package state import ( "context" "fmt" "sort" "time" "reflect" log "github.com/hashicorp/go-hclog" memdb "github.com/hashicorp/go-memdb" multierror "github.com/hashicorp/go-multierror" "github.com/hashicorp/nomad/helper" "github.com/hashicorp/nomad/nomad/structs" ) // Txn is a transaction against a state store. // This can be a read or write transaction. type Txn = *memdb.Txn const ( // NodeRegisterEventReregistered is the message used when the node becomes // reregistered. NodeRegisterEventRegistered = "Node registered" // NodeRegisterEventReregistered is the message used when the node becomes // reregistered. NodeRegisterEventReregistered = "Node re-registered" ) // IndexEntry is used with the "index" table // for managing the latest Raft index affecting a table. type IndexEntry struct { Key string Value uint64 } // StateStoreConfig is used to configure a new state store type StateStoreConfig struct { // Logger is used to output the state store's logs Logger log.Logger // Region is the region of the server embedding the state store. Region string } // The StateStore is responsible for maintaining all the Nomad // state. It is manipulated by the FSM which maintains consistency // through the use of Raft. The goals of the StateStore are to provide // high concurrency for read operations without blocking writes, and // to provide write availability in the face of reads. EVERY object // returned as a result of a read against the state store should be // considered a constant and NEVER modified in place. type StateStore struct { logger log.Logger db *memdb.MemDB // config is the passed in configuration config *StateStoreConfig // abandonCh is used to signal watchers that this state store has been // abandoned (usually during a restore). This is only ever closed. abandonCh chan struct{} } // NewStateStore is used to create a new state store func NewStateStore(config *StateStoreConfig) (*StateStore, error) { // Create the MemDB db, err := memdb.NewMemDB(stateStoreSchema()) if err != nil { return nil, fmt.Errorf("state store setup failed: %v", err) } // Create the state store s := &StateStore{ logger: config.Logger.Named("state_store"), db: db, config: config, abandonCh: make(chan struct{}), } return s, nil } // Config returns the state store configuration. func (s *StateStore) Config() *StateStoreConfig { return s.config } // Snapshot is used to create a point in time snapshot. Because // we use MemDB, we just need to snapshot the state of the underlying // database. func (s *StateStore) Snapshot() (*StateSnapshot, error) { snap := &StateSnapshot{ StateStore: StateStore{ logger: s.logger, config: s.config, db: s.db.Snapshot(), }, } return snap, nil } // SnapshotAfter is used to create a point in time snapshot where the index is // guaranteed to be greater than or equal to the index parameter. // // Some server operations (such as scheduling) exchange objects via RPC // concurrent with Raft log application, so they must ensure the state store // snapshot they are operating on is at or after the index the objects // retrieved via RPC were applied to the Raft log at. // // Callers should maintain their own timer metric as the time this method // blocks indicates Raft log application latency relative to scheduling. func (s *StateStore) SnapshotAfter(ctx context.Context, index uint64) (*StateSnapshot, error) { // Ported from work.go:waitForIndex prior to 0.9 const backoffBase = 20 * time.Millisecond const backoffLimit = 1 * time.Second var retries uint var retryTimer *time.Timer // XXX: Potential optimization is to set up a watch on the state // store's index table and only unblock via a trigger rather than // polling. for { // Get the states current index snapshotIndex, err := s.LatestIndex() if err != nil { return nil, fmt.Errorf("failed to determine state store's index: %v", err) } // We only need the FSM state to be as recent as the given index if snapshotIndex >= index { return s.Snapshot() } // Exponential back off retries++ if retryTimer == nil { // First retry, start at baseline retryTimer = time.NewTimer(backoffBase) } else { // Subsequent retry, reset timer deadline := 1 << (2 * retries) * backoffBase if deadline > backoffLimit { deadline = backoffLimit } retryTimer.Reset(deadline) } select { case <-ctx.Done(): return nil, ctx.Err() case <-retryTimer.C: } } } // Restore is used to optimize the efficiency of rebuilding // state by minimizing the number of transactions and checking // overhead. func (s *StateStore) Restore() (*StateRestore, error) { txn := s.db.Txn(true) r := &StateRestore{ txn: txn, } return r, nil } // AbandonCh returns a channel you can wait on to know if the state store was // abandoned. func (s *StateStore) AbandonCh() <-chan struct{} { return s.abandonCh } // Abandon is used to signal that the given state store has been abandoned. // Calling this more than one time will panic. func (s *StateStore) Abandon() { close(s.abandonCh) } // QueryFn is the definition of a function that can be used to implement a basic // blocking query against the state store. type QueryFn func(memdb.WatchSet, *StateStore) (resp interface{}, index uint64, err error) // BlockingQuery takes a query function and runs the function until the minimum // query index is met or until the passed context is cancelled. func (s *StateStore) BlockingQuery(query QueryFn, minIndex uint64, ctx context.Context) ( resp interface{}, index uint64, err error) { RUN_QUERY: // We capture the state store and its abandon channel but pass a snapshot to // the blocking query function. We operate on the snapshot to allow separate // calls to the state store not all wrapped within the same transaction. abandonCh := s.AbandonCh() snap, _ := s.Snapshot() stateSnap := &snap.StateStore // We can skip all watch tracking if this isn't a blocking query. var ws memdb.WatchSet if minIndex > 0 { ws = memdb.NewWatchSet() // This channel will be closed if a snapshot is restored and the // whole state store is abandoned. ws.Add(abandonCh) } resp, index, err = query(ws, stateSnap) if err != nil { return nil, index, err } // We haven't reached the min-index yet. if minIndex > 0 && index <= minIndex { if err := ws.WatchCtx(ctx); err != nil { return nil, index, err } goto RUN_QUERY } return resp, index, nil } // UpsertPlanResults is used to upsert the results of a plan. func (s *StateStore) UpsertPlanResults(index uint64, results *structs.ApplyPlanResultsRequest) error { snapshot, err := s.Snapshot() if err != nil { return err } allocsStopped, err := snapshot.DenormalizeAllocationDiffSlice(results.AllocsStopped) if err != nil { return err } allocsPreempted, err := snapshot.DenormalizeAllocationDiffSlice(results.AllocsPreempted) if err != nil { return err } // COMPAT 0.11: Remove this denormalization when NodePreemptions is removed results.NodePreemptions, err = snapshot.DenormalizeAllocationSlice(results.NodePreemptions) if err != nil { return err } txn := s.db.Txn(true) defer txn.Abort() // Upsert the newly created or updated deployment if results.Deployment != nil { if err := s.upsertDeploymentImpl(index, results.Deployment, txn); err != nil { return err } } // Update the status of deployments effected by the plan. if len(results.DeploymentUpdates) != 0 { s.upsertDeploymentUpdates(index, results.DeploymentUpdates, txn) } if results.EvalID != "" { // Update the modify index of the eval id if err := s.updateEvalModifyIndex(txn, index, results.EvalID); err != nil { return err } } numAllocs := 0 if len(results.Alloc) > 0 || len(results.NodePreemptions) > 0 { // COMPAT 0.11: This branch will be removed, when Alloc is removed // Attach the job to all the allocations. It is pulled out in the payload to // avoid the redundancy of encoding, but should be denormalized prior to // being inserted into MemDB. addComputedAllocAttrs(results.Alloc, results.Job) numAllocs = len(results.Alloc) + len(results.NodePreemptions) } else { // Attach the job to all the allocations. It is pulled out in the payload to // avoid the redundancy of encoding, but should be denormalized prior to // being inserted into MemDB. addComputedAllocAttrs(results.AllocsUpdated, results.Job) numAllocs = len(allocsStopped) + len(results.AllocsUpdated) + len(allocsPreempted) } allocsToUpsert := make([]*structs.Allocation, 0, numAllocs) // COMPAT 0.11: Both these appends should be removed when Alloc and NodePreemptions are removed allocsToUpsert = append(allocsToUpsert, results.Alloc...) allocsToUpsert = append(allocsToUpsert, results.NodePreemptions...) allocsToUpsert = append(allocsToUpsert, allocsStopped...) allocsToUpsert = append(allocsToUpsert, results.AllocsUpdated...) allocsToUpsert = append(allocsToUpsert, allocsPreempted...) if err := s.upsertAllocsImpl(index, allocsToUpsert, txn); err != nil { return err } // Upsert followup evals for allocs that were preempted for _, eval := range results.PreemptionEvals { if err := s.nestedUpsertEval(txn, index, eval); err != nil { return err } } txn.Commit() return nil } // addComputedAllocAttrs adds the computed/derived attributes to the allocation. // This method is used when an allocation is being denormalized. func addComputedAllocAttrs(allocs []*structs.Allocation, job *structs.Job) { structs.DenormalizeAllocationJobs(job, allocs) // COMPAT(0.11): Remove in 0.11 // Calculate the total resources of allocations. It is pulled out in the // payload to avoid encoding something that can be computed, but should be // denormalized prior to being inserted into MemDB. for _, alloc := range allocs { if alloc.Resources != nil { continue } alloc.Resources = new(structs.Resources) for _, task := range alloc.TaskResources { alloc.Resources.Add(task) } // Add the shared resources alloc.Resources.Add(alloc.SharedResources) } } // upsertDeploymentUpdates updates the deployments given the passed status // updates. func (s *StateStore) upsertDeploymentUpdates(index uint64, updates []*structs.DeploymentStatusUpdate, txn *memdb.Txn) error { for _, u := range updates { if err := s.updateDeploymentStatusImpl(index, u, txn); err != nil { return err } } return nil } // UpsertJobSummary upserts a job summary into the state store. func (s *StateStore) UpsertJobSummary(index uint64, jobSummary *structs.JobSummary) error { txn := s.db.Txn(true) defer txn.Abort() // Check if the job summary already exists existing, err := txn.First("job_summary", "id", jobSummary.Namespace, jobSummary.JobID) if err != nil { return fmt.Errorf("job summary lookup failed: %v", err) } // Setup the indexes correctly if existing != nil { jobSummary.CreateIndex = existing.(*structs.JobSummary).CreateIndex jobSummary.ModifyIndex = index } else { jobSummary.CreateIndex = index jobSummary.ModifyIndex = index } // Update the index if err := txn.Insert("job_summary", jobSummary); err != nil { return err } // Update the indexes table for job summary if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // DeleteJobSummary deletes the job summary with the given ID. This is for // testing purposes only. func (s *StateStore) DeleteJobSummary(index uint64, namespace, id string) error { txn := s.db.Txn(true) defer txn.Abort() // Delete the job summary if _, err := txn.DeleteAll("job_summary", "id", namespace, id); err != nil { return fmt.Errorf("deleting job summary failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // UpsertDeployment is used to insert a new deployment. If cancelPrior is set to // true, all prior deployments for the same job will be cancelled. func (s *StateStore) UpsertDeployment(index uint64, deployment *structs.Deployment) error { txn := s.db.Txn(true) defer txn.Abort() if err := s.upsertDeploymentImpl(index, deployment, txn); err != nil { return err } txn.Commit() return nil } func (s *StateStore) upsertDeploymentImpl(index uint64, deployment *structs.Deployment, txn *memdb.Txn) error { // Check if the deployment already exists existing, err := txn.First("deployment", "id", deployment.ID) if err != nil { return fmt.Errorf("deployment lookup failed: %v", err) } // Setup the indexes correctly if existing != nil { deployment.CreateIndex = existing.(*structs.Deployment).CreateIndex deployment.ModifyIndex = index } else { deployment.CreateIndex = index deployment.ModifyIndex = index } // Insert the deployment if err := txn.Insert("deployment", deployment); err != nil { return err } // Update the indexes table for deployment if err := txn.Insert("index", &IndexEntry{"deployment", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } // If the deployment is being marked as complete, set the job to stable. if deployment.Status == structs.DeploymentStatusSuccessful { if err := s.updateJobStabilityImpl(index, deployment.Namespace, deployment.JobID, deployment.JobVersion, true, txn); err != nil { return fmt.Errorf("failed to update job stability: %v", err) } } return nil } func (s *StateStore) Deployments(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire deployments table iter, err := txn.Get("deployment", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } func (s *StateStore) DeploymentsByNamespace(ws memdb.WatchSet, namespace string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire deployments table iter, err := txn.Get("deployment", "namespace", namespace) if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } func (s *StateStore) DeploymentsByIDPrefix(ws memdb.WatchSet, namespace, deploymentID string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire deployments table iter, err := txn.Get("deployment", "id_prefix", deploymentID) if err != nil { return nil, err } ws.Add(iter.WatchCh()) // Wrap the iterator in a filter wrap := memdb.NewFilterIterator(iter, deploymentNamespaceFilter(namespace)) return wrap, nil } // deploymentNamespaceFilter returns a filter function that filters all // deployment not in the given namespace. func deploymentNamespaceFilter(namespace string) func(interface{}) bool { return func(raw interface{}) bool { d, ok := raw.