package scheduler import ( "fmt" "reflect" "testing" "github.com/hashicorp/nomad/nomad/mock" "github.com/hashicorp/nomad/nomad/structs" ) func TestStaticIterator_Reset(t *testing.T) { _, ctx := testContext(t) var nodes []*structs.Node for i := 0; i < 3; i++ { nodes = append(nodes, mock.Node()) } static := NewStaticIterator(ctx, nodes) for i := 0; i < 6; i++ { static.Reset() for j := 0; j < i; j++ { static.Next() } static.Reset() out := collectFeasible(static) if len(out) != len(nodes) { t.Fatalf("out: %#v", out) t.Fatalf("missing nodes %d %#v", i, static) } ids := make(map[string]struct{}) for _, o := range out { if _, ok := ids[o.ID]; ok { t.Fatalf("duplicate") } ids[o.ID] = struct{}{} } } } func TestStaticIterator_SetNodes(t *testing.T) { _, ctx := testContext(t) var nodes []*structs.Node for i := 0; i < 3; i++ { nodes = append(nodes, mock.Node()) } static := NewStaticIterator(ctx, nodes) newNodes := []*structs.Node{mock.Node()} static.SetNodes(newNodes) out := collectFeasible(static) if !reflect.DeepEqual(out, newNodes) { t.Fatalf("bad: %#v", out) } } func TestRandomIterator(t *testing.T) { _, ctx := testContext(t) var nodes []*structs.Node for i := 0; i < 10; i++ { nodes = append(nodes, mock.Node()) } nc := make([]*structs.Node, len(nodes)) copy(nc, nodes) rand := NewRandomIterator(ctx, nc) out := collectFeasible(rand) if len(out) != len(nodes) { t.Fatalf("missing nodes") } if reflect.DeepEqual(out, nodes) { t.Fatalf("same order") } } func TestDriverChecker(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), mock.Node(), mock.Node(), } nodes[0].Attributes["driver.foo"] = "1" nodes[1].Attributes["driver.foo"] = "0" nodes[2].Attributes["driver.foo"] = "true" nodes[3].Attributes["driver.foo"] = "False" drivers := map[string]struct{}{ "exec": struct{}{}, "foo": struct{}{}, } checker := NewDriverChecker(ctx, drivers) cases := []struct { Node *structs.Node Result bool }{ { Node: nodes[0], Result: true, }, { Node: nodes[1], Result: false, }, { Node: nodes[2], Result: true, }, { Node: nodes[3], Result: false, }, } for i, c := range cases { if act := checker.Feasible(c.Node); act != c.Result { t.Fatalf("case(%d) failed: got %v; want %v", i, act, c.Result) } } } func TestConstraintChecker(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), mock.Node(), mock.Node(), } nodes[0].Attributes["kernel.name"] = "freebsd" nodes[1].Datacenter = "dc2" nodes[2].NodeClass = "large" constraints := []*structs.Constraint{ &structs.Constraint{ Operand: "=", LTarget: "${node.datacenter}", RTarget: "dc1", }, &structs.Constraint{ Operand: "is", LTarget: "${attr.kernel.name}", RTarget: "linux", }, &structs.Constraint{ Operand: "is", LTarget: "${node.class}", RTarget: "large", }, } checker := NewConstraintChecker(ctx, constraints) cases := []struct { Node *structs.Node Result bool }{ { Node: nodes[0], Result: false, }, { Node: nodes[1], Result: false, }, { Node: nodes[2], Result: true, }, } for i, c := range cases { if act := checker.Feasible(c.Node); act != c.Result { t.Fatalf("case(%d) failed: got %v; want %v", i, act, c.Result) } } } func TestResolveConstraintTarget(t *testing.T) { type tcase struct { target string node *structs.Node val interface{} result bool } node := mock.Node() cases := []tcase{ { target: "${node.unique.id}", node: node, val: node.ID, result: true, }, { target: "${node.datacenter}", node: node, val: node.Datacenter, result: true, }, { target: "${node.unique.name}", node: node, val: node.Name, result: true, }, { target: "${node.class}", node: node, val: node.NodeClass, result: true, }, { target: "${node.foo}", node: node, result: false, }, { target: "${attr.kernel.name}", node: node, val: node.Attributes["kernel.name"], result: true, }, { target: "${attr.rand}", node: node, result: false, }, { target: "${meta.pci-dss}", node: node, val: node.Meta["pci-dss"], result: true, }, { target: "${meta.rand}", node: node, result: false, }, } for _, tc := range cases { res, ok := resolveConstraintTarget(tc.target, tc.node) if ok != tc.result { t.Fatalf("TC: %#v, Result: %v %v", tc, res, ok) } if ok && !reflect.DeepEqual(res, tc.val) { t.Fatalf("TC: %#v, Result: %v %v", tc, res, ok) } } } func TestCheckConstraint(t *testing.T) { type tcase struct { op string lVal, rVal interface{} result bool } cases := []tcase{ { op: "=", lVal: "foo", rVal: "foo", result: true, }, { op: "is", lVal: "foo", rVal: "foo", result: true, }, { op: "==", lVal: "foo", rVal: "foo", result: true, }, { op: "!