package structs import ( crand "crypto/rand" "fmt" "math" ) // RemoveAllocs is used to remove any allocs with the given IDs // from the list of allocations func RemoveAllocs(alloc []*Allocation, remove []*Allocation) []*Allocation { // Convert remove into a set removeSet := make(map[string]struct{}) for _, remove := range remove { removeSet[remove.ID] = struct{}{} } n := len(alloc) for i := 0; i < n; i++ { if _, ok := removeSet[alloc[i].ID]; ok { alloc[i], alloc[n-1] = alloc[n-1], nil i-- n-- } } alloc = alloc[:n] return alloc } // FilterTerminalAllocs filters out all allocations in a terminal state and // returns the latest terminal allocations func FilterTerminalAllocs(allocs []*Allocation) ([]*Allocation, map[string]*Allocation) { terminalAllocsByName := make(map[string]*Allocation) n := len(allocs) for i := 0; i < n; i++ { if allocs[i].TerminalStatus() { // Add the allocation to the terminal allocs map if it's not already // added or has a higher create index than the one which is // currently present. alloc, ok := terminalAllocsByName[allocs[i].Name] if !ok || alloc.CreateIndex < allocs[i].CreateIndex { terminalAllocsByName[allocs[i].Name] = allocs[i] } // Remove the allocation allocs[i], allocs[n-1] = allocs[n-1], nil i-- n-- } } return allocs[:n], terminalAllocsByName } // AllocsFit checks if a given set of allocations will fit on a node. // The netIdx can optionally be provided if its already been computed. // If the netIdx is provided, it is assumed that the client has already // ensured there are no collisions. func AllocsFit(node *Node, allocs []*Allocation, netIdx *NetworkIndex) (bool, string, *Resources, error) { // Compute the utilization from zero used := new(Resources) // Add the reserved resources of the node if node.Reserved != nil { if err := used.Add(node.Reserved); err != nil { return false, "", nil, err } } // For each alloc, add the resources for _, alloc := range allocs { if alloc.Resources != nil { if err := used.Add(alloc.Resources); err != nil { return false, "", nil, err } } else if alloc.TaskResources != nil { // Adding the shared resource asks for the allocation to the used // resources if err := used.Add(alloc.SharedResources); err != nil { return false, "", nil, err } // Allocations within the plan have the combined resources stripped // to save space, so sum up the individual task resources. for _, taskResource := range alloc.TaskResources { if err := used.Add(taskResource); err != nil { return false, "", nil, err } } } else { return false, "", nil, fmt.Errorf("allocation %q has no resources set", alloc.ID) } } // Check that the node resources are a super set of those // that are being allocated if superset, dimension := node.Resources.Superset(used); !superset { return false, dimension, used, nil } // Create the network index if missing if netIdx == nil { netIdx = NewNetworkIndex() defer netIdx.Release() if netIdx.SetNode(node) || netIdx.AddAllocs(allocs) { return false, "reserved port collision", used, nil } } // Check if the network is overcommitted if netIdx.Overcommitted() { return false, "bandwidth exceeded", used, nil } // Allocations fit! return true, "", used, nil } // ScoreFit is used to score the fit based on the Google work published here: // http://www.columbia.edu/~cs2035/courses/ieor4405.S13/datacenter_scheduling.ppt // This is equivalent to their BestFit v3 func ScoreFit(node *Node, util *Resources) float64 { // Determine the node availability nodeCpu := float64(node.Resources.CPU) if node.Reserved != nil { nodeCpu -= float64(node.Reserved.CPU) } nodeMem := float64(node.Resources.MemoryMB) if node.Reserved != nil { nodeMem -= float64(node.Reserved.MemoryMB) } // Compute the free percentage freePctCpu := 1 - (float64(util.CPU) / nodeCpu) freePctRam := 1 - (float64(util.MemoryMB) / nodeMem) // Total will be "maximized" the smaller the value is. // At 100% utilization, the total is 2, while at 0% util it is 20. total := math.Pow(10, freePctCpu) + math.Pow(10, freePctRam) // Invert so that the "maximized" total represents a high-value // score. Because the floor is 20, we simply use that as an anchor. // This means at a perfect fit, we return 18 as the score. score := 20.0 - total // Bound the score, just in case // If the score is over 18, that means we've overfit the node. if score > 18.0 { score = 18.0 } else if score < 0 { score = 0 } return score } // GenerateUUID is used to generate a random UUID func GenerateUUID() string { buf := make([]byte, 16) if _, err := crand.Read(buf); err != nil { panic(fmt.Errorf("failed to read random bytes: %v", err)) } return fmt.Sprintf("%08x-%04x-%04x-%04x-%12x", buf[0:4], buf[4:6], buf[6:8], buf[8:10], buf[10:16]) } // Helpers for copying generic structures. func CopyMapStringString(m map[string]string) map[string]string { l := len(m) if l == 0 { return nil } c := make(map[string]string, l) for k, v := range m { c[k] = v } return c } func CopyMapStringInt(m map[string]int) map[string]int { l := len(m) if l == 0 { return nil } c := make(map[string]int, l) for k, v := range m { c[k] = v } return c } func CopyMapStringFloat64(m map[string]float64) map[string]float64 { l := len(m) if l == 0 { return nil } c := make(map[string]float64, l) for k, v := range m { c[k] = v } return c } func CopySliceString(s []string) []string { l := len(s) if l == 0 { return nil } c := make([]string, l) for i, v := range s { c[i] = v } return c } func CopySliceInt(s []int) []int { l := len(s) if l == 0 { return nil } c := make([]int, l) for i, v := range s { c[i] = v } return c } func CopySliceConstraints(s []*Constraint) []*Constraint { l := len(s) if l == 0 { return nil } c := make([]*Constraint, l) for i, v := range s { c[i] = v.Copy() } return c } // SliceStringIsSubset returns whether the smaller set of strings is a subset of // the larger. If the smaller slice is not a subset, the offending elements are // returned. func SliceStringIsSubset(larger, smaller []string) (bool, []string) { largerSet := make(map[string]struct{}, len(larger)) for _, l := range larger { largerSet[l] = struct{}{} } subset := true var offending []string for _, s := range smaller { if _, ok := largerSet[s]; !ok { subset = false offending = append(offending, s) } } return subset, offending } func SliceSetDisjoint(first, second []string) (bool, []string) { contained := make(map[string]struct{}, len(first)) for _, k := range first { contained[k] = struct{}{} } offending := make(map[string]struct{}) for _, k := range second { if _, ok := contained[k]; ok { offending[k] = struct{}{} } } if len(offending) == 0 { return true, nil } flattened := make([]string, 0, len(offending)) for k := range offending { flattened = append(flattened, k) } return false, flattened } // VaultPoliciesSet takes the structure returned by VaultPolicies and returns // the set of required policies func VaultPoliciesSet(policies map[string]map[string]*Vault) []string { set := make(map[string]struct{}) for _, tgp := range policies { for _, tp := range tgp { for _, p := range tp.Policies { set[p] = struct{}{} } } } flattened := make([]string, 0, len(set)) for p := range set { flattened = append(flattened, p) } return flattened } // MapStringStringSliceValueSet returns the set of values in a map[string][]string func MapStringStringSliceValueSet(m map[string][]string) []string { set := make(map[string]struct{}) for _, slice := range m { for _, v := range slice { set[v] = struct{}{} } } flat := make([]string, 0, len(set)) for k := range set { flat = append(flat, k) } return flat } func SliceStringToSet(s []string) map[string]struct{} { m := make(map[string]struct{}, (len(s)+1)/2) for _, k := range s { m[k] = struct{}{} } return m }