(*structs.Deployment) if !ok { return true } return d.Namespace != namespace } } func (s *StateStore) DeploymentByID(ws memdb.WatchSet, deploymentID string) (*structs.Deployment, error) { txn := s.db.Txn(false) return s.deploymentByIDImpl(ws, deploymentID, txn) } func (s *StateStore) deploymentByIDImpl(ws memdb.WatchSet, deploymentID string, txn *memdb.Txn) (*structs.Deployment, error) { watchCh, existing, err := txn.FirstWatch("deployment", "id", deploymentID) if err != nil { return nil, fmt.Errorf("deployment lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.Deployment), nil } return nil, nil } func (s *StateStore) DeploymentsByJobID(ws memdb.WatchSet, namespace, jobID string, all bool) ([]*structs.Deployment, error) { txn := s.db.Txn(false) var job *structs.Job // Read job from state store _, existing, err := txn.FirstWatch("jobs", "id", namespace, jobID) if err != nil { return nil, fmt.Errorf("job lookup failed: %v", err) } if existing != nil { job = existing.(*structs.Job) } // Get an iterator over the deployments iter, err := txn.Get("deployment", "job", namespace, jobID) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out []*structs.Deployment for { raw := iter.Next() if raw == nil { break } d := raw.(*structs.Deployment) // If the allocation belongs to a job with the same ID but a different // create index and we are not getting all the allocations whose Jobs // matches the same Job ID then we skip it if !all && job != nil && d.JobCreateIndex != job.CreateIndex { continue } out = append(out, d) } return out, nil } // LatestDeploymentByJobID returns the latest deployment for the given job. The // latest is determined strictly by CreateIndex. func (s *StateStore) LatestDeploymentByJobID(ws memdb.WatchSet, namespace, jobID string) (*structs.Deployment, error) { txn := s.db.Txn(false) // Get an iterator over the deployments iter, err := txn.Get("deployment", "job", namespace, jobID) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out *structs.Deployment for { raw := iter.Next() if raw == nil { break } d := raw.(*structs.Deployment) if out == nil || out.CreateIndex < d.CreateIndex { out = d } } return out, nil } // DeleteDeployment is used to delete a set of deployments by ID func (s *StateStore) DeleteDeployment(index uint64, deploymentIDs []string) error { txn := s.db.Txn(true) defer txn.Abort() if len(deploymentIDs) == 0 { return nil } for _, deploymentID := range deploymentIDs { // Lookup the deployment existing, err := txn.First("deployment", "id", deploymentID) if err != nil { return fmt.Errorf("deployment lookup failed: %v", err) } if existing == nil { return fmt.Errorf("deployment not found") } // Delete the deployment if err := txn.Delete("deployment", existing); err != nil { return fmt.Errorf("deployment delete failed: %v", err) } } if err := txn.Insert("index", &IndexEntry{"deployment", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // UpsertNode is used to register a node or update a node definition // This is assumed to be triggered by the client, so we retain the value // of drain/eligibility which is set by the scheduler. func (s *StateStore) UpsertNode(index uint64, node *structs.Node) error { txn := s.db.Txn(true) defer txn.Abort() // Check if the node already exists existing, err := txn.First("nodes", "id", node.ID) if err != nil { return fmt.Errorf("node lookup failed: %v", err) } // Setup the indexes correctly if existing != nil { exist := existing.(*structs.Node) node.CreateIndex = exist.CreateIndex node.ModifyIndex = index // Retain node events that have already been set on the node node.Events = exist.Events // If we are transitioning from down, record the re-registration if exist.Status == structs.NodeStatusDown && node.Status != structs.NodeStatusDown { appendNodeEvents(index, node, []*structs.NodeEvent{ structs.NewNodeEvent().SetSubsystem(structs.NodeEventSubsystemCluster). SetMessage(NodeRegisterEventReregistered). SetTimestamp(time.Unix(node.StatusUpdatedAt, 0))}) } node.Drain = exist.Drain // Retain the drain mode node.SchedulingEligibility = exist.SchedulingEligibility // Retain the eligibility node.DrainStrategy = exist.DrainStrategy // Retain the drain strategy } else { // Because this is the first time the node is being registered, we should // also create a node registration event nodeEvent := structs.NewNodeEvent().SetSubsystem(structs.NodeEventSubsystemCluster). SetMessage(NodeRegisterEventRegistered). SetTimestamp(time.Unix(node.StatusUpdatedAt, 0)) node.Events = []*structs.NodeEvent{nodeEvent} node.CreateIndex = index node.ModifyIndex = index } // Insert the node if err := txn.Insert("nodes", node); err != nil { return fmt.Errorf("node insert failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // DeleteNode deregisters a batch of nodes func (s *StateStore) DeleteNode(index uint64, nodes []string) error { txn := s.db.Txn(true) defer txn.Abort() for _, nodeID := range nodes { existing, err := txn.First("nodes", "id", nodeID) if err != nil { return fmt.Errorf("node lookup failed: %v", err) } if existing == nil { return fmt.Errorf("node not found") } // Delete the node if err := txn.Delete("nodes", existing); err != nil { return fmt.Errorf("node delete failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } } txn.Commit() return nil } // UpdateNodeStatus is used to update the status of a node func (s *StateStore) UpdateNodeStatus(index uint64, nodeID, status string, updatedAt int64, event *structs.NodeEvent) error { txn := s.db.Txn(true) defer txn.Abort() // Lookup the node existing, err := txn.First("nodes", "id", nodeID) if err != nil { return fmt.Errorf("node lookup failed: %v", err) } if existing == nil { return fmt.Errorf("node not found") } // Copy the existing node existingNode := existing.(*structs.Node) copyNode := existingNode.Copy() copyNode.StatusUpdatedAt = updatedAt // Add the event if given if event != nil { appendNodeEvents(index, copyNode, []*structs.NodeEvent{event}) } // Update the status in the copy copyNode.Status = status copyNode.ModifyIndex = index // Insert the node if err := txn.Insert("nodes", copyNode); err != nil { return fmt.Errorf("node update failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // BatchUpdateNodeDrain is used to update the drain of a node set of nodes func (s *StateStore) BatchUpdateNodeDrain(index uint64, updatedAt int64, updates map[string]*structs.DrainUpdate, events map[string]*structs.NodeEvent) error { txn := s.db.Txn(true) defer txn.Abort() for node, update := range updates { if err := s.updateNodeDrainImpl(txn, index, node, update.DrainStrategy, update.MarkEligible, updatedAt, events[node]); err != nil { return err } } txn.Commit() return nil } // UpdateNodeDrain is used to update the drain of a node func (s *StateStore) UpdateNodeDrain(index uint64, nodeID string, drain *structs.DrainStrategy, markEligible bool, updatedAt int64, event *structs.NodeEvent) error { txn := s.db.Txn(true) defer txn.Abort() if err := s.updateNodeDrainImpl(txn, index, nodeID, drain, markEligible, updatedAt, event); err != nil { return err } txn.Commit() return nil } func (s *StateStore) updateNodeDrainImpl(txn *memdb.Txn, index uint64, nodeID string, drain *structs.DrainStrategy, markEligible bool, updatedAt int64, event *structs.NodeEvent) error { // Lookup the node existing, err := txn.First("nodes", "id", nodeID) if err != nil { return fmt.Errorf("node lookup failed: %v", err) } if existing == nil { return fmt.Errorf("node not found") } // Copy the existing node existingNode := existing.(*structs.Node) copyNode := existingNode.Copy() copyNode.StatusUpdatedAt = updatedAt // Add the event if given if event != nil { appendNodeEvents(index, copyNode, []*structs.NodeEvent{event}) } // Update the drain in the copy copyNode.Drain = drain != nil // COMPAT: Remove in Nomad 0.10 copyNode.DrainStrategy = drain if drain != nil { copyNode.SchedulingEligibility = structs.NodeSchedulingIneligible } else if markEligible { copyNode.SchedulingEligibility = structs.NodeSchedulingEligible } copyNode.ModifyIndex = index // Insert the node if err := txn.Insert("nodes", copyNode); err != nil { return fmt.Errorf("node update failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } return nil } // UpdateNodeEligibility is used to update the scheduling eligibility of a node func (s *StateStore) UpdateNodeEligibility(index uint64, nodeID string, eligibility string, updatedAt int64, event *structs.NodeEvent) error { txn := s.db.Txn(true) defer txn.Abort() // Lookup the node existing, err := txn.First("nodes", "id", nodeID) if err != nil { return fmt.Errorf("node lookup failed: %v", err) } if existing == nil { return fmt.Errorf("node not found") } // Copy the existing node existingNode := existing.(*structs.Node) copyNode := existingNode.Copy() copyNode.StatusUpdatedAt = updatedAt // Add the event if given if event != nil { appendNodeEvents(index, copyNode, []*structs.NodeEvent{event}) } // Check if this is a valid action if copyNode.DrainStrategy != nil && eligibility == structs.NodeSchedulingEligible { return fmt.Errorf("can not set node's scheduling eligibility to eligible while it is draining") } // Update the eligibility in the copy copyNode.SchedulingEligibility = eligibility copyNode.ModifyIndex = index // Insert the node if err := txn.Insert("nodes", copyNode); err != nil { return fmt.Errorf("node update failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // UpsertNodeEvents adds the node events to the nodes, rotating events as // necessary. func (s *StateStore) UpsertNodeEvents(index uint64, nodeEvents map[string][]*structs.NodeEvent) error { txn := s.db.Txn(true) defer txn.Abort() for nodeID, events := range nodeEvents { if err := s.upsertNodeEvents(index, nodeID, events, txn); err != nil { return err } } txn.Commit() return nil } // upsertNodeEvent upserts a node event for a respective node. It also maintains // that a fixed number of node events are ever stored simultaneously, deleting // older events once this bound has been reached. func (s *StateStore) upsertNodeEvents(index uint64, nodeID string, events []*structs.NodeEvent, txn *memdb.Txn) error { // Lookup the node existing, err := txn.First("nodes", "id", nodeID) if err != nil { return fmt.Errorf("node lookup failed: %v", err) } if existing == nil { return fmt.Errorf("node not found") } // Copy the existing node existingNode := existing.(*structs.Node) copyNode := existingNode.Copy() appendNodeEvents(index, copyNode, events) // Insert the node if err := txn.Insert("nodes", copyNode); err != nil { return fmt.Errorf("node update failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"nodes", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } return nil } // appendNodeEvents is a helper that takes a node and new events and appends // them, pruning older events as needed. func appendNodeEvents(index uint64, node *structs.Node, events []*structs.NodeEvent) { // Add the events, updating the indexes for _, e := range events { e.CreateIndex = index node.Events = append(node.Events, e) } // Keep node events pruned to not exceed the max allowed if l := len(node.Events); l > structs.MaxRetainedNodeEvents { delta := l - structs.MaxRetainedNodeEvents node.Events = node.Events[delta:] } } // NodeByID is used to lookup a node by ID func (s *StateStore) NodeByID(ws memdb.WatchSet, nodeID string) (*structs.Node, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("nodes", "id", nodeID) if err != nil { return nil, fmt.Errorf("node lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.Node), nil } return nil, nil } // NodesByIDPrefix is used to lookup nodes by prefix func (s *StateStore) NodesByIDPrefix(ws memdb.WatchSet, nodeID string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("nodes", "id_prefix", nodeID) if err != nil { return nil, fmt.Errorf("node lookup failed: %v", err) } ws.Add(iter.WatchCh()) return iter, nil } // NodeBySecretID is used to lookup a node by SecretID func (s *StateStore) NodeBySecretID(ws memdb.WatchSet, secretID string) (*structs.Node, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("nodes", "secret_id", secretID) if err != nil { return nil, fmt.Errorf("node lookup by SecretID failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.Node), nil } return nil, nil } // Nodes returns an iterator over all the nodes func (s *StateStore) Nodes(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire nodes table iter, err := txn.Get("nodes", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // UpsertJob is used to register a job or update a job definition func (s *StateStore) UpsertJob(index uint64, job *structs.Job) error { txn := s.db.Txn(true) defer txn.Abort() if err := s.upsertJobImpl(index, job, false, txn); err != nil { return err } txn.Commit() return nil } // UpsertJobTxn is used to register a job or update a job definition, like UpsertJob, // but in a transaction. Useful for when making multiple modifications atomically func (s *StateStore) UpsertJobTxn(index uint64, job *structs.Job, txn Txn) error { return s.upsertJobImpl(index, job, false, txn) } // upsertJobImpl is the implementation for registering a job or updating a job definition func (s *StateStore) upsertJobImpl(index uint64, job *structs.Job, keepVersion bool, txn *memdb.Txn) error { // Assert the namespace exists if exists, err := s.namespaceExists(txn, job.Namespace); err != nil { return err } else if !exists { return fmt.Errorf("job %q is in nonexistent namespace %q", job.ID, job.Namespace) } // Check if the job already exists existing, err := txn.First("jobs", "id", job.Namespace, job.ID) if err != nil { return fmt.Errorf("job lookup failed: %v", err) } // Setup the indexes correctly if existing != nil { job.CreateIndex = existing.