linef("%s := z.StringView(r.DecodeStringAsBytes())", kName) } // x.linef("%s := z.StringView(r.DecStructFieldKey(codecSelferValueType%s%s, z.DecScratchArrayBuffer()))", kName, ti.keyType.String(), x.xs) x.line("r.ReadMapElemValue()") x.decStructMapSwitch(kName, varname, rtid, t) x.line("} // end for " + tpfx + "j" + i) x.line("r.ReadMapEnd()") } func (x *genRunner) decStructArray(varname, lenvarname, breakString string, rtid uintptr, t reflect.Type) { tpfx := genTempVarPfx i := x.varsfx() ti := x.ti.get(rtid, t) tisfi := ti.sfiSrc // always use sequence from file. decStruct expects same thing. x.linef("var %sj%s int", tpfx, i) x.linef("var %sb%s bool", tpfx, i) // break x.linef("var %shl%s bool = %s >= 0", tpfx, i, lenvarname) // has length var newbuf, nilbuf genBuf for _, si := range tisfi { x.linef("%sj%s++; if %shl%s { %sb%s = %sj%s > %s } else { %sb%s = r.CheckBreak() }", tpfx, i, tpfx, i, tpfx, i, tpfx, i, lenvarname, tpfx, i) x.linef("if %sb%s { r.ReadArrayEnd(); %s }", tpfx, i, breakString) x.line("r.ReadArrayElem()") newbuf.reset() nilbuf.reset() t2 := x.decVarInitPtr(varname, "", t, si, &newbuf, &nilbuf) x.linef("if r.TryDecodeAsNil() { %s } else { %s", nilbuf.buf, newbuf.buf) x.decVarMain(varname+"."+t2.Name, x.varsfx(), t2.Type, false) x.line("}") } // read remaining values and throw away. x.line("for {") x.linef("%sj%s++; if %shl%s { %sb%s = %sj%s > %s } else { %sb%s = r.CheckBreak() }", tpfx, i, tpfx, i, tpfx, i, tpfx, i, lenvarname, tpfx, i) x.linef("if %sb%s { break }", tpfx, i) x.line("r.ReadArrayElem()") x.linef(`z.DecStructFieldNotFound(%sj%s - 1, "")`, tpfx, i) x.line("}") x.line("r.ReadArrayEnd()") } func (x *genRunner) decStruct(varname string, rtid uintptr, t reflect.Type) { // varname MUST be a ptr, or a struct field or a slice element. i := x.varsfx() x.linef("%sct%s := r.ContainerType()", genTempVarPfx, i) x.linef("if %sct%s == codecSelferValueTypeMap%s {", genTempVarPfx, i, x.xs) x.line(genTempVarPfx + "l" + i + " := r.ReadMapStart()") x.linef("if %sl%s == 0 {", genTempVarPfx, i) x.line("r.ReadMapEnd()") if genUseOneFunctionForDecStructMap { x.line("} else { ") x.linef("%s.codecDecodeSelfFromMap(%sl%s, d)", varname, genTempVarPfx, i) } else { x.line("} else if " + genTempVarPfx + "l" + i + " > 0 { ") x.line(varname + ".codecDecodeSelfFromMapLenPrefix(" + genTempVarPfx + "l" + i + ", d)") x.line("} else {") x.line(varname + ".codecDecodeSelfFromMapCheckBreak(" + genTempVarPfx + "l" + i + ", d)") } x.line("}") // else if container is array x.linef("} else if %sct%s == codecSelferValueTypeArray%s {", genTempVarPfx, i, x.xs) x.line(genTempVarPfx + "l" + i + " := r.ReadArrayStart()") x.linef("if %sl%s == 0 {", genTempVarPfx, i) x.line("r.ReadArrayEnd()") x.line("} else { ") x.linef("%s.codecDecodeSelfFromArray(%sl%s, d)", varname, genTempVarPfx, i) x.line("}") // else panic x.line("} else { ") x.line("panic(errCodecSelferOnlyMapOrArrayEncodeToStruct" + x.xs + ")") x.line("} ") } // -------- type genV struct { // genV is either a primitive (Primitive != "") or a map (MapKey != "") or a slice MapKey string Elem string Primitive string Size int } func (x *genRunner) newGenV(t reflect.Type) (v genV) { switch t.Kind() { case reflect.Slice, reflect.Array: te := t.Elem() v.Elem = x.genTypeName(te) v.Size = int(te.Size()) case reflect.Map: te, tk := t.Elem(), t.Key() v.Elem = x.genTypeName(te) v.MapKey = x.genTypeName(tk) v.Size = int(te.Size() + tk.Size()) default: panic("unexpected type for newGenV. Requires