=", lVal: "foo", rVal: "foo", result: false, }, { op: "!=", lVal: "foo", rVal: "bar", result: true, }, { op: "not", lVal: "foo", rVal: "bar", result: true, }, { op: structs.ConstraintVersion, lVal: "1.2.3", rVal: "~> 1.0", result: true, }, { op: structs.ConstraintRegex, lVal: "foobarbaz", rVal: "[\\w]+", result: true, }, { op: "<", lVal: "foo", rVal: "bar", result: false, }, { op: structs.ConstraintSetContains, lVal: "foo,bar,baz", rVal: "foo, bar ", result: true, }, { op: structs.ConstraintSetContains, lVal: "foo,bar,baz", rVal: "foo,bam", result: false, }, } for _, tc := range cases { _, ctx := testContext(t) if res := checkConstraint(ctx, tc.op, tc.lVal, tc.rVal); res != tc.result { t.Fatalf("TC: %#v, Result: %v", tc, res) } } } func TestCheckLexicalOrder(t *testing.T) { type tcase struct { op string lVal, rVal interface{} result bool } cases := []tcase{ { op: "<", lVal: "bar", rVal: "foo", result: true, }, { op: "<=", lVal: "foo", rVal: "foo", result: true, }, { op: ">", lVal: "bar", rVal: "foo", result: false, }, { op: ">=", lVal: "bar", rVal: "bar", result: true, }, { op: ">", lVal: 1, rVal: "foo", result: false, }, } for _, tc := range cases { if res := checkLexicalOrder(tc.op, tc.lVal, tc.rVal); res != tc.result { t.Fatalf("TC: %#v, Result: %v", tc, res) } } } func TestCheckVersionConstraint(t *testing.T) { type tcase struct { lVal, rVal interface{} result bool } cases := []tcase{ { lVal: "1.2.3", rVal: "~> 1.0", result: true, }, { lVal: "1.2.3", rVal: ">= 1.0, < 1.4", result: true, }, { lVal: "2.0.1", rVal: "~> 1.0", result: false, }, { lVal: "1.4", rVal: ">= 1.0, < 1.4", result: false, }, { lVal: 1, rVal: "~> 1.0", result: true, }, } for _, tc := range cases { _, ctx := testContext(t) if res := checkVersionConstraint(ctx, tc.lVal, tc.rVal); res != tc.result { t.Fatalf("TC: %#v, Result: %v", tc, res) } } } func TestCheckRegexpConstraint(t *testing.T) { type tcase struct { lVal, rVal interface{} result bool } cases := []tcase{ { lVal: "foobar", rVal: "bar", result: true, }, { lVal: "foobar", rVal: "^foo", result: true, }, { lVal: "foobar", rVal: "^bar", result: false, }, { lVal: "zipzap", rVal: "foo", result: false, }, { lVal: 1, rVal: "foo", result: false, }, } for _, tc := range cases { _, ctx := testContext(t) if res := checkRegexpConstraint(ctx, tc.lVal, tc.rVal); res != tc.result { t.Fatalf("TC: %#v, Result: %v", tc, res) } } } // This test puts allocations on the node to test if it detects infeasibility of // nodes correctly and picks the only feasible one func TestDistinctHostsIterator_JobDistinctHosts(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), mock.Node(), } static := NewStaticIterator(ctx, nodes) // Create a job with a distinct_hosts constraint and two task groups. tg1 := &structs.TaskGroup{Name: "bar"} tg2 := &structs.TaskGroup{Name: "baz"} job := &structs.Job{ ID: "foo", Constraints: []*structs.Constraint{{Operand: structs.ConstraintDistinctHosts}}, TaskGroups: []*structs.TaskGroup{tg1, tg2}, } // Add allocs placing tg1 on node1 and tg2 on node2. This should make the // job unsatisfiable on all nodes but node3 plan := ctx.Plan() plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg2.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), }, } plan.NodeAllocation[nodes[1].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg1.