(*structs.Job).CreateIndex job.ModifyIndex = index // Bump the version unless asked to keep it. This should only be done // when changing an internal field such as Stable. A spec change should // always come with a version bump if !keepVersion { job.JobModifyIndex = index job.Version = existing.(*structs.Job).Version + 1 } // Compute the job status var err error job.Status, err = s.getJobStatus(txn, job, false) if err != nil { return fmt.Errorf("setting job status for %q failed: %v", job.ID, err) } } else { job.CreateIndex = index job.ModifyIndex = index job.JobModifyIndex = index job.Version = 0 if err := s.setJobStatus(index, txn, job, false, ""); err != nil { return fmt.Errorf("setting job status for %q failed: %v", job.ID, err) } // Have to get the job again since it could have been updated updated, err := txn.First("jobs", "id", job.Namespace, job.ID) if err != nil { return fmt.Errorf("job lookup failed: %v", err) } if updated != nil { job = updated.(*structs.Job) } } if err := s.updateSummaryWithJob(index, job, txn); err != nil { return fmt.Errorf("unable to create job summary: %v", err) } if err := s.upsertJobVersion(index, job, txn); err != nil { return fmt.Errorf("unable to upsert job into job_version table: %v", err) } // Insert the job if err := txn.Insert("jobs", job); err != nil { return fmt.Errorf("job insert failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"jobs", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } return nil } // DeleteJob is used to deregister a job func (s *StateStore) DeleteJob(index uint64, namespace, jobID string) error { txn := s.db.Txn(true) defer txn.Abort() err := s.DeleteJobTxn(index, namespace, jobID, txn) if err == nil { txn.Commit() } return err } // DeleteJobTxn is used to deregister a job, like DeleteJob, // but in a transaction. Useful for when making multiple modifications atomically func (s *StateStore) DeleteJobTxn(index uint64, namespace, jobID string, txn Txn) error { // Lookup the node existing, err := txn.First("jobs", "id", namespace, jobID) if err != nil { return fmt.Errorf("job lookup failed: %v", err) } if existing == nil { return fmt.Errorf("job not found") } // Check if we should update a parent job summary job := existing.(*structs.Job) if job.ParentID != "" { summaryRaw, err := txn.First("job_summary", "id", namespace, job.ParentID) if err != nil { return fmt.Errorf("unable to retrieve summary for parent job: %v", err) } // Only continue if the summary exists. It could not exist if the parent // job was removed if summaryRaw != nil { existing := summaryRaw.(*structs.JobSummary) pSummary := existing.Copy() if pSummary.Children != nil { modified := false switch job.Status { case structs.JobStatusPending: pSummary.Children.Pending-- pSummary.Children.Dead++ modified = true case structs.JobStatusRunning: pSummary.Children.Running-- pSummary.Children.Dead++ modified = true case structs.JobStatusDead: default: return fmt.Errorf("unknown old job status %q", job.Status) } if modified { // Update the modify index pSummary.ModifyIndex = index // Insert the summary if err := txn.Insert("job_summary", pSummary); err != nil { return fmt.Errorf("job summary insert failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } } } } } // Delete the job if err := txn.Delete("jobs", existing); err != nil { return fmt.Errorf("job delete failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"jobs", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } // Delete the job versions if err := s.deleteJobVersions(index, job, txn); err != nil { return err } // Delete the job summary if _, err = txn.DeleteAll("job_summary", "id", namespace, jobID); err != nil { return fmt.Errorf("deleing job summary failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } return nil } // deleteJobVersions deletes all versions of the given job. func (s *StateStore) deleteJobVersions(index uint64, job *structs.Job, txn *memdb.Txn) error { iter, err := txn.Get("job_version", "id_prefix", job.Namespace, job.ID) if err != nil { return err } // Put them into a slice so there are no safety concerns while actually // performing the deletes jobs := []*structs.Job{} for { raw := iter.Next() if raw == nil { break } // Ensure the ID is an exact match j := raw.(*structs.Job) if j.ID != job.ID { continue } jobs = append(jobs, j) } // Do the deletes for _, j := range jobs { if err := txn.Delete("job_version", j); err != nil { return fmt.Errorf("deleting job versions failed: %v", err) } } if err := txn.Insert("index", &IndexEntry{"job_version", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } return nil } // upsertJobVersion inserts a job into its historic version table and limits the // number of job versions that are tracked. func (s *StateStore) upsertJobVersion(index uint64, job *structs.Job, txn *memdb.Txn) error { // Insert the job if err := txn.Insert("job_version", job); err != nil { return fmt.Errorf("failed to insert job into job_version table: %v", err) } if err := txn.Insert("index", &IndexEntry{"job_version", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } // Get all the historic jobs for this ID all, err := s.jobVersionByID(txn, nil, job.Namespace, job.ID) if err != nil { return fmt.Errorf("failed to look up job versions for %q: %v", job.ID, err) } // If we are below the limit there is no GCing to be done if len(all) <= structs.JobTrackedVersions { return nil } // We have to delete a historic job to make room. // Find index of the highest versioned stable job stableIdx := -1 for i, j := range all { if j.Stable { stableIdx = i break } } // If the stable job is the oldest version, do a swap to bring it into the // keep set. max := structs.JobTrackedVersions if stableIdx == max { all[max-1], all[max] = all[max], all[max-1] } // Delete the job outside of the set that are being kept. d := all[max] if err := txn.Delete("job_version", d); err != nil { return fmt.Errorf("failed to delete job %v (%d) from job_version", d.ID, d.Version) } return nil } // JobByID is used to lookup a job by its ID. JobByID returns the current/latest job // version. func (s *StateStore) JobByID(ws memdb.WatchSet, namespace, id string) (*structs.Job, error) { txn := s.db.Txn(false) return s.JobByIDTxn(ws, namespace, id, txn) } // JobByIDTxn is used to lookup a job by its ID, like JobByID. JobByID returns the job version // accessible through in the transaction func (s *StateStore) JobByIDTxn(ws memdb.WatchSet, namespace, id string, txn Txn) (*structs.Job, error) { watchCh, existing, err := txn.FirstWatch("jobs", "id", namespace, id) if err != nil { return nil, fmt.Errorf("job lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.Job), nil } return nil, nil } // JobsByIDPrefix is used to lookup a job by prefix func (s *StateStore) JobsByIDPrefix(ws memdb.WatchSet, namespace, id string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("jobs", "id_prefix", namespace, id) if err != nil { return nil, fmt.Errorf("job lookup failed: %v", err) } ws.Add(iter.WatchCh()) return iter, nil } // JobVersionsByID returns all the tracked versions of a job. func (s *StateStore) JobVersionsByID(ws memdb.WatchSet, namespace, id string) ([]*structs.Job, error) { txn := s.db.Txn(false) return s.jobVersionByID(txn, &ws, namespace, id) } // jobVersionByID is the underlying implementation for retrieving all tracked // versions of a job and is called under an existing transaction. A watch set // can optionally be passed in to add the job histories to the watch set. func (s *StateStore) jobVersionByID(txn *memdb.Txn, ws *memdb.WatchSet, namespace, id string) ([]*structs.Job, error) { // Get all the historic jobs for this ID iter, err := txn.Get("job_version", "id_prefix", namespace, id) if err != nil { return nil, err } if ws != nil { ws.Add(iter.WatchCh()) } var all []*structs.Job for { raw := iter.Next() if raw == nil { break } // Ensure the ID is an exact match j := raw.(*structs.Job) if j.ID != id { continue } all = append(all, j) } // Sort in reverse order so that the highest version is first sort.Slice(all, func(i, j int) bool { return all[i].Version > all[j].Version }) return all, nil } // JobByIDAndVersion returns the job identified by its ID and Version. The // passed watchset may be nil. func (s *StateStore) JobByIDAndVersion(ws memdb.WatchSet, namespace, id string, version uint64) (*structs.Job, error) { txn := s.db.Txn(false) return s.jobByIDAndVersionImpl(ws, namespace, id, version, txn) } // jobByIDAndVersionImpl returns the job identified by its ID and Version. The // passed watchset may be nil. func (s *StateStore) jobByIDAndVersionImpl(ws memdb.WatchSet, namespace, id string, version uint64, txn *memdb.Txn) (*structs.Job, error) { watchCh, existing, err := txn.FirstWatch("job_version", "id", namespace, id, version) if err != nil { return nil, err } if ws != nil { ws.Add(watchCh) } if existing != nil { job := existing.(*structs.Job) return job, nil } return nil, nil } func (s *StateStore) JobVersions(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire deployments table iter, err := txn.Get("job_version", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // Jobs returns an iterator over all the jobs func (s *StateStore) Jobs(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire jobs table iter, err := txn.Get("jobs", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // JobsByNamespace returns an iterator over all the jobs for the given namespace func (s *StateStore) JobsByNamespace(ws memdb.WatchSet, namespace string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) return s.jobsByNamespaceImpl(ws, namespace, txn) } // jobsByNamespaceImpl returns an iterator over all the jobs for the given namespace func (s *StateStore) jobsByNamespaceImpl(ws memdb.WatchSet, namespace string, txn *memdb.Txn) (memdb.ResultIterator, error) { // Walk the entire jobs table iter, err := txn.Get("jobs", "id_prefix", namespace, "") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // JobsByPeriodic returns an iterator over all the periodic or non-periodic jobs. func (s *StateStore) JobsByPeriodic(ws memdb.WatchSet, periodic bool) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("jobs", "periodic", periodic) if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // JobsByScheduler returns an iterator over all the jobs with the specific // scheduler type. func (s *StateStore) JobsByScheduler(ws memdb.WatchSet, schedulerType string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Return an iterator for jobs with the specific type. iter, err := txn.Get("jobs", "type", schedulerType) if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // JobsByGC returns an iterator over all jobs eligible or uneligible for garbage // collection. func (s *StateStore) JobsByGC(ws memdb.WatchSet, gc bool) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("jobs", "gc", gc) if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // JobSummary returns a job summary object which matches a specific id. func (s *StateStore) JobSummaryByID(ws memdb.WatchSet, namespace, jobID string) (*structs.JobSummary, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("job_summary", "id", namespace, jobID) if err != nil { return nil, err } ws.Add(watchCh) if existing != nil { summary := existing.(*structs.JobSummary) return summary, nil } return nil, nil } // JobSummaries walks the entire job summary table and returns all the job // summary objects func (s *StateStore) JobSummaries(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("job_summary", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // JobSummaryByPrefix is used to look up Job Summary by id prefix func (s *StateStore) JobSummaryByPrefix(ws memdb.WatchSet, namespace, id string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("job_summary", "id_prefix", namespace, id) if err != nil { return nil, fmt.Errorf("eval lookup failed: %v", err) } ws.Add(iter.WatchCh()) return iter, nil } // UpsertPeriodicLaunch is used to register a launch or update it. func (s *StateStore) UpsertPeriodicLaunch(index uint64, launch *structs.PeriodicLaunch) error { txn := s.db.Txn(true) defer txn.Abort() // Check if the job already exists existing, err := txn.First("periodic_launch", "id", launch.Namespace, launch.ID) if err != nil { return fmt.Errorf("periodic launch lookup failed: %v", err) } // Setup the indexes correctly if existing != nil { launch.CreateIndex = existing.