map or slice type") } return } func (x *genV) MethodNamePfx(prefix string, prim bool) string { var name []byte if prefix != "" { name = append(name, prefix...) } if prim { name = append(name, genTitleCaseName(x.Primitive)...) } else { if x.MapKey == "" { name = append(name, "Slice"...) } else { name = append(name, "Map"...) name = append(name, genTitleCaseName(x.MapKey)...) } name = append(name, genTitleCaseName(x.Elem)...) } return string(name) } // genImportPath returns import path of a non-predeclared named typed, or an empty string otherwise. // // This handles the misbehaviour that occurs when 1.5-style vendoring is enabled, // where PkgPath returns the full path, including the vendoring pre-fix that should have been stripped. // We strip it here. func genImportPath(t reflect.Type) (s string) { s = t.PkgPath() if genCheckVendor { // HACK: always handle vendoring. It should be typically on in go 1.6, 1.7 s = genStripVendor(s) } return } // A go identifier is (letter|_)[letter|number|_]* func genGoIdentifier(s string, checkFirstChar bool) string { b := make([]byte, 0, len(s)) t := make([]byte, 4) var n int for i, r := range s { if checkFirstChar && i == 0 && !unicode.IsLetter(r) { b = append(b, '_') } // r must be unicode_letter, unicode_digit or _ if unicode.IsLetter(r) || unicode.IsDigit(r) { n = utf8.EncodeRune(t, r) b = append(b, t[:n]...) } else { b = append(b, '_') } } return string(b) } func genNonPtr(t reflect.Type) reflect.Type { for t.Kind() == reflect.Ptr { t = t.Elem() } return t } func genTitleCaseName(s string) string { switch s { case "interface{}", "interface {}": return "Intf" default: return strings.ToUpper(s[0:1]) + s[1:] } } func genMethodNameT(t reflect.Type, tRef reflect.Type) (n string) { var ptrPfx string for t.Kind() == reflect.Ptr { ptrPfx += "Ptrto" t = t.Elem() } tstr := t.String() if tn := t.Name(); tn != "" { if tRef != nil && genImportPath(t) == genImportPath(tRef) { return ptrPfx + tn } else { if genQNameRegex.MatchString(tstr) { return ptrPfx + strings.Replace(tstr, ".", "_", 1000) } else { return ptrPfx + genCustomTypeName(tstr) } } } switch t.Kind() { case reflect.Map: return ptrPfx + "Map" + genMethodNameT(t.Key(), tRef) + genMethodNameT(t.Elem(), tRef) case reflect.Slice: return ptrPfx + "Slice" + genMethodNameT(t.Elem(), tRef) case reflect.Array: return ptrPfx + "Array" + strconv.FormatInt(int64(t.Len()), 10) + genMethodNameT(t.Elem(), tRef) case reflect.Chan: var cx string switch t.ChanDir() { case reflect.SendDir: cx = "ChanSend" case reflect.RecvDir: cx = "ChanRecv" default: cx = "Chan" } return ptrPfx + cx + genMethodNameT(t.Elem(), tRef) default: if t == intfTyp { return ptrPfx + "Interface" } else { if tRef != nil && genImportPath(t) == genImportPath(tRef) { if t.Name() != "" { return ptrPfx + t.Name() } else { return ptrPfx + genCustomTypeName(tstr) } } else { // best way to get the package name inclusive // return ptrPfx + strings.Replace(tstr, ".", "_", 1000) // return ptrPfx + genBase64enc.EncodeToString([]byte(tstr)) if t.Name() != "" && genQNameRegex.MatchString(tstr) { return ptrPfx + strings.Replace(tstr, ".", "_", 1000) } else { return ptrPfx + genCustomTypeName(tstr) } } } } } // genCustomNameForType base64encodes the t.String() value in such a way // that it can be used within a function name. func genCustomTypeName(tstr string) string { len2 := genBase64enc.EncodedLen(len(tstr)) bufx := make([]byte, len2) genBase64enc.Encode(bufx, []byte(tstr)) for i := len2 - 1; i >= 0; i-- { if bufx[i] == '=' { len2-- } else { break } } return string(bufx[:len2]) } func genIsImmutable(t reflect.Type) (v bool) { return isImmutableKind(t.Kind()) } type genInternal struct { Version int Values []genV } func (x genInternal) FastpathLen() (l int) { for _, v := range x.Values { if v.Primitive == "" && !