package client import ( "crypto/md5" "encoding/hex" "fmt" "log" "os" "path/filepath" "strings" "sync" "time" "github.com/armon/go-metrics" "github.com/hashicorp/go-multierror" "github.com/hashicorp/nomad/client/config" "github.com/hashicorp/nomad/client/driver" "github.com/hashicorp/nomad/client/getter" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/nomad/client/driver/env" dstructs "github.com/hashicorp/nomad/client/driver/structs" cstructs "github.com/hashicorp/nomad/client/structs" ) const ( // killBackoffBaseline is the baseline time for exponential backoff while // killing a task. killBackoffBaseline = 5 * time.Second // killBackoffLimit is the the limit of the exponential backoff for killing // the task. killBackoffLimit = 2 * time.Minute // killFailureLimit is how many times we will attempt to kill a task before // giving up and potentially leaking resources. killFailureLimit = 5 ) // TaskRunner is used to wrap a task within an allocation and provide the execution context. type TaskRunner struct { config *config.Config updater TaskStateUpdater logger *log.Logger ctx *driver.ExecContext alloc *structs.Allocation restartTracker *RestartTracker // running marks whether the task is running running bool runningLock sync.Mutex resourceUsage *cstructs.TaskResourceUsage resourceUsageLock sync.RWMutex task *structs.Task taskEnv *env.TaskEnvironment updateCh chan *structs.Allocation handle driver.DriverHandle handleLock sync.Mutex // artifactsDownloaded tracks whether the tasks artifacts have been // downloaded artifactsDownloaded bool destroy bool destroyCh chan struct{} destroyLock sync.Mutex waitCh chan struct{} } // taskRunnerState is used to snapshot the state of the task runner type taskRunnerState struct { Version string Task *structs.Task HandleID string ArtifactDownloaded bool } // TaskStateUpdater is used to signal that tasks state has changed. type TaskStateUpdater func(taskName, state string, event *structs.TaskEvent) // NewTaskRunner is used to create a new task context func NewTaskRunner(logger *log.Logger, config *config.Config, updater TaskStateUpdater, ctx *driver.ExecContext, alloc *structs.Allocation, task *structs.Task) *TaskRunner { // Merge in the task resources task.Resources = alloc.TaskResources[task.Name] // Build the restart tracker. tg := alloc.Job.LookupTaskGroup(alloc.TaskGroup) if tg == nil { logger.Printf("[ERR] client: alloc '%s' for missing task group '%s'", alloc.ID, alloc.TaskGroup) return nil } restartTracker := newRestartTracker(tg.RestartPolicy, alloc.Job.Type) tc := &TaskRunner{ config: config, updater: updater, logger: logger, restartTracker: restartTracker, ctx: ctx, alloc: alloc, task: task, updateCh: make(chan *structs.Allocation, 64), destroyCh: make(chan struct{}), waitCh: make(chan struct{}), } return tc } // MarkReceived marks the task as received. func (r *TaskRunner) MarkReceived() { r.updater(r.task.Name, structs.TaskStatePending, structs.NewTaskEvent(structs.TaskReceived)) } // WaitCh returns a channel to wait for termination func (r *TaskRunner) WaitCh() <-chan struct{} { return r.waitCh } // stateFilePath returns the path to our state file func (r *TaskRunner) stateFilePath() string { // Get the MD5 of the task name hashVal := md5.Sum([]byte(r.task.Name)) hashHex := hex.EncodeToString(hashVal[:]) dirName := fmt.Sprintf("task-%s", hashHex) // Generate the path path := filepath.Join(r.config.StateDir, "alloc", r.alloc.ID, dirName, "state.json") return path } // RestoreState is used to restore our state func (r *TaskRunner) RestoreState() error { // Load the snapshot var snap taskRunnerState if err := restoreState(r.stateFilePath(), &snap); err != nil { return err } // Restore fields if snap.Task == nil { err := fmt.Errorf("task runner snapshot include nil