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), }, } proposed := NewDistinctHostsIterator(ctx, static) proposed.SetTaskGroup(tg1) proposed.SetJob(job) out := collectFeasible(proposed) if len(out) != 1 { t.Fatalf("Bad: %#v", out) } if out[0].ID != nodes[2].ID { t.Fatalf("wrong node picked") } } func TestDistinctHostsIterator_JobDistinctHosts_InfeasibleCount(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), } static := NewStaticIterator(ctx, nodes) // Create a job with a distinct_hosts constraint and three task groups. tg1 := &structs.TaskGroup{Name: "bar"} tg2 := &structs.TaskGroup{Name: "baz"} tg3 := &structs.TaskGroup{Name: "bam"} job := &structs.Job{ ID: "foo", Constraints: []*structs.Constraint{{Operand: structs.ConstraintDistinctHosts}}, TaskGroups: []*structs.TaskGroup{tg1, tg2, tg3}, } // Add allocs placing tg1 on node1 and tg2 on node2. This should make the // job unsatisfiable for tg3 plan := ctx.Plan() plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, ID: structs.GenerateUUID(), }, } plan.NodeAllocation[nodes[1].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, ID: structs.GenerateUUID(), }, } proposed := NewDistinctHostsIterator(ctx, static) proposed.SetTaskGroup(tg3) proposed.SetJob(job) // It should not be able to place 3 tasks with only two nodes. out := collectFeasible(proposed) if len(out) != 0 { t.Fatalf("Bad: %#v", out) } } func TestDistinctHostsIterator_TaskGroupDistinctHosts(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), } static := NewStaticIterator(ctx, nodes) // Create a task group with a distinct_hosts constraint. tg1 := &structs.TaskGroup{ Name: "example", Constraints: []*structs.Constraint{ {Operand: structs.ConstraintDistinctHosts}, }, } tg2 := &structs.TaskGroup{Name: "baz"} // Add a planned alloc to node1. plan := ctx.Plan() plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: "foo", }, } // Add a planned alloc to node2 with the same task group name but a // different job. plan.NodeAllocation[nodes[1].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: "bar", }, } proposed := NewDistinctHostsIterator(ctx, static) proposed.SetTaskGroup(tg1) proposed.SetJob(&structs.Job{ID: "foo"}) out := collectFeasible(proposed) if len(out) != 1 { t.Fatalf("Bad: %#v", out) } // Expect it to skip the first node as there is a previous alloc on it for // the same task group. if out[0] != nodes[1] { t.Fatalf("Bad: %v", out) } // Since the other task group doesn't have the constraint, both nodes should // be feasible. proposed.Reset() proposed.SetTaskGroup(tg2) out = collectFeasible(proposed) if len(out) != 2 { t.Fatalf("Bad: %#v", out) } } // This test puts creates allocations across task groups that use a property // value to detect if the constraint at the job level properly considers all // task groups. func TestDistinctPropertyIterator_JobDistinctProperty(t *testing.T) { state, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), mock.Node(), mock.Node(), mock.Node(), } for i, n := range nodes { n.Meta["rack"] = fmt.Sprintf("%d", i) // Add to state store if err := state.UpsertNode(uint64(100+i), n); err != nil { t.Fatalf("failed to upsert node: %v", err) } } static := NewStaticIterator(ctx, nodes) // Create a job with a distinct_property constraint and a task groups. tg1 := &structs.TaskGroup{Name: "bar"} tg2 := &structs.TaskGroup{Name: "baz"} job := &structs.Job{ ID: "foo", Constraints: []*structs.Constraint{ { Operand: structs.ConstraintDistinctProperty, LTarget: "${meta.rack}", }, }, TaskGroups: []*structs.TaskGroup{tg1, tg2}, } // Add allocs placing tg1 on node1 and 2 and tg2 on node3 and 4. This should make the // job unsatisfiable on all nodes but node5. Also mix the allocations // existing in the plan and the state store. plan := ctx.Plan() alloc1ID := structs.GenerateUUID() plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: alloc1ID, NodeID: nodes[0].ID, }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg2.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, } plan.NodeAllocation[nodes[2].