(v.MapKey == "" && v.Elem == "uint8") { l++ } } return } func genInternalZeroValue(s string) string { switch s { case "interface{}", "interface {}": return "nil" case "bool": return "false" case "string": return `""` default: return "0" } } var genInternalNonZeroValueIdx [5]uint64 var genInternalNonZeroValueStrs = [2][5]string{ {`"string-is-an-interface"`, "true", `"some-string"`, "11.1", "33"}, {`"string-is-an-interface-2"`, "true", `"some-string-2"`, "22.2", "44"}, } func genInternalNonZeroValue(s string) string { switch s { case "interface{}", "interface {}": genInternalNonZeroValueIdx[0]++ return genInternalNonZeroValueStrs[genInternalNonZeroValueIdx[0]%2][0] // return string, to remove ambiguity case "bool": genInternalNonZeroValueIdx[1]++ return genInternalNonZeroValueStrs[genInternalNonZeroValueIdx[1]%2][1] case "string": genInternalNonZeroValueIdx[2]++ return genInternalNonZeroValueStrs[genInternalNonZeroValueIdx[2]%2][2] case "float32", "float64", "float", "double": genInternalNonZeroValueIdx[3]++ return genInternalNonZeroValueStrs[genInternalNonZeroValueIdx[3]%2][3] default: genInternalNonZeroValueIdx[4]++ return genInternalNonZeroValueStrs[genInternalNonZeroValueIdx[4]%2][4] } } func genInternalEncCommandAsString(s string, vname string) string { switch s { case "uint", "uint8", "uint16", "uint32", "uint64": return "ee.EncodeUint(uint64(" + vname + "))" case "int", "int8", "int16", "int32", "int64": return "ee.EncodeInt(int64(" + vname + "))" case "string": return "if e.h.StringToRaw { ee.EncodeStringBytesRaw(bytesView(" + vname + ")) " + "} else { ee.EncodeStringEnc(cUTF8, " + vname + ") }" case "float32": return "ee.EncodeFloat32(" + vname + ")" case "float64": return "ee.EncodeFloat64(" + vname + ")" case "bool": return "ee.EncodeBool(" + vname + ")" // case "symbol": // return "ee.EncodeSymbol(" + vname + ")" default: return "e.encode(" + vname + ")" } } func genInternalDecCommandAsString(s string) string { switch s { case "uint": return "uint(chkOvf.UintV(dd.DecodeUint64(), uintBitsize))" case "uint8": return "uint8(chkOvf.UintV(dd.DecodeUint64(), 8))" case "uint16": return "uint16(chkOvf.UintV(dd.DecodeUint64(), 16))" case "uint32": return "uint32(chkOvf.UintV(dd.DecodeUint64(), 32))" case "uint64": return "dd.DecodeUint64()" case "uintptr": return "uintptr(chkOvf.UintV(dd.DecodeUint64(), uintBitsize))" case "int": return "int(chkOvf.IntV(dd.DecodeInt64(), intBitsize))" case "int8": return "int8(chkOvf.IntV(dd.DecodeInt64(), 8))" case "int16": return "int16(chkOvf.IntV(dd.DecodeInt64(), 16))" case "int32": return "int32(chkOvf.IntV(dd.DecodeInt64(), 32))" case "int64": return "dd.DecodeInt64()" case "string": return "dd.DecodeString()" case "float32": return "float32(chkOvf.Float32V(dd.DecodeFloat64()))" case "float64": return "dd.DecodeFloat64()" case "bool": return "dd.DecodeBool()" default: panic(errors.New("gen internal: unknown type for decode: " + s)) } } func genInternalSortType(s string, elem bool) string { for _, v := range [...]string{"int", "uint", "float", "bool", "string"} { if strings.HasPrefix(s, v) { if elem { if v == "int" || v == "uint" || v == "float" { return v + "64" } else { return v } } return v + "Slice" } } panic("sorttype: unexpected type: " + s) } func genStripVendor(s string) string { // HACK: Misbehaviour occurs in go 1.5. May have to re-visit this later. // if s contains /vendor/ OR startsWith vendor/, then return everything after it. const vendorStart = "vendor/" const vendorInline = "/vendor/" if i := strings.LastIndex(s, vendorInline); i >= 0 { s = s[i+len(vendorInline):] } else if strings.HasPrefix(s, vendorStart) { s = s[len(vendorStart):] } return s } // var genInternalMu sync.Mutex var genInternalV = genInternal{Version: genVersion} var genInternalTmplFuncs template.FuncMap var genInternalOnce sync.Once func genInternalInit() { types := [...]string{ "interface{}", "string", "float32", "float64", "uint", "uint8", "uint16", "uint32", "uint64", "uintptr", "int", "int8", "int16", "int32", "int64", "bool", } // keep as slice, so it is in specific iteration order. // Initial order was uint64, string, interface{}, int, int64 mapvaltypes := [...]string{ "interface{}", "string", "uint", "uint8", "uint16", "uint32", "uint64", "uintptr", "int", "int8", "int16", "int32", "int64", "float32", "float64", "bool", } wordSizeBytes := int(intBitsize) / 8 mapvaltypes2 := map[string]int{ "interface{}": 2 * wordSizeBytes, "string": 2 * wordSizeBytes, "uint": 1 * wordSizeBytes, "uint8": 1, "uint16": 2, "uint32": 4, "uint64": 8, "uintptr": 1 * wordSizeBytes, "int": 1 * wordSizeBytes, "int8": 1, "int16": 2, "int32": 4, "int64": 8, "float32": 4, "float64": 8, "bool": 1, } var gt = genInternal{Version: genVersion} // For each slice or map type, there must be a (symmetrical) Encode and Decode fast-path function for _, s := range types { gt.Values = append(gt.Values, genV{Primitive: s, Size: mapvaltypes2[s]}) // if s != "uint8" { // do not generate fast path for slice of bytes. Treat specially already. // gt.Values = append(gt.Values, genV{Elem: s, Size: mapvaltypes2[s]}) // } gt.Values = append(gt.Values, genV{Elem: s, Size: mapvaltypes2[s]}) if _, ok := mapvaltypes2[s]; !ok { gt.Values = append(gt.Values, genV{MapKey: s, Elem: s, Size: 2 * mapvaltypes2[s]}) } for _, ms := range mapvaltypes { gt.Values = append(gt.Values, genV{MapKey: s, Elem: ms, Size: mapvaltypes2[s] + mapvaltypes2[ms]}) } } funcs := make(template.FuncMap) // funcs["haspfx"] = strings.HasPrefix funcs["encmd"] = genInternalEncCommandAsString funcs["decmd"] = genInternalDecCommandAsString funcs["zerocmd"] = genInternalZeroValue funcs["nonzerocmd"] = genInternalNonZeroValue funcs["hasprefix"] = strings.HasPrefix funcs["sorttype"] = genInternalSortType genInternalV = gt genInternalTmplFuncs = funcs } // genInternalGoFile is used to generate source files from templates. // It is run by the program author alone. // Unfortunately, it has to be exported so that it can be called from a command line tool. // *** DO NOT USE *** func genInternalGoFile(r io.Reader, w io.Writer) (err error) { genInternalOnce.Do(genInternalInit) gt := genInternalV t := template.New("").Funcs(genInternalTmplFuncs) tmplstr, err := ioutil.ReadAll(r) if err != nil { return } if t, err = t.Parse(string(tmplstr)); err != nil { return } var out bytes.Buffer err = t.Execute(&out, gt) if err != nil { return } bout, err := format.Source(out.Bytes()) if err != nil { w.Write(out.Bytes()) // write out if error, so we can still see. // w.Write(bout) // write out if error, as much as possible, so we can still see. return } w.Write(bout) return }