(*structs.PeriodicLaunch).CreateIndex launch.ModifyIndex = index } else { launch.CreateIndex = index launch.ModifyIndex = index } // Insert the job if err := txn.Insert("periodic_launch", launch); err != nil { return fmt.Errorf("launch insert failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"periodic_launch", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // DeletePeriodicLaunch is used to delete the periodic launch func (s *StateStore) DeletePeriodicLaunch(index uint64, namespace, jobID string) error { txn := s.db.Txn(true) defer txn.Abort() err := s.DeletePeriodicLaunchTxn(index, namespace, jobID, txn) if err == nil { txn.Commit() } return err } // DeletePeriodicLaunchTxn is used to delete the periodic launch, like DeletePeriodicLaunch // but in a transaction. Useful for when making multiple modifications atomically func (s *StateStore) DeletePeriodicLaunchTxn(index uint64, namespace, jobID string, txn Txn) error { // Lookup the launch existing, err := txn.First("periodic_launch", "id", namespace, jobID) if err != nil { return fmt.Errorf("launch lookup failed: %v", err) } if existing == nil { return fmt.Errorf("launch not found") } // Delete the launch if err := txn.Delete("periodic_launch", existing); err != nil { return fmt.Errorf("launch delete failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"periodic_launch", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } return nil } // PeriodicLaunchByID is used to lookup a periodic launch by the periodic job // ID. func (s *StateStore) PeriodicLaunchByID(ws memdb.WatchSet, namespace, id string) (*structs.PeriodicLaunch, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("periodic_launch", "id", namespace, id) if err != nil { return nil, fmt.Errorf("periodic launch lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.PeriodicLaunch), nil } return nil, nil } // PeriodicLaunches returns an iterator over all the periodic launches func (s *StateStore) PeriodicLaunches(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire table iter, err := txn.Get("periodic_launch", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // UpsertEvals is used to upsert a set of evaluations func (s *StateStore) UpsertEvals(index uint64, evals []*structs.Evaluation) error { txn := s.db.Txn(true) defer txn.Abort() err := s.UpsertEvalsTxn(index, evals, txn) if err == nil { txn.Commit() } return err } // UpsertEvals is used to upsert a set of evaluations, like UpsertEvals // but in a transaction. Useful for when making multiple modifications atomically func (s *StateStore) UpsertEvalsTxn(index uint64, evals []*structs.Evaluation, txn Txn) error { // Do a nested upsert jobs := make(map[structs.NamespacedID]string, len(evals)) for _, eval := range evals { if err := s.nestedUpsertEval(txn, index, eval); err != nil { return err } tuple := structs.NamespacedID{ ID: eval.JobID, Namespace: eval.Namespace, } jobs[tuple] = "" } // Set the job's status if err := s.setJobStatuses(index, txn, jobs, false); err != nil { return fmt.Errorf("setting job status failed: %v", err) } return nil } // nestedUpsertEvaluation is used to nest an evaluation upsert within a transaction func (s *StateStore) nestedUpsertEval(txn *memdb.Txn, index uint64, eval *structs.Evaluation) error { // Lookup the evaluation existing, err := txn.First("evals", "id", eval.ID) if err != nil { return fmt.Errorf("eval lookup failed: %v", err) } // Update the indexes if existing != nil { eval.CreateIndex = existing.(*structs.Evaluation).CreateIndex eval.ModifyIndex = index } else { eval.CreateIndex = index eval.ModifyIndex = index } // Update the job summary summaryRaw, err := txn.First("job_summary", "id", eval.Namespace, eval.JobID) if err != nil { return fmt.Errorf("job summary lookup failed: %v", err) } if summaryRaw != nil { js := summaryRaw.(*structs.JobSummary).Copy() hasSummaryChanged := false for tg, num := range eval.QueuedAllocations { if summary, ok := js.Summary[tg]; ok { if summary.Queued != num { summary.Queued = num js.Summary[tg] = summary hasSummaryChanged = true } } else { s.logger.Error("unable to update queued for job and task group", "job_id", eval.JobID, "task_group", tg, "namespace", eval.Namespace) } } // Insert the job summary if hasSummaryChanged { js.ModifyIndex = index if err := txn.Insert("job_summary", js); err != nil { return fmt.Errorf("job summary insert failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } } } // Check if the job has any blocked evaluations and cancel them if eval.Status == structs.EvalStatusComplete && len(eval.FailedTGAllocs) == 0 { // Get the blocked evaluation for a job if it exists iter, err := txn.Get("evals", "job", eval.Namespace, eval.JobID, structs.EvalStatusBlocked) if err != nil { return fmt.Errorf("failed to get blocked evals for job %q in namespace %q: %v", eval.JobID, eval.Namespace, err) } var blocked []*structs.Evaluation for { raw := iter.Next() if raw == nil { break } blocked = append(blocked, raw.(*structs.Evaluation)) } // Go through and update the evals for _, eval := range blocked { newEval := eval.Copy() newEval.Status = structs.EvalStatusCancelled newEval.StatusDescription = fmt.Sprintf("evaluation %q successful", newEval.ID) newEval.ModifyIndex = index if err := txn.Insert("evals", newEval); err != nil { return fmt.Errorf("eval insert failed: %v", err) } } } // Insert the eval if err := txn.Insert("evals", eval); err != nil { return fmt.Errorf("eval insert failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"evals", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } return nil } // updateEvalModifyIndex is used to update the modify index of an evaluation that has been // through a scheduler pass. This is done as part of plan apply. It ensures that when a subsequent // scheduler workers process a re-queued evaluation it sees any partial updates from the plan apply. func (s *StateStore) updateEvalModifyIndex(txn *memdb.Txn, index uint64, evalID string) error { // Lookup the evaluation existing, err := txn.First("evals", "id", evalID) if err != nil { return fmt.Errorf("eval lookup failed: %v", err) } if existing == nil { s.logger.Error("unable to find eval", "eval_id", evalID) return fmt.Errorf("unable to find eval id %q", evalID) } eval := existing.(*structs.Evaluation).Copy() // Update the indexes eval.ModifyIndex = index // Insert the eval if err := txn.Insert("evals", eval); err != nil { return fmt.Errorf("eval insert failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"evals", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } return nil } // DeleteEval is used to delete an evaluation func (s *StateStore) DeleteEval(index uint64, evals []string, allocs []string) error { txn := s.db.Txn(true) defer txn.Abort() jobs := make(map[structs.NamespacedID]string, len(evals)) for _, eval := range evals { existing, err := txn.First("evals", "id", eval) if err != nil { return fmt.Errorf("eval lookup failed: %v", err) } if existing == nil { continue } if err := txn.Delete("evals", existing); err != nil { return fmt.Errorf("eval delete failed: %v", err) } eval := existing.(*structs.Evaluation) tuple := structs.NamespacedID{ ID: eval.JobID, Namespace: eval.Namespace, } jobs[tuple] = "" } for _, alloc := range allocs { raw, err := txn.First("allocs", "id", alloc) if err != nil { return fmt.Errorf("alloc lookup failed: %v", err) } if raw == nil { continue } if err := txn.Delete("allocs", raw); err != nil { return fmt.Errorf("alloc delete failed: %v", err) } } // Update the indexes if err := txn.Insert("index", &IndexEntry{"evals", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } // Set the job's status if err := s.setJobStatuses(index, txn, jobs, true); err != nil { return fmt.Errorf("setting job status failed: %v", err) } txn.Commit() return nil } // EvalByID is used to lookup an eval by its ID func (s *StateStore) EvalByID(ws memdb.WatchSet, id string) (*structs.Evaluation, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("evals", "id", id) if err != nil { return nil, fmt.Errorf("eval lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.Evaluation), nil } return nil, nil } // EvalsByIDPrefix is used to lookup evaluations by prefix in a particular // namespace func (s *StateStore) EvalsByIDPrefix(ws memdb.WatchSet, namespace, id string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Get an iterator over all evals by the id prefix iter, err := txn.Get("evals", "id_prefix", id) if err != nil { return nil, fmt.Errorf("eval lookup failed: %v", err) } ws.Add(iter.WatchCh()) // Wrap the iterator in a filter wrap := memdb.NewFilterIterator(iter, evalNamespaceFilter(namespace)) return wrap, nil } // evalNamespaceFilter returns a filter function that filters all evaluations // not in the given namespace. func evalNamespaceFilter(namespace string) func(interface{}) bool { return func(raw interface{}) bool { eval, ok := raw.(*structs.Evaluation) if !ok { return true } return eval.Namespace != namespace } } // EvalsByJob returns all the evaluations by job id func (s *StateStore) EvalsByJob(ws memdb.WatchSet, namespace, jobID string) ([]*structs.Evaluation, error) { txn := s.db.Txn(false) // Get an iterator over the node allocations iter, err := txn.Get("evals", "job_prefix", namespace, jobID) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out []*structs.Evaluation for { raw := iter.Next() if raw == nil { break } e := raw.(*structs.Evaluation) // Filter non-exact matches if e.JobID != jobID { continue } out = append(out, e) } return out, nil } // Evals returns an iterator over all the evaluations func (s *StateStore) Evals(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire table iter, err := txn.Get("evals", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // EvalsByNamespace returns an iterator over all the evaluations in the given // namespace func (s *StateStore) EvalsByNamespace(ws memdb.WatchSet, namespace string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire table iter, err := txn.Get("evals", "namespace", namespace) if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // UpdateAllocsFromClient is used to update an allocation based on input // from a client. While the schedulers are the authority on the allocation for // most things, some updates are authoritative from the client. Specifically, // the desired state comes from the schedulers, while the actual state comes // from clients. func (s *StateStore) UpdateAllocsFromClient(index uint64, allocs []*structs.Allocation) error { txn := s.db.Txn(true) defer txn.Abort() // Handle each of the updated allocations for _, alloc := range allocs { if err := s.nestedUpdateAllocFromClient(txn, index, alloc); err != nil { return err } } // Update the indexes if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // nestedUpdateAllocFromClient is used to nest an update of an allocation with client status func (s *StateStore) nestedUpdateAllocFromClient(txn *memdb.Txn, index uint64, alloc *structs.Allocation) error { // Look for existing alloc existing, err := txn.First("allocs", "id", alloc.ID) if err != nil { return fmt.Errorf("alloc lookup failed: %v", err) } // Nothing to do if this does not exist if existing == nil { return nil } exist := existing.(*structs.Allocation) // Copy everything from the existing allocation copyAlloc := exist.Copy() // Pull in anything the client is the authority on copyAlloc.ClientStatus = alloc.ClientStatus copyAlloc.ClientDescription = alloc.ClientDescription copyAlloc.TaskStates = alloc.TaskStates // The client can only set its deployment health and timestamp, so just take // those if copyAlloc.DeploymentStatus != nil && alloc.DeploymentStatus != nil { oldHasHealthy := copyAlloc.DeploymentStatus.HasHealth() newHasHealthy := alloc.DeploymentStatus.HasHealth() // We got new health information from the client if newHasHealthy && (!oldHasHealthy || *copyAlloc.DeploymentStatus.Healthy != *alloc.DeploymentStatus.Healthy) { // Updated deployment health and timestamp copyAlloc.DeploymentStatus.Healthy = helper.BoolToPtr(*alloc.DeploymentStatus.Healthy) copyAlloc.DeploymentStatus.Timestamp = alloc.DeploymentStatus.Timestamp copyAlloc.DeploymentStatus.ModifyIndex = index } } else if alloc.DeploymentStatus != nil { // First time getting a deployment status so copy everything and just // set the index copyAlloc.DeploymentStatus = alloc.DeploymentStatus.Copy() copyAlloc.DeploymentStatus.ModifyIndex = index } // Update the modify index copyAlloc.ModifyIndex = index // Update the modify time copyAlloc.ModifyTime = alloc.ModifyTime if err := s.updateDeploymentWithAlloc(index, copyAlloc, exist, txn); err != nil { return fmt.Errorf("error updating deployment: %v", err) } if err := s.updateSummaryWithAlloc(index, copyAlloc, exist, txn); err != nil { return fmt.Errorf("error updating job summary: %v", err) } if err := s.updateEntWithAlloc(index, copyAlloc, exist, txn); err != nil { return err } // Update the allocation if err := txn.Insert("allocs", copyAlloc); err != nil { return fmt.Errorf("alloc insert failed: %v", err) } // Set the job's status forceStatus := "" if !copyAlloc.TerminalStatus() { forceStatus = structs.JobStatusRunning } tuple := structs.NamespacedID{ ID: exist.JobID, Namespace: exist.Namespace, } jobs := map[structs.NamespacedID]string{tuple: forceStatus} if err := s.setJobStatuses(index, txn, jobs, false); err != nil { return fmt.Errorf("setting job status failed: %v", err) } return nil } // UpsertAllocs is used to evict a set of allocations and allocate new ones at // the same time. func (s *StateStore) UpsertAllocs(index uint64, allocs []*structs.Allocation) error { txn := s.db.Txn(true) defer txn.Abort() if err := s.upsertAllocsImpl(index, allocs, txn); err != nil { return err } txn.Commit() return nil } // upsertAllocs is the actual implementation of UpsertAllocs so that it may be // used with an existing transaction. func (s *StateStore) upsertAllocsImpl(index uint64, allocs []*structs.Allocation, txn *memdb.Txn) error { // Handle the allocations jobs := make(map[structs.NamespacedID]string, 1) for _, alloc := range allocs { existing, err := txn.First("allocs", "id", alloc.ID) if err != nil { return fmt.Errorf("alloc lookup failed: %v", err) } exist, _ := existing.