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), NodeID: nodes[2].ID, }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg1.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), NodeID: nodes[2].ID, }, } // Put an allocation on Node 5 but make it stopped in the plan stoppingAllocID := structs.GenerateUUID() plan.NodeUpdate[nodes[4].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: stoppingAllocID, NodeID: nodes[4].ID, }, } upserting := []*structs.Allocation{ // Have one of the allocations exist in both the plan and the state // store. This resembles an allocation update &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: alloc1ID, EvalID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg2.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[3].ID, }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg1.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[3].ID, }, &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: stoppingAllocID, EvalID: structs.GenerateUUID(), NodeID: nodes[4].ID, }, } if err := state.UpsertAllocs(1000, upserting); err != nil { t.Fatalf("failed to UpsertAllocs: %v", err) } proposed := NewDistinctPropertyIterator(ctx, static) proposed.SetJob(job) proposed.SetTaskGroup(tg2) proposed.Reset() out := collectFeasible(proposed) if len(out) != 1 { t.Fatalf("Bad: %#v", out) } if out[0].ID != nodes[4].ID { t.Fatalf("wrong node picked") } } // This test creates allocations across task groups that use a property value to // detect if the constraint at the job level properly considers all task groups // when the constraint allows a count greater than one func TestDistinctPropertyIterator_JobDistinctProperty_Count(t *testing.T) { state, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), mock.Node(), } for i, n := range nodes { n.Meta["rack"] = fmt.Sprintf("%d", i) // Add to state store if err := state.UpsertNode(uint64(100+i), n); err != nil { t.Fatalf("failed to upsert node: %v", err) } } static := NewStaticIterator(ctx, nodes) // Create a job with a distinct_property constraint and a task groups. tg1 := &structs.TaskGroup{Name: "bar"} tg2 := &structs.TaskGroup{Name: "baz"} job := &structs.Job{ ID: "foo", Constraints: []*structs.Constraint{ { Operand: structs.ConstraintDistinctProperty, LTarget: "${meta.rack}", RTarget: "2", }, }, TaskGroups: []*structs.TaskGroup{tg1, tg2}, } // Add allocs placing two allocations on both node 1 and 2 and only one on // node 3. This should make the job unsatisfiable on all nodes but node5. // Also mix the allocations existing in the plan and the state store. plan := ctx.Plan() alloc1ID := structs.GenerateUUID() plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: alloc1ID, NodeID: nodes[0].ID, }, &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: alloc1ID, NodeID: nodes[0].ID, }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg2.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, } plan.NodeAllocation[nodes[1].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg1.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, } plan.NodeAllocation[nodes[2].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), NodeID: nodes[2].ID, }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg1.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), NodeID: nodes[2].ID, }, } // Put an allocation on Node 3 but make it stopped in the plan stoppingAllocID := structs.GenerateUUID() plan.NodeUpdate[nodes[2].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: stoppingAllocID, NodeID: nodes[2].ID, }, } upserting := []*structs.Allocation{ // Have one of the allocations exist in both the plan and the state // store. This resembles an allocation update &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: alloc1ID, EvalID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg1.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, &structs.Allocation{ TaskGroup: tg2.