package scheduler import ( "fmt" "math/rand" "reflect" log "github.com/hashicorp/go-hclog" memdb "github.com/hashicorp/go-memdb" "github.com/hashicorp/nomad/nomad/structs" ) // allocTuple is a tuple of the allocation name and potential alloc ID type allocTuple struct { Name string TaskGroup *structs.TaskGroup Alloc *structs.Allocation } // materializeTaskGroups is used to materialize all the task groups // a job requires. This is used to do the count expansion. func materializeTaskGroups(job *structs.Job) map[string]*structs.TaskGroup { out := make(map[string]*structs.TaskGroup) if job.Stopped() { return out } for _, tg := range job.TaskGroups { for i := 0; i < tg.Count; i++ { name := fmt.Sprintf("%s.%s[%d]", job.Name, tg.Name, i) out[name] = tg } } return out } // diffResult is used to return the sets that result from the diff type diffResult struct { place, update, migrate, stop, ignore, lost []allocTuple } func (d *diffResult) GoString() string { return fmt.Sprintf("allocs: (place %d) (update %d) (migrate %d) (stop %d) (ignore %d) (lost %d)", len(d.place), len(d.update), len(d.migrate), len(d.stop), len(d.ignore), len(d.lost)) } func (d *diffResult) Append(other *diffResult) { d.place = append(d.place, other.place...) d.update = append(d.update, other.update...) d.migrate = append(d.migrate, other.migrate...) d.stop = append(d.stop, other.stop...) d.ignore = append(d.ignore, other.ignore...) d.lost = append(d.lost, other.lost...) } // diffSystemAllocsForNode is used to do a set difference between the target allocations // and the existing allocations for a particular node. This returns 6 sets of results, // the list of named task groups that need to be placed (no existing allocation), the // allocations that need to be updated (job definition is newer), allocs that // need to be migrated (node is draining), the allocs that need to be evicted // (no longer required), those that should be ignored and those that are lost // that need to be replaced (running on a lost node). // // job is the job whose allocs is going to be diff-ed. // taintedNodes is an index of the nodes which are either down or in drain mode // by name. // required is a set of allocations that must exist. // allocs is a list of non terminal allocations. // terminalAllocs is an index of the latest terminal allocations by name. func diffSystemAllocsForNode(job *structs.Job, nodeID string, eligibleNodes, taintedNodes map[string]*structs.Node, required map[string]*structs.TaskGroup, allocs []*structs.Allocation, terminalAllocs map[string]*structs.Allocation) *diffResult { result := &diffResult{} // Scan the existing updates existing := make(map[string]struct{}) for _, exist := range allocs { // Index the existing node name := exist.Name existing[name] = struct{}{} // Check for the definition in the required set tg, ok := required[name] // If not required, we stop the alloc if !ok { result.stop = append(result.stop, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) continue } // If we have been marked for migration and aren't terminal, migrate if !exist.TerminalStatus() && exist.DesiredTransition.ShouldMigrate() { result.migrate = append(result.migrate, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) continue } // If we are on a tainted node, we must migrate if we are a service or // if the batch allocation did not finish if node, ok := taintedNodes[exist.NodeID]; ok { // If the job is batch and finished successfully, the fact that the // node is tainted does not mean it should be migrated or marked as // lost as the work was already successfully finished. However for // service/system jobs, tasks should never complete. The check of // batch type, defends against client bugs. if exist.Job.Type == structs.JobTypeBatch && exist.RanSuccessfully() { goto IGNORE } if !exist.TerminalStatus() && (node == nil || node.TerminalStatus()) { result.lost = append(result.lost, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) } else { goto IGNORE } continue } // For an existing allocation, if the nodeID is no longer // eligible, the diff should be ignored if _, ok := eligibleNodes[nodeID]; !ok { goto IGNORE } // If the definition is updated we need to update if job.JobModifyIndex != exist.Job.JobModifyIndex { result.update = append(result.update, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) continue } // Everything is up-to-date IGNORE: result.ignore = append(result.ignore, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) } // Scan the required groups for name, tg := range required { // Check for an existing allocation _, ok := existing[name] // Require a placement if no existing allocation. If there // is an existing allocation, we would have checked for a potential // update or ignore above. Ignore placements for tainted or // ineligible nodes if !ok { // Tainted and ineligible nodes for a non existing alloc // should be filtered out and not count towards ignore or place if _, tainted := taintedNodes[nodeID]; tainted { continue } if _, eligible := eligibleNodes[nodeID]; !eligible { continue } allocTuple := allocTuple{ Name: name, TaskGroup: tg, Alloc: terminalAllocs[name], } // If the new allocation isn't annotated with a previous allocation // or if the previous allocation isn't from the same node then we // annotate the allocTuple with a new Allocation if allocTuple.Alloc == nil || allocTuple.Alloc.NodeID != nodeID { allocTuple.Alloc = &structs.Allocation{NodeID: nodeID} } result.place = append(result.place, allocTuple) } } return result } // diffSystemAllocs is like diffSystemAllocsForNode however, the allocations in the // diffResult contain the specific nodeID they should be allocated on. // // job is the job whose allocs is going to be diff-ed. // nodes is a list of nodes in ready state. // taintedNodes is an index of the nodes which are either down or in drain mode // by name. // allocs is a list of non terminal allocations. // terminalAllocs is an index of the latest terminal allocations by name. func diffSystemAllocs(job *structs.Job, nodes []*structs.Node, taintedNodes map[string]*structs.Node, allocs []*structs.Allocation, terminalAllocs map[string]*structs.Allocation) *diffResult { // Build a mapping of nodes to all their allocs. nodeAllocs := make(map[string][]*structs.Allocation, len(allocs)) for _, alloc := range allocs { nallocs := append(nodeAllocs[alloc.NodeID], alloc) nodeAllocs[alloc.NodeID] = nallocs } eligibleNodes := make(map[string]*structs.Node) for _, node := range nodes { if _, ok := nodeAllocs[node.ID]; !ok { nodeAllocs[node.ID] = nil } eligibleNodes[node.ID] = node } // Create the required task groups. required := materializeTaskGroups(job) result := &diffResult{} for nodeID, allocs := range nodeAllocs { diff := diffSystemAllocsForNode(job, nodeID, eligibleNodes, taintedNodes, required, allocs, terminalAllocs) result.Append(diff) } return result } // readyNodesInDCs returns all the ready nodes in the given datacenters and a // mapping of each data center to the count of ready nodes. func readyNodesInDCs(state State, dcs []string) ([]*structs.Node, map[string]int, error) { // Index the DCs dcMap := make(map[string]int, len(dcs)) for _, dc := range dcs { dcMap[dc] = 0 } // Scan the nodes ws := memdb.NewWatchSet() var out []*structs.Node iter, err := state.Nodes(ws) if err != nil { return nil, nil, err } for { raw := iter.Next() if raw == nil { break } // Filter on datacenter and status node := raw.(*structs.Node) if node.Status != structs.NodeStatusReady { continue } if node.Drain { continue } if node.SchedulingEligibility != structs.NodeSchedulingEligible { continue } if _, ok := dcMap[node.Datacenter]; !ok { continue } out = append(out, node) dcMap[node.Datacenter]++ } return out, dcMap, nil } // retryMax is used to retry a callback until it returns success or // a maximum number of attempts is reached. An optional reset function may be // passed which is called after each failed iteration. If the reset function is // set and returns true, the number of attempts is reset back to max. func retryMax(max int, cb func() (bool, error), reset func() bool) error { attempts := 0 for attempts < max { done, err := cb() if err != nil { return err } if done { return nil } // Check if we should reset the number attempts if reset != nil && reset() { attempts = 0 } else { attempts++ } } return &SetStatusError{ Err: fmt.Errorf("maximum attempts reached (%d)", max), EvalStatus: structs.EvalStatusFailed, } } // progressMade checks to see if the