(*structs.Allocation) if exist == nil { alloc.CreateIndex = index alloc.ModifyIndex = index alloc.AllocModifyIndex = index if alloc.DeploymentStatus != nil { alloc.DeploymentStatus.ModifyIndex = index } // Issue https://github.com/hashicorp/nomad/issues/2583 uncovered // the a race between a forced garbage collection and the scheduler // marking an allocation as terminal. The issue is that the // allocation from the scheduler has its job normalized and the FSM // will only denormalize if the allocation is not terminal. However // if the allocation is garbage collected, that will result in a // allocation being upserted for the first time without a job // attached. By returning an error here, it will cause the FSM to // error, causing the plan_apply to error and thus causing the // evaluation to be failed. This will force an index refresh that // should solve this issue. if alloc.Job == nil { return fmt.Errorf("attempting to upsert allocation %q without a job", alloc.ID) } } else { alloc.CreateIndex = exist.CreateIndex alloc.ModifyIndex = index alloc.AllocModifyIndex = index // Keep the clients task states alloc.TaskStates = exist.TaskStates // If the scheduler is marking this allocation as lost we do not // want to reuse the status of the existing allocation. if alloc.ClientStatus != structs.AllocClientStatusLost { alloc.ClientStatus = exist.ClientStatus alloc.ClientDescription = exist.ClientDescription } // The job has been denormalized so re-attach the original job if alloc.Job == nil { alloc.Job = exist.Job } } // OPTIMIZATION: // These should be given a map of new to old allocation and the updates // should be one on all changes. The current implementation causes O(n) // lookups/copies/insertions rather than O(1) if err := s.updateDeploymentWithAlloc(index, alloc, exist, txn); err != nil { return fmt.Errorf("error updating deployment: %v", err) } if err := s.updateSummaryWithAlloc(index, alloc, exist, txn); err != nil { return fmt.Errorf("error updating job summary: %v", err) } if err := s.updateEntWithAlloc(index, alloc, exist, txn); err != nil { return err } if err := txn.Insert("allocs", alloc); err != nil { return fmt.Errorf("alloc insert failed: %v", err) } if alloc.PreviousAllocation != "" { prevAlloc, err := txn.First("allocs", "id", alloc.PreviousAllocation) if err != nil { return fmt.Errorf("alloc lookup failed: %v", err) } existingPrevAlloc, _ := prevAlloc.(*structs.Allocation) if existingPrevAlloc != nil { prevAllocCopy := existingPrevAlloc.Copy() prevAllocCopy.NextAllocation = alloc.ID prevAllocCopy.ModifyIndex = index if err := txn.Insert("allocs", prevAllocCopy); err != nil { return fmt.Errorf("alloc insert failed: %v", err) } } } // If the allocation is running, force the job to running status. forceStatus := "" if !alloc.TerminalStatus() { forceStatus = structs.JobStatusRunning } tuple := structs.NamespacedID{ ID: alloc.JobID, Namespace: alloc.Namespace, } jobs[tuple] = forceStatus } // Update the indexes if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } // Set the job's status if err := s.setJobStatuses(index, txn, jobs, false); err != nil { return fmt.Errorf("setting job status failed: %v", err) } return nil } // UpdateAllocsDesiredTransitions is used to update a set of allocations // desired transitions. func (s *StateStore) UpdateAllocsDesiredTransitions(index uint64, allocs map[string]*structs.DesiredTransition, evals []*structs.Evaluation) error { txn := s.db.Txn(true) defer txn.Abort() // Handle each of the updated allocations for id, transition := range allocs { if err := s.nestedUpdateAllocDesiredTransition(txn, index, id, transition); err != nil { return err } } for _, eval := range evals { if err := s.nestedUpsertEval(txn, index, eval); err != nil { return err } } // Update the indexes if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // nestedUpdateAllocDesiredTransition is used to nest an update of an // allocations desired transition func (s *StateStore) nestedUpdateAllocDesiredTransition( txn *memdb.Txn, index uint64, allocID string, transition *structs.DesiredTransition) error { // Look for existing alloc existing, err := txn.First("allocs", "id", allocID) if err != nil { return fmt.Errorf("alloc lookup failed: %v", err) } // Nothing to do if this does not exist if existing == nil { return nil } exist := existing.(*structs.Allocation) // Copy everything from the existing allocation copyAlloc := exist.Copy() // Merge the desired transitions copyAlloc.DesiredTransition.Merge(transition) // Update the modify index copyAlloc.ModifyIndex = index // Update the allocation if err := txn.Insert("allocs", copyAlloc); err != nil { return fmt.Errorf("alloc insert failed: %v", err) } return nil } // AllocByID is used to lookup an allocation by its ID func (s *StateStore) AllocByID(ws memdb.WatchSet, id string) (*structs.Allocation, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("allocs", "id", id) if err != nil { return nil, fmt.Errorf("alloc lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.Allocation), nil } return nil, nil } // AllocsByIDPrefix is used to lookup allocs by prefix func (s *StateStore) AllocsByIDPrefix(ws memdb.WatchSet, namespace, id string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("allocs", "id_prefix", id) if err != nil { return nil, fmt.Errorf("alloc lookup failed: %v", err) } ws.Add(iter.WatchCh()) // Wrap the iterator in a filter wrap := memdb.NewFilterIterator(iter, allocNamespaceFilter(namespace)) return wrap, nil } // allocNamespaceFilter returns a filter function that filters all allocations // not in the given namespace. func allocNamespaceFilter(namespace string) func(interface{}) bool { return func(raw interface{}) bool { alloc, ok := raw.(*structs.Allocation) if !ok { return true } return alloc.Namespace != namespace } } // AllocsByNode returns all the allocations by node func (s *StateStore) AllocsByNode(ws memdb.WatchSet, node string) ([]*structs.Allocation, error) { txn := s.db.Txn(false) // Get an iterator over the node allocations, using only the // node prefix which ignores the terminal status iter, err := txn.Get("allocs", "node_prefix", node) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out []*structs.Allocation for { raw := iter.Next() if raw == nil { break } out = append(out, raw.(*structs.Allocation)) } return out, nil } // AllocsByNode returns all the allocations by node and terminal status func (s *StateStore) AllocsByNodeTerminal(ws memdb.WatchSet, node string, terminal bool) ([]*structs.Allocation, error) { txn := s.db.Txn(false) // Get an iterator over the node allocations iter, err := txn.Get("allocs", "node", node, terminal) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out []*structs.Allocation for { raw := iter.Next() if raw == nil { break } out = append(out, raw.(*structs.Allocation)) } return out, nil } // AllocsByJob returns all the allocations by job id func (s *StateStore) AllocsByJob(ws memdb.WatchSet, namespace, jobID string, all bool) ([]*structs.Allocation, error) { txn := s.db.Txn(false) // Get the job var job *structs.Job rawJob, err := txn.First("jobs", "id", namespace, jobID) if err != nil { return nil, err } if rawJob != nil { job = rawJob.(*structs.Job) } // Get an iterator over the node allocations iter, err := txn.Get("allocs", "job", namespace, jobID) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out []*structs.Allocation for { raw := iter.Next() if raw == nil { break } alloc := raw.(*structs.Allocation) // If the allocation belongs to a job with the same ID but a different // create index and we are not getting all the allocations whose Jobs // matches the same Job ID then we skip it if !all && job != nil && alloc.Job.CreateIndex != job.CreateIndex { continue } out = append(out, raw.(*structs.Allocation)) } return out, nil } // AllocsByEval returns all the allocations by eval id func (s *StateStore) AllocsByEval(ws memdb.WatchSet, evalID string) ([]*structs.Allocation, error) { txn := s.db.Txn(false) // Get an iterator over the eval allocations iter, err := txn.Get("allocs", "eval", evalID) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out []*structs.Allocation for { raw := iter.Next() if raw == nil { break } out = append(out, raw.(*structs.Allocation)) } return out, nil } // AllocsByDeployment returns all the allocations by deployment id func (s *StateStore) AllocsByDeployment(ws memdb.WatchSet, deploymentID string) ([]*structs.Allocation, error) { txn := s.db.Txn(false) // Get an iterator over the deployments allocations iter, err := txn.Get("allocs", "deployment", deploymentID) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out []*structs.Allocation for { raw := iter.Next() if raw == nil { break } out = append(out, raw.(*structs.Allocation)) } return out, nil } // Allocs returns an iterator over all the evaluations func (s *StateStore) Allocs(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire table iter, err := txn.Get("allocs", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // AllocsByNamespace returns an iterator over all the allocations in the // namespace func (s *StateStore) AllocsByNamespace(ws memdb.WatchSet, namespace string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) return s.allocsByNamespaceImpl(ws, txn, namespace) } // allocsByNamespaceImpl returns an iterator over all the allocations in the // namespace func (s *StateStore) allocsByNamespaceImpl(ws memdb.WatchSet, txn *memdb.Txn, namespace string) (memdb.ResultIterator, error) { // Walk the entire table iter, err := txn.Get("allocs", "namespace", namespace) if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // UpsertVaultAccessors is used to register a set of Vault Accessors func (s *StateStore) UpsertVaultAccessor(index uint64, accessors []*structs.VaultAccessor) error { txn := s.db.Txn(true) defer txn.Abort() for _, accessor := range accessors { // Set the create index accessor.CreateIndex = index // Insert the accessor if err := txn.Insert("vault_accessors", accessor); err != nil { return fmt.Errorf("accessor insert failed: %v", err) } } if err := txn.Insert("index", &IndexEntry{"vault_accessors", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // DeleteVaultAccessors is used to delete a set of Vault Accessors func (s *StateStore) DeleteVaultAccessors(index uint64, accessors []*structs.VaultAccessor) error { txn := s.db.Txn(true) defer txn.Abort() // Lookup the accessor for _, accessor := range accessors { // Delete the accessor if err := txn.Delete("vault_accessors", accessor); err != nil { return fmt.Errorf("accessor delete failed: %v", err) } } if err := txn.Insert("index", &IndexEntry{"vault_accessors", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // VaultAccessor returns the given Vault accessor func (s *StateStore) VaultAccessor(ws memdb.WatchSet, accessor string) (*structs.VaultAccessor, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("vault_accessors", "id", accessor) if err != nil { return nil, fmt.Errorf("accessor lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.VaultAccessor), nil } return nil, nil } // VaultAccessors returns an iterator of Vault accessors. func (s *StateStore) VaultAccessors(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("vault_accessors", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // VaultAccessorsByAlloc returns all the Vault accessors by alloc id func (s *StateStore) VaultAccessorsByAlloc(ws memdb.WatchSet, allocID string) ([]*structs.VaultAccessor, error) { txn := s.db.Txn(false) // Get an iterator over the accessors iter, err := txn.Get("vault_accessors", "alloc_id", allocID) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out []*structs.VaultAccessor for { raw := iter.Next() if raw == nil { break } out = append(out, raw.(*structs.VaultAccessor)) } return out, nil } // VaultAccessorsByNode returns all the Vault accessors by node id func (s *StateStore) VaultAccessorsByNode(ws memdb.WatchSet, nodeID string) ([]*structs.VaultAccessor, error) { txn := s.db.Txn(false) // Get an iterator over the accessors iter, err := txn.Get("vault_accessors", "node_id", nodeID) if err != nil { return nil, err } ws.Add(iter.WatchCh()) var out []*structs.VaultAccessor for { raw := iter.Next() if raw == nil { break } out = append(out, raw.(*structs.VaultAccessor)) } return out, nil } // UpdateDeploymentStatus is used to make deployment status updates and // potentially make a evaluation func (s *StateStore) UpdateDeploymentStatus(index uint64, req *structs.DeploymentStatusUpdateRequest) error { txn := s.db.Txn(true) defer txn.Abort() if err := s.updateDeploymentStatusImpl(index, req.DeploymentUpdate, txn); err != nil { return err } // Upsert the job if necessary if req.Job != nil { if err := s.upsertJobImpl(index, req.Job, false, txn); err != nil { return err } } // Upsert the optional eval if req.Eval != nil { if err := s.nestedUpsertEval(txn, index, req.Eval); err != nil { return err } } txn.Commit() return nil } // updateDeploymentStatusImpl is used to make deployment status updates func (s *StateStore) updateDeploymentStatusImpl(index uint64, u *structs.DeploymentStatusUpdate, txn *memdb.Txn) error { // Retrieve deployment ws := memdb.NewWatchSet() deployment, err := s.deploymentByIDImpl(ws, u.DeploymentID, txn) if err != nil { return err } else if deployment == nil { return fmt.Errorf("Deployment ID %q couldn't be updated as it does not exist", u.DeploymentID) } else if !deployment.Active() { return fmt.Errorf("Deployment %q has terminal status %q:", deployment.ID, deployment.Status) } // Apply the new status copy := deployment.Copy() copy.Status = u.Status copy.StatusDescription = u.StatusDescription copy.ModifyIndex = index // Insert the deployment if err := txn.Insert("deployment", copy); err != nil { return err } // Update the index if err := txn.Insert("index", &IndexEntry{"deployment", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } // If the deployment is being marked as complete, set the job to stable. if copy.Status == structs.DeploymentStatusSuccessful { if err := s.updateJobStabilityImpl(index, copy.Namespace, copy.JobID, copy.JobVersion, true, txn); err != nil { return fmt.Errorf("failed to update job stability: %v", err) } } return nil } // UpdateJobStability updates the stability of the given job and version to the // desired status. func (s *StateStore) UpdateJobStability(index uint64, namespace, jobID string, jobVersion uint64, stable bool) error { txn := s.db.Txn(true) defer txn.Abort() if err := s.updateJobStabilityImpl(index, namespace, jobID, jobVersion, stable, txn); err != nil { return err } txn.Commit() return nil } // updateJobStabilityImpl updates the stability of the given job and version func (s *StateStore) updateJobStabilityImpl(index uint64, namespace, jobID string, jobVersion uint64, stable bool, txn *memdb.Txn) error { // Get the job that is referenced job, err := s.jobByIDAndVersionImpl(nil, namespace, jobID, jobVersion, txn) if err != nil { return err } // Has already been cleared, nothing to do if job == nil { return nil } // If the job already has the desired stability, nothing to do if job.Stable == stable { return nil } copy := job.Copy() copy.Stable = stable return s.upsertJobImpl(index, copy, true, txn) } // UpdateDeploymentPromotion is used to promote canaries in a deployment and // potentially make a evaluation func (s *StateStore) UpdateDeploymentPromotion(index uint64, req *structs.ApplyDeploymentPromoteRequest) error { txn := s.db.Txn(true) defer txn.Abort() // Retrieve deployment and ensure it is not terminal and is active ws := memdb.NewWatchSet() deployment, err := s.deploymentByIDImpl(ws, req.DeploymentID, txn) if err != nil { return err } else if deployment == nil { return fmt.Errorf("Deployment ID %q couldn't be updated as it does not exist", req.DeploymentID) } else if !deployment.Active() { return fmt.Errorf("Deployment %q has terminal status %q:", deployment.ID, deployment.Status) } // Retrieve effected allocations iter, err := txn.Get("allocs", "deployment", req.DeploymentID) if err != nil { return err } // groupIndex is a map of groups being promoted groupIndex := make(map[string]struct{}, len(req.Groups)) for _, g := range req.Groups { groupIndex[g] = struct{}{} } // canaryIndex is the set of placed canaries in the deployment canaryIndex := make(map[string]struct{}, len(deployment.TaskGroups)) for _, state := range deployment.TaskGroups { for _, c := range state.PlacedCanaries { canaryIndex[c] = struct{}{} } } // healthyCounts is a mapping of group to the number of healthy canaries healthyCounts := make(map[string]int, len(deployment.TaskGroups)) // promotable is the set of allocations that we can move from canary to // non-canary var promotable []*structs.Allocation for { raw := iter.Next() if raw == nil { break } alloc := raw.