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, } if err := state.UpsertAllocs(1000, upserting); err != nil { t.Fatalf("failed to UpsertAllocs: %v", err) } proposed := NewDistinctPropertyIterator(ctx, static) proposed.SetJob(job) proposed.SetTaskGroup(tg2) proposed.Reset() out := collectFeasible(proposed) if len(out) != 1 { t.Fatalf("Bad: %#v", out) } if out[0].ID != nodes[2].ID { t.Fatalf("wrong node picked") } } // This test checks that if a node has an allocation on it that gets stopped, // there is a plan to re-use that for a new allocation, that the next select // won't select that node. func TestDistinctPropertyIterator_JobDistinctProperty_RemoveAndReplace(t *testing.T) { state, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), } nodes[0].Meta["rack"] = "1" // Add to state store if err := state.UpsertNode(uint64(100), nodes[0]); err != nil { t.Fatalf("failed to upsert node: %v", err) } static := NewStaticIterator(ctx, nodes) // Create a job with a distinct_property constraint and a task groups. tg1 := &structs.TaskGroup{Name: "bar"} job := &structs.Job{ ID: "foo", Constraints: []*structs.Constraint{ { Operand: structs.ConstraintDistinctProperty, LTarget: "${meta.rack}", }, }, TaskGroups: []*structs.TaskGroup{tg1}, } plan := ctx.Plan() plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, } stoppingAllocID := structs.GenerateUUID() plan.NodeUpdate[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: stoppingAllocID, NodeID: nodes[0].ID, }, } upserting := []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: stoppingAllocID, EvalID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, } if err := state.UpsertAllocs(1000, upserting); err != nil { t.Fatalf("failed to UpsertAllocs: %v", err) } proposed := NewDistinctPropertyIterator(ctx, static) proposed.SetJob(job) proposed.SetTaskGroup(tg1) proposed.Reset() out := collectFeasible(proposed) if len(out) != 0 { t.Fatalf("Bad: %#v", out) } } // This test creates previous allocations selecting certain property values to // test if it detects infeasibility of property values correctly and picks the // only feasible one func TestDistinctPropertyIterator_JobDistinctProperty_Infeasible(t *testing.T) { state, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), } for i, n := range nodes { n.Meta["rack"] = fmt.Sprintf("%d", i) // Add to state store if err := state.UpsertNode(uint64(100+i), n); err != nil { t.Fatalf("failed to upsert node: %v", err) } } static := NewStaticIterator(ctx, nodes) // Create a job with a distinct_property constraint and a task groups. tg1 := &structs.TaskGroup{Name: "bar"} tg2 := &structs.TaskGroup{Name: "baz"} tg3 := &structs.TaskGroup{Name: "bam"} job := &structs.Job{ ID: "foo", Constraints: []*structs.Constraint{ { Operand: structs.ConstraintDistinctProperty, LTarget: "${meta.rack}", }, }, TaskGroups: []*structs.TaskGroup{tg1, tg2, tg3}, } // Add allocs placing tg1 on node1 and tg2 on node2. This should make the // job unsatisfiable for tg3. plan := ctx.Plan() plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, } upserting := []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, } if err := state.UpsertAllocs(1000, upserting); err != nil { t.Fatalf("failed to UpsertAllocs: %v", err) } proposed := NewDistinctPropertyIterator(ctx, static) proposed.SetJob(job) proposed.SetTaskGroup(tg3) proposed.Reset() out := collectFeasible(proposed) if len(out) != 0 { t.Fatalf("Bad: %#v", out) } } // This test creates previous allocations selecting certain property values to // test if it detects infeasibility of property values correctly and picks the // only feasible one func TestDistinctPropertyIterator_JobDistinctProperty_Infeasible_Count(t *testing.T) { state, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), } for i, n := range nodes { n.Meta["rack"] = fmt.Sprintf("%d", i) // Add to state store if err := state.UpsertNode(uint64(100+i), n); err != nil { t.Fatalf("failed to upsert node: %v", err) } } static := NewStaticIterator(ctx, nodes) // Create a job with a distinct_property constraint and a task groups. tg1 := &structs.TaskGroup{Name: "bar"} tg2 := &structs.TaskGroup{Name: "baz"} tg3 := &structs.TaskGroup{Name: "bam"} job := &structs.Job{ ID: "foo", Constraints: []*structs.Constraint{ { Operand: structs.ConstraintDistinctProperty, LTarget: "${meta.rack}", RTarget: "2", }, }, TaskGroups: []*structs.TaskGroup{tg1, tg2, tg3}, } // Add allocs placing two tg1's on node1 and two tg2's on node2. This should // make the job unsatisfiable for tg3. plan := ctx.Plan() plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, } upserting := []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, &structs.Allocation{ TaskGroup: tg2.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, } if err := state.UpsertAllocs(1000, upserting); err != nil { t.Fatalf("failed to UpsertAllocs: %v", err) } proposed := NewDistinctPropertyIterator(ctx, static) proposed.SetJob(job) proposed.SetTaskGroup(tg3) proposed.Reset() out := collectFeasible(proposed) if len(out) != 0 { t.Fatalf("Bad: %#v", out) } } // This test creates previous allocations selecting certain property values to // test if it detects infeasibility of property values correctly and picks the // only feasible one when the constraint is at the task group. func TestDistinctPropertyIterator_TaskGroupDistinctProperty(t *testing.T) { state, ctx := testContext(t) nodes := []*structs.Node{ mock.Node(), mock.Node(), mock.Node(), } for i, n := range nodes { n.Meta["rack"] = fmt.Sprintf("%d", i) // Add to state store if err := state.UpsertNode(uint64(100+i), n); err != nil { t.Fatalf("failed to upsert node: %v", err) } } static := NewStaticIterator(ctx, nodes) // Create a job with a task group with the distinct_property constraint tg1 := &structs.TaskGroup{ Name: "example", Constraints: []*structs.Constraint{ { Operand: structs.ConstraintDistinctProperty, LTarget: "${meta.rack}", }, }, } tg2 := &structs.TaskGroup{Name: "baz"} job := &structs.Job{ ID: "foo", TaskGroups: []*structs.TaskGroup{tg1, tg2}, } // Add allocs placing tg1 on node1 and 2. This should make the // job unsatisfiable on all nodes but node3. Also mix the allocations // existing in the plan and the state store. plan := ctx.Plan() plan.NodeAllocation[nodes[0].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), NodeID: nodes[0].ID, }, } // Put an allocation on Node 3 but make it stopped in the plan stoppingAllocID := structs.GenerateUUID() plan.NodeUpdate[nodes[2].ID] = []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: stoppingAllocID, NodeID: nodes[2].ID, }, } upserting := []*structs.Allocation{ &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[1].ID, }, // Should be ignored as it is a different job. &structs.Allocation{ TaskGroup: tg1.Name, JobID: "ignore 2", Job: job, ID: structs.GenerateUUID(), EvalID: structs.GenerateUUID(), NodeID: nodes[2].ID, }, &structs.Allocation{ TaskGroup: tg1.Name, JobID: job.ID, Job: job, ID: stoppingAllocID, EvalID: structs.GenerateUUID(), NodeID: nodes[2].ID, }, } if err := state.UpsertAllocs(1000, upserting); err != nil { t.Fatalf("failed to UpsertAllocs: %v", err) } proposed := NewDistinctPropertyIterator(ctx, static) proposed.SetJob(job) proposed.SetTaskGroup(tg1) proposed.Reset() out := collectFeasible(proposed) if len(out) != 1 { t.Fatalf("Bad: %#v", out) } if out[0].ID != nodes[2].ID { t.Fatalf("wrong node picked") } // Since the other task group doesn't have the constraint, both nodes should // be feasible. proposed.SetTaskGroup(tg2) proposed.Reset() out = collectFeasible(proposed) if len(out) != 3 { t.Fatalf("Bad: %#v", out) } } func collectFeasible(iter FeasibleIterator) (out []*structs.Node) { for { next := iter.Next() if next == nil { break } out = append(out, next) } return } // mockFeasibilityChecker is a FeasibilityChecker that