Task") r.logger.Printf("[ERR] client: %v", err) return err } else { r.task = snap.Task } r.artifactsDownloaded = snap.ArtifactDownloaded if err := r.setTaskEnv(); err != nil { err := fmt.Errorf("failed to create task environment for task %q in allocation %q: %v", r.task.Name, r.alloc.ID, err) r.logger.Printf("[ERR] client: %s", err) return err } // Restore the driver if snap.HandleID != "" { driver, err := r.createDriver() if err != nil { return err } handle, err := driver.Open(r.ctx, snap.HandleID) // In the case it fails, we relaunch the task in the Run() method. if err != nil { r.logger.Printf("[ERR] client: failed to open handle to task '%s' for alloc '%s': %v", r.task.Name, r.alloc.ID, err) return nil } r.handleLock.Lock() r.handle = handle r.handleLock.Unlock() } return nil } // SaveState is used to snapshot our state func (r *TaskRunner) SaveState() error { snap := taskRunnerState{ Task: r.task, Version: r.config.Version, ArtifactDownloaded: r.artifactsDownloaded, } r.handleLock.Lock() if r.handle != nil { snap.HandleID = r.handle.ID() } r.handleLock.Unlock() return persistState(r.stateFilePath(), &snap) } // DestroyState is used to cleanup after ourselves func (r *TaskRunner) DestroyState() error { return os.RemoveAll(r.stateFilePath()) } // setState is used to update the state of the task runner func (r *TaskRunner) setState(state string, event *structs.TaskEvent) { // Persist our state to disk. if err := r.SaveState(); err != nil { r.logger.Printf("[ERR] client: failed to save state of Task Runner: %v", r.task.Name) } // Indicate the task has been updated. r.updater(r.task.Name, state, event) } // setTaskEnv sets the task environment. It returns an error if it could not be // created. func (r *TaskRunner) setTaskEnv() error { taskEnv, err := driver.GetTaskEnv(r.ctx.AllocDir, r.config.Node, r.task.Copy(), r.alloc) if err != nil { return err } r.taskEnv = taskEnv return nil } // createDriver makes a driver for the task func (r *TaskRunner) createDriver() (driver.Driver, error) { if r.taskEnv == nil { err := fmt.Errorf("task environment not made for task %q in allocation %q", r.task.Name, r.alloc.ID) return nil, err } driverCtx := driver.NewDriverContext(r.task.Name, r.config, r.config.Node, r.logger, r.taskEnv) driver, err := driver.NewDriver(r.task.Driver, driverCtx) if err != nil { err = fmt.Errorf("failed to create driver '%s' for alloc %s: %v", r.task.Driver, r.alloc.ID, err) r.logger.Printf("[ERR] client: %s", err) return nil, err } return driver, err } // Run is a long running routine used to manage the task func (r *TaskRunner) Run() { defer close(r.waitCh) r.logger.Printf("[DEBUG] client: starting task context for '%s' (alloc '%s')", r.task.Name, r.alloc.ID) if err := r.validateTask(); err != nil { r.setState( structs.TaskStateDead, structs.NewTaskEvent(structs.TaskFailedValidation).SetValidationError(err)) return } if err := r.setTaskEnv(); err != nil { r.setState( structs.TaskStateDead, structs.NewTaskEvent(structs.TaskDriverFailure).SetDriverError(err)) return } r.run() return } // validateTask validates the fields of the task and returns an error if the // task is invalid. func (r *TaskRunner) validateTask() error { var mErr multierror.Error // Validate the user. unallowedUsers := r.config.ReadStringListToMapDefault("user.blacklist", config.DefaultUserBlacklist) checkDrivers := r.config.ReadStringListToMapDefault("user.checked_drivers", config.DefaultUserCheckedDrivers) if _, driverMatch := checkDrivers[r.task.Driver]; driverMatch { if _, unallowed := unallowedUsers[r.task.User]; unallowed { mErr.Errors = append(mErr.Errors, fmt.Errorf("running as user %q is disallowed", r.task.User)) } } // Validate the artifacts for i, artifact := range r.task.Artifacts { // Verify the artifact doesn't escape the task directory. if