(*structs.Allocation) // Check that the alloc is a canary if _, ok := canaryIndex[alloc.ID]; !ok { continue } // Check that the canary is part of a group being promoted if _, ok := groupIndex[alloc.TaskGroup]; !req.All && !ok { continue } // Ensure the canaries are healthy if alloc.TerminalStatus() || !alloc.DeploymentStatus.IsHealthy() { continue } healthyCounts[alloc.TaskGroup]++ promotable = append(promotable, alloc) } // Determine if we have enough healthy allocations var unhealthyErr multierror.Error for tg, state := range deployment.TaskGroups { if _, ok := groupIndex[tg]; !req.All && !ok { continue } need := state.DesiredCanaries if need == 0 { continue } if have := healthyCounts[tg]; have < need { multierror.Append(&unhealthyErr, fmt.Errorf("Task group %q has %d/%d healthy allocations", tg, have, need)) } } if err := unhealthyErr.ErrorOrNil(); err != nil { return err } // Update deployment copy := deployment.Copy() copy.ModifyIndex = index for tg, status := range copy.TaskGroups { _, ok := groupIndex[tg] if !req.All && !ok { continue } status.Promoted = true } // If the deployment no longer needs promotion, update its status if !copy.RequiresPromotion() && copy.Status == structs.DeploymentStatusRunning { copy.StatusDescription = structs.DeploymentStatusDescriptionRunning } // Insert the deployment if err := s.upsertDeploymentImpl(index, copy, txn); err != nil { return err } // Upsert the optional eval if req.Eval != nil { if err := s.nestedUpsertEval(txn, index, req.Eval); err != nil { return err } } // For each promotable allocation remove the canary field for _, alloc := range promotable { promoted := alloc.Copy() promoted.DeploymentStatus.Canary = false promoted.DeploymentStatus.ModifyIndex = index promoted.ModifyIndex = index promoted.AllocModifyIndex = index if err := txn.Insert("allocs", promoted); err != nil { return fmt.Errorf("alloc insert failed: %v", err) } } // Update the alloc index if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // UpdateDeploymentAllocHealth is used to update the health of allocations as // part of the deployment and potentially make a evaluation func (s *StateStore) UpdateDeploymentAllocHealth(index uint64, req *structs.ApplyDeploymentAllocHealthRequest) error { txn := s.db.Txn(true) defer txn.Abort() // Retrieve deployment and ensure it is not terminal and is active ws := memdb.NewWatchSet() deployment, err := s.deploymentByIDImpl(ws, req.DeploymentID, txn) if err != nil { return err } else if deployment == nil { return fmt.Errorf("Deployment ID %q couldn't be updated as it does not exist", req.DeploymentID) } else if !deployment.Active() { return fmt.Errorf("Deployment %q has terminal status %q:", deployment.ID, deployment.Status) } // Update the health status of each allocation if total := len(req.HealthyAllocationIDs) + len(req.UnhealthyAllocationIDs); total != 0 { setAllocHealth := func(id string, healthy bool, ts time.Time) error { existing, err := txn.First("allocs", "id", id) if err != nil { return fmt.Errorf("alloc %q lookup failed: %v", id, err) } if existing == nil { return fmt.Errorf("unknown alloc %q", id) } old := existing.(*structs.Allocation) if old.DeploymentID != req.DeploymentID { return fmt.Errorf("alloc %q is not part of deployment %q", id, req.DeploymentID) } // Set the health copy := old.Copy() if copy.DeploymentStatus == nil { copy.DeploymentStatus = &structs.AllocDeploymentStatus{} } copy.DeploymentStatus.Healthy = helper.BoolToPtr(healthy) copy.DeploymentStatus.Timestamp = ts copy.DeploymentStatus.ModifyIndex = index copy.ModifyIndex = index if err := s.updateDeploymentWithAlloc(index, copy, old, txn); err != nil { return fmt.Errorf("error updating deployment: %v", err) } if err := txn.Insert("allocs", copy); err != nil { return fmt.Errorf("alloc insert failed: %v", err) } return nil } for _, id := range req.HealthyAllocationIDs { if err := setAllocHealth(id, true, req.Timestamp); err != nil { return err } } for _, id := range req.UnhealthyAllocationIDs { if err := setAllocHealth(id, false, req.Timestamp); err != nil { return err } } // Update the indexes if err := txn.Insert("index", &IndexEntry{"allocs", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } } // Update the deployment status as needed. if req.DeploymentUpdate != nil { if err := s.updateDeploymentStatusImpl(index, req.DeploymentUpdate, txn); err != nil { return err } } // Upsert the job if necessary if req.Job != nil { if err := s.upsertJobImpl(index, req.Job, false, txn); err != nil { return err } } // Upsert the optional eval if req.Eval != nil { if err := s.nestedUpsertEval(txn, index, req.Eval); err != nil { return err } } txn.Commit() return nil } // LastIndex returns the greatest index value for all indexes func (s *StateStore) LatestIndex() (uint64, error) { indexes, err := s.Indexes() if err != nil { return 0, err } var max uint64 = 0 for { raw := indexes.Next() if raw == nil { break } // Prepare the request struct idx := raw.(*IndexEntry) // Determine the max if idx.Value > max { max = idx.Value } } return max, nil } // Index finds the matching index value func (s *StateStore) Index(name string) (uint64, error) { txn := s.db.Txn(false) // Lookup the first matching index out, err := txn.First("index", "id", name) if err != nil { return 0, err } if out == nil { return 0, nil } return out.(*IndexEntry).Value, nil } // RemoveIndex is a helper method to remove an index for testing purposes func (s *StateStore) RemoveIndex(name string) error { txn := s.db.Txn(true) defer txn.Abort() if _, err := txn.DeleteAll("index", "id", name); err != nil { return err } txn.Commit() return nil } // Indexes returns an iterator over all the indexes func (s *StateStore) Indexes() (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire nodes table iter, err := txn.Get("index", "id") if err != nil { return nil, err } return iter, nil } // ReconcileJobSummaries re-creates summaries for all jobs present in the state // store func (s *StateStore) ReconcileJobSummaries(index uint64) error { txn := s.db.Txn(true) defer txn.Abort() // Get all the jobs iter, err := txn.Get("jobs", "id") if err != nil { return err } // COMPAT: Remove after 0.11 // Iterate over jobs to build a list of parent jobs and their children parentMap := make(map[string][]*structs.Job) for { rawJob := iter.Next() if rawJob == nil { break } job := rawJob.(*structs.Job) if job.ParentID != "" { children := parentMap[job.ParentID] children = append(children, job) parentMap[job.ParentID] = children } } // Get all the jobs again iter, err = txn.Get("jobs", "id") if err != nil { return err } for { rawJob := iter.Next() if rawJob == nil { break } job := rawJob.(*structs.Job) if job.IsParameterized() || job.IsPeriodic() { // COMPAT: Remove after 0.11 // The following block of code fixes incorrect child summaries due to a bug // See https://github.com/hashicorp/nomad/issues/3886 for details rawSummary, err := txn.First("job_summary", "id", job.Namespace, job.ID) if err != nil { return err } if rawSummary == nil { continue } oldSummary := rawSummary.(*structs.JobSummary) // Create an empty summary summary := &structs.JobSummary{ JobID: job.ID, Namespace: job.Namespace, Summary: make(map[string]structs.TaskGroupSummary), Children: &structs.JobChildrenSummary{}, } // Iterate over children of this job if any to fix summary counts children := parentMap[job.ID] for _, childJob := range children { switch childJob.Status { case structs.JobStatusPending: summary.Children.Pending++ case structs.JobStatusDead: summary.Children.Dead++ case structs.JobStatusRunning: summary.Children.Running++ } } // Insert the job summary if its different if !reflect.DeepEqual(summary, oldSummary) { // Set the create index of the summary same as the job's create index // and the modify index to the current index summary.CreateIndex = job.CreateIndex summary.ModifyIndex = index if err := txn.Insert("job_summary", summary); err != nil { return fmt.Errorf("error inserting job summary: %v", err) } } // Done with handling a parent job, continue to next continue } // Create a job summary for the job summary := &structs.JobSummary{ JobID: job.ID, Namespace: job.Namespace, Summary: make(map[string]structs.TaskGroupSummary), } for _, tg := range job.TaskGroups { summary.Summary[tg.Name] = structs.TaskGroupSummary{} } // Find all the allocations for the jobs iterAllocs, err := txn.Get("allocs", "job", job.Namespace, job.ID) if err != nil { return err } // Calculate the summary for the job for { rawAlloc := iterAllocs.Next() if rawAlloc == nil { break } alloc := rawAlloc.(*structs.Allocation) // Ignore the allocation if it doesn't belong to the currently // registered job. The allocation is checked because of issue #2304 if alloc.Job == nil || alloc.Job.CreateIndex != job.CreateIndex { continue } tg := summary.Summary[alloc.TaskGroup] switch alloc.ClientStatus { case structs.AllocClientStatusFailed: tg.Failed += 1 case structs.AllocClientStatusLost: tg.Lost += 1 case structs.AllocClientStatusComplete: tg.Complete += 1 case structs.AllocClientStatusRunning: tg.Running += 1 case structs.AllocClientStatusPending: tg.Starting += 1 default: s.logger.Error("invalid client status set on allocation", "client_status", alloc.ClientStatus, "alloc_id", alloc.ID) } summary.Summary[alloc.TaskGroup] = tg } // Set the create index of the summary same as the job's create index // and the modify index to the current index summary.CreateIndex = job.CreateIndex summary.ModifyIndex = index // Insert the job summary if err := txn.Insert("job_summary", summary); err != nil { return fmt.Errorf("error inserting job summary: %v", err) } } // Update the indexes table for job summary if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // setJobStatuses is a helper for calling setJobStatus on multiple jobs by ID. // It takes a map of job IDs to an optional forceStatus string. It returns an // error if the job doesn't exist or setJobStatus fails. func (s *StateStore) setJobStatuses(index uint64, txn *memdb.Txn, jobs map[structs.NamespacedID]string, evalDelete bool) error { for tuple, forceStatus := range jobs { existing, err := txn.First("jobs", "id", tuple.Namespace, tuple.ID) if err != nil { return fmt.Errorf("job lookup failed: %v", err) } if existing == nil { continue } if err := s.setJobStatus(index, txn, existing.(*structs.Job), evalDelete, forceStatus); err != nil { return err } } return nil } // setJobStatus sets the status of the job by looking up associated evaluations // and allocations. evalDelete should be set to true if setJobStatus is being // called because an evaluation is being deleted (potentially because of garbage // collection). If forceStatus is non-empty, the job's status will be set to the // passed status. func (s *StateStore) setJobStatus(index uint64, txn *memdb.Txn, job *structs.Job, evalDelete bool, forceStatus string) error { // Capture the current status so we can check if there is a change oldStatus := job.Status if index == job.CreateIndex { oldStatus = "" } newStatus := forceStatus // If forceStatus is not set, compute the jobs status. if forceStatus == "" { var err error newStatus, err = s.getJobStatus(txn, job, evalDelete) if err != nil { return err } } // Fast-path if nothing has changed. if oldStatus == newStatus { return nil } // Copy and update the existing job updated := job.Copy() updated.Status = newStatus updated.ModifyIndex = index // Insert the job if err := txn.Insert("jobs", updated); err != nil { return fmt.Errorf("job insert failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"jobs", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } // Update the children summary if updated.ParentID != "" { // Try to update the summary of the parent job summary summaryRaw, err := txn.First("job_summary", "id", updated.Namespace, updated.ParentID) if err != nil { return fmt.Errorf("unable to retrieve summary for parent job: %v", err) } // Only continue if the summary exists. It could not exist if the parent // job was removed if summaryRaw != nil { existing := summaryRaw.