returns predetermined // feasibility values. type mockFeasibilityChecker struct { retVals []bool i int } func newMockFeasiblityChecker(values ...bool) *mockFeasibilityChecker { return &mockFeasibilityChecker{retVals: values} } func (c *mockFeasibilityChecker) Feasible(*structs.Node) bool { if c.i >= len(c.retVals) { c.i++ return false } f := c.retVals[c.i] c.i++ return f } // calls returns how many times the checker was called. func (c *mockFeasibilityChecker) calls() int { return c.i } func TestFeasibilityWrapper_JobIneligible(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{mock.Node()} static := NewStaticIterator(ctx, nodes) mocked := newMockFeasiblityChecker(false) wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{mocked}, nil) // Set the job to ineligible ctx.Eligibility().SetJobEligibility(false, nodes[0].ComputedClass) // Run the wrapper. out := collectFeasible(wrapper) if out != nil || mocked.calls() != 0 { t.Fatalf("bad: %#v %d", out, mocked.calls()) } } func TestFeasibilityWrapper_JobEscapes(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{mock.Node()} static := NewStaticIterator(ctx, nodes) mocked := newMockFeasiblityChecker(false) wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{mocked}, nil) // Set the job to escaped cc := nodes[0].ComputedClass ctx.Eligibility().job[cc] = EvalComputedClassEscaped // Run the wrapper. out := collectFeasible(wrapper) if out != nil || mocked.calls() != 1 { t.Fatalf("bad: %#v", out) } // Ensure that the job status didn't change from escaped even though the // option failed. if status := ctx.Eligibility().JobStatus(cc); status != EvalComputedClassEscaped { t.Fatalf("job status is %v; want %v", status, EvalComputedClassEscaped) } } func TestFeasibilityWrapper_JobAndTg_Eligible(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{mock.Node()} static := NewStaticIterator(ctx, nodes) jobMock := newMockFeasiblityChecker(true) tgMock := newMockFeasiblityChecker(false) wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{jobMock}, []FeasibilityChecker{tgMock}) // Set the job to escaped cc := nodes[0].ComputedClass ctx.Eligibility().job[cc] = EvalComputedClassEligible ctx.Eligibility().SetTaskGroupEligibility(true, "foo", cc) wrapper.SetTaskGroup("foo") // Run the wrapper. out := collectFeasible(wrapper) if out == nil || tgMock.calls() != 0 { t.Fatalf("bad: %#v %v", out, tgMock.calls()) } } func TestFeasibilityWrapper_JobEligible_TgIneligible(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{mock.Node()} static := NewStaticIterator(ctx, nodes) jobMock := newMockFeasiblityChecker(true) tgMock := newMockFeasiblityChecker(false) wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{jobMock}, []FeasibilityChecker{tgMock}) // Set the job to escaped cc := nodes[0].ComputedClass ctx.Eligibility().job[cc] = EvalComputedClassEligible ctx.Eligibility().SetTaskGroupEligibility(false, "foo", cc) wrapper.SetTaskGroup("foo") // Run the wrapper. out := collectFeasible(wrapper) if out != nil || tgMock.calls() != 0 { t.Fatalf("bad: %#v %v", out, tgMock.calls()) } } func TestFeasibilityWrapper_JobEligible_TgEscaped(t *testing.T) { _, ctx := testContext(t) nodes := []*structs.Node{mock.Node()} static := NewStaticIterator(ctx, nodes) jobMock := newMockFeasiblityChecker(true) tgMock := newMockFeasiblityChecker(true) wrapper := NewFeasibilityWrapper(ctx, static, []FeasibilityChecker{jobMock}, []FeasibilityChecker{tgMock}) // Set the job to escaped cc := nodes[0].ComputedClass ctx.Eligibility().job[cc] = EvalComputedClassEligible ctx.Eligibility().taskGroups["foo"] = map[string]ComputedClassFeasibility{cc: EvalComputedClassEscaped} wrapper.SetTaskGroup("foo") // Run the wrapper. out := collectFeasible(wrapper) if out == nil || tgMock.calls() != 1 { t.Fatalf("bad: %#v %v", out, tgMock.calls()) } if e, ok := ctx.Eligibility().taskGroups["foo"][cc]; !ok || e != EvalComputedClassEscaped { t.Fatalf("bad: %v %v", e, ok) } }