err := artifact.Validate(); err != nil { // If this error occurs there is potentially a server bug or // mallicious, server spoofing. r.logger.Printf("[ERR] client: allocation %q, task %v, artifact %#v (%v) fails validation: %v", r.alloc.ID, r.task.Name, artifact, i, err) mErr.Errors = append(mErr.Errors, fmt.Errorf("artifact (%d) failed validation: %v", i, err)) } } if len(mErr.Errors) == 1 { return mErr.Errors[0] } return mErr.ErrorOrNil() } func (r *TaskRunner) run() { // Predeclare things so we an jump to the RESTART var handleEmpty bool var stopCollection chan struct{} for { // Download the task's artifacts if !r.artifactsDownloaded && len(r.task.Artifacts) > 0 { r.setState(structs.TaskStatePending, structs.NewTaskEvent(structs.TaskDownloadingArtifacts)) taskDir, ok := r.ctx.AllocDir.TaskDirs[r.task.Name] if !ok { err := fmt.Errorf("task directory couldn't be found") r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskDriverFailure).SetDriverError(err)) r.logger.Printf("[ERR] client: task directory for alloc %q task %q couldn't be found", r.alloc.ID, r.task.Name) r.restartTracker.SetStartError(err) goto RESTART } for _, artifact := range r.task.Artifacts { if err := getter.GetArtifact(r.taskEnv, artifact, taskDir, r.logger); err != nil { r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskArtifactDownloadFailed).SetDownloadError(err)) r.restartTracker.SetStartError(dstructs.NewRecoverableError(err, true)) goto RESTART } } r.artifactsDownloaded = true } // Start the task if not yet started or it is being forced. This logic // is necessary because in the case of a restore the handle already // exists. r.handleLock.Lock() handleEmpty = r.handle == nil r.handleLock.Unlock() if handleEmpty { startErr := r.startTask() r.restartTracker.SetStartError(startErr) if startErr != nil { r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskDriverFailure).SetDriverError(startErr)) goto RESTART } // Mark the task as started r.setState(structs.TaskStateRunning, structs.NewTaskEvent(structs.TaskStarted)) r.runningLock.Lock() r.running = true r.runningLock.Unlock() } if stopCollection == nil { stopCollection = make(chan struct{}) go r.collectResourceUsageStats(stopCollection) } // Wait for updates WAIT: for { select { case waitRes := <-r.handle.WaitCh(): if waitRes == nil { panic("nil wait") } r.runningLock.Lock() r.running = false r.runningLock.Unlock() // Stop collection of the task's resource usage close(stopCollection) // Log whether the task was successful or not. r.restartTracker.SetWaitResult(waitRes) r.setState(structs.TaskStateDead, r.waitErrorToEvent(waitRes)) if !waitRes.Successful() { r.logger.Printf("[INFO] client: task %q for alloc %q failed: %v", r.task.Name, r.alloc.ID, waitRes) } else { r.logger.Printf("[INFO] client: task %q for alloc %q completed successfully", r.task.Name, r.alloc.ID) } break WAIT case update := <-r.updateCh: if err := r.handleUpdate(update); err != nil { r.logger.Printf("[ERR] client: update to task %q failed: %v", r.task.Name, err) } case <-r.destroyCh: // Kill the task using an exponential backoff in-case of failures. destroySuccess, err := r.handleDestroy() if !destroySuccess { // We couldn't successfully destroy the resource created. r.logger.Printf("[ERR] client: failed to kill task %q. Resources may have been leaked: %v", r.task.Name, err) } // Stop collection of the task's resource usage close(stopCollection) // Store that the task has been destroyed and any associated error. r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskKilled).SetKillError(err)) return } } RESTART: state, when := r.restartTracker.GetState() r.restartTracker.SetStartError(nil).SetWaitResult(nil) reason := r.restartTracker.GetReason() switch state { case structs.TaskNotRestarting, structs.TaskTerminated: r.logger.Printf("[INFO] client: Not restarting task: %v for alloc: %v ", r.task.Name, r.alloc.ID) if state == structs.TaskNotRestarting { r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskNotRestarting). SetRestartReason(reason)) } return case structs.TaskRestarting: r.logger.Printf("[INFO] client: Restarting task %q for alloc %q in %v", r.task.Name, r.alloc.ID, when) r.setState(structs.TaskStatePending, structs.NewTaskEvent(structs.TaskRestarting). SetRestartDelay(when). SetRestartReason(reason)) default: r.logger.Printf("[ERR] client: restart tracker returned unknown state: %q", state) return } // Sleep but watch for destroy events. select { case <-time.After(when): case <-r.destroyCh: } // Destroyed while we were waiting to restart, so abort. r.destroyLock.Lock() destroyed := r.destroy r.destroyLock.Unlock() if destroyed { r.logger.Printf("[DEBUG] client: Not restarting task: %v because it's destroyed by user", r.task.Name) r.setState(structs.TaskStateDead, structs.NewTaskEvent(structs.TaskKilled)) return } // Clear the handle so a new driver will be created. r.handleLock.Lock() r.handle = nil stopCollection = nil r.handleLock.Unlock() } } // startTask creates the driver and start the task. func (r *TaskRunner) startTask() error { // Create a driver driver, err := r.createDriver() if err != nil { r.logger.Printf("[ERR] client: failed to create driver of task '%s' for alloc '%s': %v", r.task.Name, r.alloc.ID, err) return err } // Start the job handle, err := driver.Start(r.ctx, r.task) if err != nil { r.logger.Printf("[ERR] client: failed to start task '%s' for alloc '%s': %v", r.task.Name, r.alloc.ID, err) return err } r.handleLock.Lock() r.handle = handle r.handleLock.Unlock() return nil } // collectResourceUsageStats starts collecting resource usage stats of a Task. // Collection ends when the passed channel is closed func (r *TaskRunner) collectResourceUsageStats(stopCollection <-chan struct{}) { // start collecting the stats right away and then start collecting every // collection interval next := time.NewTimer(0) defer next.Stop() for { select { case <-next.C: ru, err := r.handle.Stats() next.Reset(r.config.StatsCollectionInterval) if err != nil { // We do not log when the plugin is shutdown as this is simply a // race between the stopCollection channel being closed and calling // Stats on the handle. if !strings.Contains(err.Error(), "connection is shut down") { r.logger.Printf("[WARN] client: error fetching stats of task %v: %v", r.task.Name, err) } continue } r.resourceUsageLock.Lock() r.resourceUsage = ru r.resourceUsageLock.Unlock() r.emitStats(ru) case <-stopCollection: return } } } // LatestResourceUsage returns the last resource utilization datapoint collected func (r *TaskRunner) LatestResourceUsage() *cstructs.TaskResourceUsage { r.resourceUsageLock.RLock() defer r.resourceUsageLock.RUnlock() r.runningLock.Lock() defer r.runningLock.Unlock() // If the task is not running there can be no latest resource if !r.running { return nil } return r.resourceUsage } // handleUpdate takes an updated allocation and updates internal state to // reflect the new config for the task. func (r *TaskRunner) handleUpdate(update *structs.Allocation) error { // Extract the task group from the alloc. tg := update.Job.LookupTaskGroup(update.TaskGroup) if tg == nil { return fmt.Errorf("alloc '%s' missing task group '%s'", update.ID, update.TaskGroup) } // Extract the task. var updatedTask *structs.Task for _, t := range tg.Tasks { if t.Name == r.task.Name { updatedTask = t } } if updatedTask == nil { return fmt.Errorf("task group %q doesn't contain task %q", tg.Name, r.task.Name) } // Merge in the task resources updatedTask.Resources = update.TaskResources[updatedTask.Name] // Update will update resources and store the