(*structs.JobSummary) pSummary := existing.Copy() if pSummary.Children == nil { pSummary.Children = new(structs.JobChildrenSummary) } // Determine the transition and update the correct fields children := pSummary.Children // Decrement old status if oldStatus != "" { switch oldStatus { case structs.JobStatusPending: children.Pending-- case structs.JobStatusRunning: children.Running-- case structs.JobStatusDead: children.Dead-- default: return fmt.Errorf("unknown old job status %q", oldStatus) } } // Increment new status switch newStatus { case structs.JobStatusPending: children.Pending++ case structs.JobStatusRunning: children.Running++ case structs.JobStatusDead: children.Dead++ default: return fmt.Errorf("unknown new job status %q", newStatus) } // Update the index pSummary.ModifyIndex = index // Insert the summary if err := txn.Insert("job_summary", pSummary); err != nil { return fmt.Errorf("job summary insert failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } } } return nil } func (s *StateStore) getJobStatus(txn *memdb.Txn, job *structs.Job, evalDelete bool) (string, error) { // System, Periodic and Parameterized jobs are running until explicitly // stopped if job.Type == structs.JobTypeSystem || job.IsParameterized() || job.IsPeriodic() { if job.Stop { return structs.JobStatusDead, nil } return structs.JobStatusRunning, nil } allocs, err := txn.Get("allocs", "job", job.Namespace, job.ID) if err != nil { return "", err } // If there is a non-terminal allocation, the job is running. hasAlloc := false for alloc := allocs.Next(); alloc != nil; alloc = allocs.Next() { hasAlloc = true if !alloc.(*structs.Allocation).TerminalStatus() { return structs.JobStatusRunning, nil } } evals, err := txn.Get("evals", "job_prefix", job.Namespace, job.ID) if err != nil { return "", err } hasEval := false for raw := evals.Next(); raw != nil; raw = evals.Next() { e := raw.(*structs.Evaluation) // Filter non-exact matches if e.JobID != job.ID { continue } hasEval = true if !e.TerminalStatus() { return structs.JobStatusPending, nil } } // The job is dead if all the allocations and evals are terminal or if there // are no evals because of garbage collection. if evalDelete || hasEval || hasAlloc { return structs.JobStatusDead, nil } return structs.JobStatusPending, nil } // updateSummaryWithJob creates or updates job summaries when new jobs are // upserted or existing ones are updated func (s *StateStore) updateSummaryWithJob(index uint64, job *structs.Job, txn *memdb.Txn) error { // Update the job summary summaryRaw, err := txn.First("job_summary", "id", job.Namespace, job.ID) if err != nil { return fmt.Errorf("job summary lookup failed: %v", err) } // Get the summary or create if necessary var summary *structs.JobSummary hasSummaryChanged := false if summaryRaw != nil { summary = summaryRaw.(*structs.JobSummary).Copy() } else { summary = &structs.JobSummary{ JobID: job.ID, Namespace: job.Namespace, Summary: make(map[string]structs.TaskGroupSummary), Children: new(structs.JobChildrenSummary), CreateIndex: index, } hasSummaryChanged = true } for _, tg := range job.TaskGroups { if _, ok := summary.Summary[tg.Name]; !ok { newSummary := structs.TaskGroupSummary{ Complete: 0, Failed: 0, Running: 0, Starting: 0, } summary.Summary[tg.Name] = newSummary hasSummaryChanged = true } } // The job summary has changed, so update the modify index. if hasSummaryChanged { summary.ModifyIndex = index // Update the indexes table for job summary if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } if err := txn.Insert("job_summary", summary); err != nil { return err } } return nil } // updateDeploymentWithAlloc is used to update the deployment state associated // with the given allocation. The passed alloc may be updated if the deployment // status has changed to capture the modify index at which it has changed. func (s *StateStore) updateDeploymentWithAlloc(index uint64, alloc, existing *structs.Allocation, txn *memdb.Txn) error { // Nothing to do if the allocation is not associated with a deployment if alloc.DeploymentID == "" { return nil } // Get the deployment ws := memdb.NewWatchSet() deployment, err := s.deploymentByIDImpl(ws, alloc.DeploymentID, txn) if err != nil { return err } if deployment == nil { return nil } // Retrieve the deployment state object _, ok := deployment.TaskGroups[alloc.TaskGroup] if !ok { // If the task group isn't part of the deployment, the task group wasn't // part of a rolling update so nothing to do return nil } // Do not modify in-place. Instead keep track of what must be done placed := 0 healthy := 0 unhealthy := 0 // If there was no existing allocation, this is a placement and we increment // the placement existingHealthSet := existing != nil && existing.DeploymentStatus.HasHealth() allocHealthSet := alloc.DeploymentStatus.HasHealth() if existing == nil || existing.DeploymentID != alloc.DeploymentID { placed++ } else if !existingHealthSet && allocHealthSet { if *alloc.DeploymentStatus.Healthy { healthy++ } else { unhealthy++ } } else if existingHealthSet && allocHealthSet { // See if it has gone from healthy to unhealthy if *existing.DeploymentStatus.Healthy && !*alloc.DeploymentStatus.Healthy { healthy-- unhealthy++ } } // Nothing to do if placed == 0 && healthy == 0 && unhealthy == 0 { return nil } // Update the allocation's deployment status modify index if alloc.DeploymentStatus != nil && healthy+unhealthy != 0 { alloc.DeploymentStatus.ModifyIndex = index } // Create a copy of the deployment object deploymentCopy := deployment.Copy() deploymentCopy.ModifyIndex = index state := deploymentCopy.TaskGroups[alloc.TaskGroup] state.PlacedAllocs += placed state.HealthyAllocs += healthy state.UnhealthyAllocs += unhealthy // Update the progress deadline if pd := state.ProgressDeadline; pd != 0 { // If we are the first placed allocation for the deployment start the progress deadline. if placed != 0 && state.RequireProgressBy.IsZero() { // Use modify time instead of create time because we may in-place // update the allocation to be part of a new deployment. state.RequireProgressBy = time.Unix(0, alloc.ModifyTime).Add(pd) } else if healthy != 0 { if d := alloc.DeploymentStatus.Timestamp.Add(pd); d.After(state.RequireProgressBy) { state.RequireProgressBy = d } } } // Upsert the deployment if err := s.upsertDeploymentImpl(index, deploymentCopy, txn); err != nil { return err } return nil } // updateSummaryWithAlloc updates the job summary when allocations are updated // or inserted func (s *StateStore) updateSummaryWithAlloc(index uint64, alloc *structs.Allocation, existingAlloc *structs.Allocation, txn *memdb.Txn) error { // We don't have to update the summary if the job is missing if alloc.Job == nil { return nil } summaryRaw, err := txn.First("job_summary", "id", alloc.Namespace, alloc.JobID) if err != nil { return fmt.Errorf("unable to lookup job summary for job id %q in namespace %q: %v", alloc.JobID, alloc.Namespace, err) } if summaryRaw == nil { // Check if the job is de-registered rawJob, err := txn.First("jobs", "id", alloc.Namespace, alloc.JobID) if err != nil { return fmt.Errorf("unable to query job: %v", err) } // If the job is de-registered then we skip updating it's summary if rawJob == nil { return nil } return fmt.Errorf("job summary for job %q in namespace %q is not present", alloc.JobID, alloc.Namespace) } // Get a copy of the existing summary jobSummary := summaryRaw.(*structs.JobSummary).Copy() // Not updating the job summary because the allocation doesn't belong to the // currently registered job if jobSummary.CreateIndex != alloc.Job.CreateIndex { return nil } tgSummary, ok := jobSummary.Summary[alloc.TaskGroup] if !ok { return fmt.Errorf("unable to find task group in the job summary: %v", alloc.TaskGroup) } summaryChanged := false if existingAlloc == nil { switch alloc.DesiredStatus { case structs.AllocDesiredStatusStop, structs.AllocDesiredStatusEvict: s.logger.Error("new allocation inserted into state store with bad desired status", "alloc_id", alloc.ID, "desired_status", alloc.DesiredStatus) } switch alloc.ClientStatus { case structs.AllocClientStatusPending: tgSummary.Starting += 1 if tgSummary.Queued > 0 { tgSummary.Queued -= 1 } summaryChanged = true case structs.AllocClientStatusRunning, structs.AllocClientStatusFailed, structs.AllocClientStatusComplete: s.logger.Error("new allocation inserted into state store with bad client status", "alloc_id", alloc.ID, "client_status", alloc.ClientStatus) } } else if existingAlloc.ClientStatus != alloc.ClientStatus { // Incrementing the client of the bin of the current state switch alloc.ClientStatus { case structs.AllocClientStatusRunning: tgSummary.Running += 1 case structs.AllocClientStatusFailed: tgSummary.Failed += 1 case structs.AllocClientStatusPending: tgSummary.Starting += 1 case structs.AllocClientStatusComplete: tgSummary.Complete += 1 case structs.AllocClientStatusLost: tgSummary.Lost += 1 } // Decrementing the count of the bin of the last state switch existingAlloc.ClientStatus { case structs.AllocClientStatusRunning: if tgSummary.Running > 0 { tgSummary.Running -= 1 } case structs.AllocClientStatusPending: if tgSummary.Starting > 0 { tgSummary.Starting -= 1 } case structs.AllocClientStatusLost: if tgSummary.Lost > 0 { tgSummary.Lost -= 1 } case structs.AllocClientStatusFailed, structs.AllocClientStatusComplete: default: s.logger.Error("invalid old client status for allocatio", "alloc_id", existingAlloc.ID, "client_status", existingAlloc.ClientStatus) } summaryChanged = true } jobSummary.Summary[alloc.TaskGroup] = tgSummary if summaryChanged { jobSummary.ModifyIndex = index // Update the indexes table for job summary if err := txn.Insert("index", &IndexEntry{"job_summary", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } if err := txn.Insert("job_summary", jobSummary); err != nil { return fmt.Errorf("updating job summary failed: %v", err) } } return nil } // addEphemeralDiskToTaskGroups adds missing EphemeralDisk objects to TaskGroups func (s *StateStore) addEphemeralDiskToTaskGroups(job *structs.Job) { for _, tg := range job.TaskGroups { var diskMB int for _, task := range tg.Tasks { if task.Resources != nil { diskMB += task.Resources.DiskMB task.Resources.DiskMB = 0 } } if tg.EphemeralDisk != nil { continue } tg.EphemeralDisk = &structs.EphemeralDisk{ SizeMB: diskMB, } } } // UpsertACLPolicies is used to create or update a set of ACL policies func (s *StateStore) UpsertACLPolicies(index uint64, policies []*structs.ACLPolicy) error { txn := s.db.Txn(true) defer txn.Abort() for _, policy := range policies { // Ensure the policy hash is non-nil. This should be done outside the state store // for performance reasons, but we check here for defense in depth. if len(policy.Hash) == 0 { policy.SetHash() } // Check if the policy already exists existing, err := txn.First("acl_policy", "id", policy.Name) if err != nil { return fmt.Errorf("policy lookup failed: %v", err) } // Update all the indexes if existing != nil { policy.CreateIndex = existing.(*structs.ACLPolicy).CreateIndex policy.ModifyIndex = index } else { policy.CreateIndex = index policy.ModifyIndex = index } // Update the policy if err := txn.Insert("acl_policy", policy); err != nil { return fmt.Errorf("upserting policy failed: %v", err) } } // Update the indexes tabl if err := txn.Insert("index", &IndexEntry{"acl_policy", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // DeleteACLPolicies deletes the policies with the given names func (s *StateStore) DeleteACLPolicies(index uint64, names []string) error { txn := s.db.Txn(true) defer txn.Abort() // Delete the policy for _, name := range names { if _, err := txn.DeleteAll("acl_policy", "id", name); err != nil { return fmt.Errorf("deleting acl policy failed: %v", err) } } if err := txn.Insert("index", &IndexEntry{"acl_policy", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // ACLPolicyByName is used to lookup a policy by name func (s *StateStore) ACLPolicyByName(ws memdb.WatchSet, name string) (*structs.ACLPolicy, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("acl_policy", "id", name) if err != nil { return nil, fmt.Errorf("acl policy lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.ACLPolicy), nil } return nil, nil } // ACLPolicyByNamePrefix is used to lookup policies by prefix func (s *StateStore) ACLPolicyByNamePrefix(ws memdb.WatchSet, prefix string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("acl_policy", "id_prefix", prefix) if err != nil { return nil, fmt.Errorf("acl policy lookup failed: %v", err) } ws.Add(iter.WatchCh()) return iter, nil } // ACLPolicies returns an iterator over all the acl policies func (s *StateStore) ACLPolicies(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire table iter, err := txn.Get("acl_policy", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // UpsertACLTokens is used to create or update a set of ACL tokens func (s *StateStore) UpsertACLTokens(index uint64, tokens []*structs.ACLToken) error { txn := s.db.Txn(true) defer txn.Abort() for _, token := range tokens { // Ensure the policy hash is non-nil. This should be done outside the state store // for performance reasons, but we check here for defense in depth. if len(token.Hash) == 0 { token.SetHash() } // Check if the token already exists existing, err := txn.First("acl_token", "id", token.AccessorID) if err != nil { return fmt.Errorf("token lookup failed: %v", err) } // Update all the indexes if existing != nil { existTK := existing.(*structs.ACLToken) token.CreateIndex = existTK.CreateIndex token.ModifyIndex = index // Do not allow SecretID or create time to change token.SecretID = existTK.SecretID token.CreateTime = existTK.CreateTime } else { token.CreateIndex = index token.ModifyIndex = index } // Update the token if err := txn.Insert("acl_token", token); err != nil { return fmt.Errorf("upserting token failed: %v", err) } } // Update the indexes table if err := txn.Insert("index", &IndexEntry{"acl_token", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // DeleteACLTokens deletes the tokens with the given accessor ids func (s *StateStore) DeleteACLTokens(index uint64, ids []string) error { txn := s.db.Txn(true) defer txn.Abort() // Delete the tokens for _, id := range ids { if _, err := txn.DeleteAll("acl_token", "id", id); err != nil { return fmt.Errorf("deleting acl token failed: %v", err) } } if err := txn.Insert("index", &IndexEntry{"acl_token", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // ACLTokenByAccessorID is used to lookup a token by accessor ID func (s *StateStore) ACLTokenByAccessorID(ws memdb.WatchSet, id string) (*structs.ACLToken, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("acl_token", "id", id) if err != nil { return nil, fmt.Errorf("acl token lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.ACLToken), nil } return nil, nil } // ACLTokenBySecretID is used to lookup a token by secret ID func (s *StateStore) ACLTokenBySecretID(ws memdb.WatchSet, secretID string) (*structs.ACLToken, error) { txn := s.db.Txn(false) watchCh, existing, err := txn.FirstWatch("acl_token", "secret", secretID) if err != nil { return nil, fmt.Errorf("acl token lookup failed: %v", err) } ws.Add(watchCh) if existing != nil { return existing.(*structs.ACLToken), nil } return nil, nil } // ACLTokenByAccessorIDPrefix is used to lookup tokens by prefix func (s *StateStore) ACLTokenByAccessorIDPrefix(ws memdb.WatchSet, prefix string) (memdb.ResultIterator, error) { txn := s.db.Txn(false) iter, err := txn.Get("acl_token", "id_prefix", prefix) if err != nil { return nil, fmt.Errorf("acl token lookup failed: %v", err) } ws.Add(iter.WatchCh()) return iter, nil } // ACLTokens returns an iterator over all the tokens func (s *StateStore) ACLTokens(ws memdb.WatchSet) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire table iter, err := txn.Get("acl_token", "id") if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // ACLTokensByGlobal returns an iterator over all the tokens filtered by global value func (s *StateStore) ACLTokensByGlobal(ws memdb.WatchSet, globalVal bool) (memdb.ResultIterator, error) { txn := s.db.Txn(false) // Walk the entire table iter, err := txn.Get("acl_token", "global", globalVal) if err != nil { return nil, err } ws.Add(iter.WatchCh()) return iter, nil } // CanBootstrapACLToken checks if bootstrapping is possible and returns the reset index func (s *StateStore) CanBootstrapACLToken() (bool, uint64, error) { txn := s.db.Txn(false) // Lookup the bootstrap sentinel out, err := txn.First("index", "id", "acl_token_bootstrap") if err != nil { return false, 0, err } // No entry, we haven't bootstrapped yet if out == nil { return true, 0, nil } // Return the reset index if we've already bootstrapped return false, out.(*IndexEntry).Value, nil } // BootstrapACLToken is used to create an initial ACL token func (s *StateStore) BootstrapACLTokens(index, resetIndex uint64, token *structs.ACLToken) error { txn := s.db.Txn(true) defer txn.Abort() // Check if we have already done a bootstrap existing, err := txn.First("index", "id", "acl_token_bootstrap") if err != nil { return fmt.Errorf("bootstrap check failed: %v", err) } if existing != nil { if resetIndex == 0 { return fmt.Errorf("ACL bootstrap already done") } else if resetIndex != existing.(*IndexEntry).Value { return fmt.Errorf("Invalid reset index for ACL bootstrap") } } // Update the Create/Modify time token.CreateIndex = index token.ModifyIndex = index // Insert the token if err := txn.Insert("acl_token", token); err != nil { return fmt.Errorf("upserting token failed: %v", err) } // Update the indexes table, prevents future bootstrap until reset if err := txn.Insert("index", &IndexEntry{"acl_token", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } if err := txn.Insert("index", &IndexEntry{"acl_token_bootstrap", index}); err != nil { return fmt.Errorf("index update failed: %v", err) } txn.Commit() return nil } // SchedulerConfig is used to get the current Scheduler configuration. func (s *StateStore) SchedulerConfig() (uint64, *structs.SchedulerConfiguration, error) { tx := s.db.Txn(false) defer tx.Abort() // Get the scheduler config c, err := tx.First("scheduler_config", "id") if err != nil { return 0, nil, fmt.Errorf("failed scheduler config lookup: %s", err) } config, ok := c.(*structs.SchedulerConfiguration) if !ok { return 0, nil, nil } return config.ModifyIndex, config, nil } // SchedulerSetConfig is used to set the current Scheduler configuration. func (s *StateStore) SchedulerSetConfig(idx uint64, config *structs.SchedulerConfiguration) error { tx := s.db.Txn(true) defer tx.Abort() s.schedulerSetConfigTxn(idx, tx, config) tx.Commit() return nil } // WithWriteTransaction executes the passed function within a write transaction, // and returns its result. If the invocation returns no error, the transaction // is committed; otherwise, it's aborted. func (s *StateStore) WithWriteTransaction(fn func(Txn) error) error { tx := s.db.Txn(true) defer tx.Abort() err := fn(tx) if err == nil { tx.Commit() } return err } // SchedulerCASConfig is used to update the scheduler configuration with a // given Raft index. If the CAS index specified is not equal to the last observed index // for the config, then the call is a noop. func (s *StateStore) SchedulerCASConfig(idx, cidx uint64, config *structs.SchedulerConfiguration) (bool, error) { tx := s.db.Txn(true) defer tx.Abort() // Check for an existing config existing, err := tx.First("scheduler_config", "id") if err != nil { return false, fmt.Errorf("failed scheduler config lookup: %s", err) } // If the existing index does not match the provided CAS // index arg, then we shouldn't update anything and can safely // return early here. e, ok := existing.(*structs.SchedulerConfiguration) if !ok || (e != nil && e.ModifyIndex != cidx) { return false, nil } s.schedulerSetConfigTxn(idx, tx, config) tx.Commit() return true, nil } func (s *StateStore) schedulerSetConfigTxn(idx uint64, tx *memdb.Txn, config *structs.SchedulerConfiguration) error { // Check for an existing config existing, err := tx.First("scheduler_config", "id") if err != nil { return fmt.Errorf("failed scheduler config lookup: %s", err) } // Set the indexes. if existing != nil { config.CreateIndex = existing.(*structs.SchedulerConfiguration).CreateIndex } else { config.CreateIndex = idx } config.ModifyIndex = idx if err := tx.Insert("scheduler_config", config); err != nil { return fmt.Errorf("failed updating scheduler config: %s", err) } return nil } // StateSnapshot is used to provide a point-in-time snapshot type StateSnapshot struct { StateStore } // DenormalizeAllocationsMap takes in a map of nodes to allocations, and queries the // Allocation for each of the Allocation diffs and merges the updated attributes with // the existing Allocation, and attaches the Job provided func (s *StateSnapshot) DenormalizeAllocationsMap(nodeAllocations map[string][]*structs.Allocation) error { for nodeID, allocs := range nodeAllocations { denormalizedAllocs, err := s.DenormalizeAllocationSlice(allocs) if err != nil { return err } nodeAllocations[nodeID] = denormalizedAllocs } return nil } // DenormalizeAllocationSlice queries the Allocation for each allocation diff // represented as an Allocation and merges the updated attributes with the existing // Allocation, and attaches the Job provided. func (s *StateSnapshot) DenormalizeAllocationSlice(allocs []*structs.Allocation) ([]*structs.Allocation, error) { allocDiffs := make([]*structs.AllocationDiff, len(allocs)) for i, alloc := range allocs { allocDiffs[i] = alloc.AllocationDiff() } return s.DenormalizeAllocationDiffSlice(allocDiffs) } // DenormalizeAllocationDiffSlice queries the Allocation for each AllocationDiff and merges // the updated attributes with the existing Allocation, and attaches the Job provided. // // This should only be called on terminal alloc, particularly stopped or preempted allocs func (s *StateSnapshot) DenormalizeAllocationDiffSlice(allocDiffs []*structs.AllocationDiff) ([]*structs.Allocation, error) { // Output index for denormalized Allocations j := 0 denormalizedAllocs := make([]*structs.Allocation, len(allocDiffs)) for _, allocDiff := range allocDiffs { alloc, err := s.AllocByID(nil, allocDiff.ID) if err != nil { return nil, fmt.Errorf("alloc lookup failed: %v", err) } if alloc == nil { return nil, fmt.Errorf("alloc %v doesn't exist", allocDiff.ID) } // Merge the updates to the Allocation. Don't update alloc.Job for terminal allocs // so alloc refers to the latest Job view before destruction and to ease handler implementations allocCopy := alloc.Copy() if allocDiff.PreemptedByAllocation != "" { allocCopy.PreemptedByAllocation = allocDiff.PreemptedByAllocation allocCopy.DesiredDescription = getPreemptedAllocDesiredDescription(allocDiff.PreemptedByAllocation) allocCopy.DesiredStatus = structs.AllocDesiredStatusEvict } else { // If alloc is a stopped alloc allocCopy.DesiredDescription = allocDiff.DesiredDescription allocCopy.DesiredStatus = structs.AllocDesiredStatusStop if allocDiff.ClientStatus != "" { allocCopy.ClientStatus = allocDiff.ClientStatus } } if allocDiff.ModifyTime != 0 { allocCopy.ModifyTime = allocDiff.ModifyTime } // Update the allocDiff in the slice to equal the denormalized alloc denormalizedAllocs[j] = allocCopy j++ } // Retain only the denormalized Allocations in the slice denormalizedAllocs = denormalizedAllocs[:j] return denormalizedAllocs, nil } func getPreemptedAllocDesiredDescription(PreemptedByAllocID string) string { return fmt.Sprintf("Preempted by alloc ID %v", PreemptedByAllocID) } // StateRestore is used to optimize the performance when // restoring state by only using a single large transaction // instead of thousands of sub transactions type StateRestore struct { txn *memdb.Txn } // Abort is used to abort the restore operation func (s *StateRestore) Abort() { s.txn.Abort() } // Commit is used to commit the restore operation func (s *StateRestore) Commit() { s.txn.Commit() } // NodeRestore is used to restore a node func (r *StateRestore) NodeRestore(node *structs.Node) error { if err := r.txn.Insert("nodes", node); err != nil { return fmt.Errorf("node insert failed: %v", err) } return nil } // JobRestore is used to restore a job func (r *StateRestore) JobRestore(job *structs.Job) error { if err := r.txn.Insert("jobs", job); err != nil { return fmt.Errorf("job insert failed: %v", err) } return nil } // EvalRestore is used to restore an evaluation func (r *StateRestore) EvalRestore(eval *structs.Evaluation) error { if err := r.txn.Insert("evals", eval); err != nil { return fmt.Errorf("eval insert failed: %v", err) } return nil } // AllocRestore is used to restore an allocation func (r *StateRestore) AllocRestore(alloc *structs.Allocation) error { if err := r.txn.Insert("allocs", alloc); err != nil { return fmt.Errorf("alloc insert failed: %v", err) } return nil } // IndexRestore is used to restore an index func (r *StateRestore) IndexRestore(idx *IndexEntry) error { if err := r.txn.Insert("index", idx); err != nil { return fmt.Errorf("index insert failed: %v", err) } return nil } // PeriodicLaunchRestore is used to restore a periodic launch. func (r *StateRestore) PeriodicLaunchRestore(launch *structs.PeriodicLaunch) error { if err := r.txn.Insert("periodic_launch", launch); err != nil { return fmt.Errorf("periodic launch insert failed: %v", err) } return nil } // JobSummaryRestore is used to restore a job summary func (r *StateRestore) JobSummaryRestore(jobSummary *structs.JobSummary) error { if err := r.txn.Insert("job_summary", jobSummary); err != nil { return fmt.Errorf("job summary insert failed: %v", err) } return nil } // JobVersionRestore is used to restore a job version func (r *StateRestore) JobVersionRestore(version *structs.Job) error { if err := r.txn.Insert("job_version", version); err != nil { return fmt.Errorf("job version insert failed: %v", err) } return nil } // DeploymentRestore is used to restore a deployment func (r *StateRestore) DeploymentRestore(deployment *structs.Deployment) error { if err := r.txn.Insert("deployment", deployment); err != nil { return fmt.Errorf("deployment insert failed: %v", err) } return nil } // VaultAccessorRestore is used to restore a vault accessor func (r *StateRestore) VaultAccessorRestore(accessor *structs.VaultAccessor) error { if err := r.txn.Insert("vault_accessors", accessor); err != nil { return fmt.Errorf("vault accessor insert failed: %v", err) } return nil } // ACLPolicyRestore is used to restore an ACL policy func (r *StateRestore) ACLPolicyRestore(policy *structs.ACLPolicy) error { if err := r.txn.Insert("acl_policy", policy); err != nil { return fmt.Errorf("inserting acl policy failed: %v", err) } return nil } // ACLTokenRestore is used to restore an ACL token func (r *StateRestore) ACLTokenRestore(token *structs.ACLToken) error { if err := r.txn.Insert("acl_token", token); err != nil { return fmt.Errorf("inserting acl token failed: %v", err) } return nil } func (r *StateRestore) SchedulerConfigRestore(schedConfig *structs.SchedulerConfiguration) error { if err := r.txn.Insert("scheduler_config", schedConfig); err != nil { return fmt.Errorf("inserting scheduler config failed: %s", err) } return nil } // addEphemeralDiskToTaskGroups adds missing EphemeralDisk objects to TaskGroups func (r *StateRestore) addEphemeralDiskToTaskGroups(job *structs.Job) { for _, tg := range job.TaskGroups { if tg.EphemeralDisk != nil { continue } var sizeMB int for _, task := range tg.Tasks { if task.Resources != nil { sizeMB += task.Resources.DiskMB task.Resources.DiskMB = 0 } } tg.EphemeralDisk = &structs.EphemeralDisk{ SizeMB: sizeMB, } } }