new kill timeout. var mErr multierror.Error r.handleLock.Lock() if r.handle != nil { if err := r.handle.Update(updatedTask); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("updating task resources failed: %v", err)) } } r.handleLock.Unlock() // Update the restart policy. if r.restartTracker != nil { r.restartTracker.SetPolicy(tg.RestartPolicy) } // Store the updated alloc. r.alloc = update r.task = updatedTask return mErr.ErrorOrNil() } // handleDestroy kills the task handle. In the case that killing fails, // handleDestroy will retry with an exponential backoff and will give up at a // given limit. It returns whether the task was destroyed and the error // associated with the last kill attempt. func (r *TaskRunner) handleDestroy() (destroyed bool, err error) { // Cap the number of times we attempt to kill the task. for i := 0; i < killFailureLimit; i++ { if err = r.handle.Kill(); err != nil { // Calculate the new backoff backoff := (1 << (2 * uint64(i))) * killBackoffBaseline if backoff > killBackoffLimit { backoff = killBackoffLimit } r.logger.Printf("[ERR] client: failed to kill task '%s' for alloc %q. Retrying in %v: %v", r.task.Name, r.alloc.ID, backoff, err) time.Sleep(time.Duration(backoff)) } else { // Kill was successful return true, nil } } return } // Helper function for converting a WaitResult into a TaskTerminated event. func (r *TaskRunner) waitErrorToEvent(res *dstructs.WaitResult) *structs.TaskEvent { return structs.NewTaskEvent(structs.TaskTerminated). SetExitCode(res.ExitCode). SetSignal(res.Signal). SetExitMessage(res.Err) } // Update is used to update the task of the context func (r *TaskRunner) Update(update *structs.Allocation) { select { case r.updateCh <- update: default: r.logger.Printf("[ERR] client: dropping task update '%s' (alloc '%s')", r.task.Name, r.alloc.ID) } } // Destroy is used to indicate that the task context should be destroyed func (r *TaskRunner) Destroy() { r.destroyLock.Lock() defer r.destroyLock.Unlock() if r.destroy { return } r.destroy = true close(r.destroyCh) } // emitStats emits resource usage stats of tasks to remote metrics collector // sinks func (r *TaskRunner) emitStats(ru *cstructs.TaskResourceUsage) { if ru.ResourceUsage.MemoryStats != nil { metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "rss"}, float32(ru.ResourceUsage.MemoryStats.RSS)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "cache"}, float32(ru.ResourceUsage.MemoryStats.Cache)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "swap"}, float32(ru.ResourceUsage.MemoryStats.Swap)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "max_usage"}, float32(ru.ResourceUsage.MemoryStats.MaxUsage)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "kernel_usage"}, float32(ru.ResourceUsage.MemoryStats.KernelUsage)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "memory", "kernel_max_usage"}, float32(ru.ResourceUsage.MemoryStats.KernelMaxUsage)) } if ru.ResourceUsage.CpuStats != nil { metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "total_percent"}, float32(ru.ResourceUsage.CpuStats.Percent)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "system"}, float32(ru.ResourceUsage.CpuStats.SystemMode)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "user"}, float32(ru.ResourceUsage.CpuStats.UserMode)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "throttled_time"}, float32(ru.ResourceUsage.CpuStats.ThrottledTime)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "throttled_periods"}, float32(ru.ResourceUsage.CpuStats.ThrottledPeriods)) metrics.SetGauge([]string{"client", "allocs", r.alloc.Job.Name, r.alloc.TaskGroup, r.alloc.ID, r.task.Name, "cpu", "total_ticks"}, float32(ru.ResourceUsage.CpuStats.TotalTicks)) } //TODO Add Pid stats when we add an API to enable/disable them }