plan result made allocations or updates. // If the result is nil, false is returned. func progressMade(result *structs.PlanResult) bool { return result != nil && (len(result.NodeUpdate) != 0 || len(result.NodeAllocation) != 0 || result.Deployment != nil || len(result.DeploymentUpdates) != 0) } // taintedNodes is used to scan the allocations and then check if the // underlying nodes are tainted, and should force a migration of the allocation. // All the nodes returned in the map are tainted. func taintedNodes(state State, allocs []*structs.Allocation) (map[string]*structs.Node, error) { out := make(map[string]*structs.Node) for _, alloc := range allocs { if _, ok := out[alloc.NodeID]; ok { continue } ws := memdb.NewWatchSet() node, err := state.NodeByID(ws, alloc.NodeID) if err != nil { return nil, err } // If the node does not exist, we should migrate if node == nil { out[alloc.NodeID] = nil continue } if structs.ShouldDrainNode(node.Status) || node.Drain { out[alloc.NodeID] = node } } return out, nil } // shuffleNodes randomizes the slice order with the Fisher-Yates algorithm func shuffleNodes(nodes []*structs.Node) { n := len(nodes) for i := n - 1; i > 0; i-- { j := rand.Intn(i + 1) nodes[i], nodes[j] = nodes[j], nodes[i] } } // tasksUpdated does a diff between task groups to see if the // tasks, their drivers, environment variables or config have updated. The // inputs are the task group name to diff and two jobs to diff. // taskUpdated and functions called within assume that the given // taskGroup has already been checked to not be nil func tasksUpdated(jobA, jobB *structs.Job, taskGroup string) bool { a := jobA.LookupTaskGroup(taskGroup) b := jobB.LookupTaskGroup(taskGroup) // If the number of tasks do not match, clearly there is an update if len(a.Tasks) != len(b.Tasks) { return true } // Check ephemeral disk if !reflect.DeepEqual(a.EphemeralDisk, b.EphemeralDisk) { return true } // Check that the network resources haven't changed if networkUpdated(a.Networks, b.Networks) { return true } // Check Affinities if affinitiesUpdated(jobA, jobB, taskGroup) { return true } // Check Spreads if spreadsUpdated(jobA, jobB, taskGroup) { return true } // Check each task for _, at := range a.Tasks { bt := b.LookupTask(at.Name) if bt == nil { return true } if at.Driver != bt.Driver { return true } if at.User != bt.User { return true } if !reflect.DeepEqual(at.Config, bt.Config) { return true } if !reflect.DeepEqual(at.Env, bt.Env) { return true } if !reflect.DeepEqual(at.Artifacts, bt.Artifacts) { return true } if !reflect.DeepEqual(at.Vault, bt.Vault) { return true } if !reflect.DeepEqual(at.Templates, bt.Templates) { return true } // Check the metadata if !reflect.DeepEqual( jobA.CombinedTaskMeta(taskGroup, at.Name), jobB.CombinedTaskMeta(taskGroup, bt.Name)) { return true } // Inspect the network to see if the dynamic ports are different if networkUpdated(at.Resources.Networks, bt.Resources.Networks) { return true } // Inspect the non-network resources if ar, br := at.Resources, bt.Resources; ar.CPU != br.CPU { return true } else if ar.MemoryMB != br.MemoryMB { return true } else if !ar.Devices.Equals(&br.Devices) { return true } } return false } func networkUpdated(netA, netB []*structs.NetworkResource) bool { if len(netA) != len(netB) { return true } for idx := range netA { an := netA[idx] bn := netB[idx] if an.Mode != bn.Mode { return true } if an.MBits != bn.MBits { return true } aPorts, bPorts := networkPortMap(an), networkPortMap(bn) if !reflect.DeepEqual(aPorts, bPorts) { return true } } return false } // networkPortMap takes a network resource and returns a map of port labels to // values. The value for dynamic ports is disregarded even if it is set. This // makes this function suitable for comparing two network resources for changes. func networkPortMap(n *structs.NetworkResource) map[string]int { m := make(map[string]int, len(n.DynamicPorts)+len(n.ReservedPorts)) for _, p := range n.ReservedPorts { m[p.Label] = p.Value } for _, p := range n.DynamicPorts { m[p.Label] = -1 } return m } func affinitiesUpdated(jobA, jobB *structs.Job, taskGroup string) bool { var aAffinities []*structs.Affinity var bAffinities []*structs.Affinity tgA := jobA.LookupTaskGroup(taskGroup) tgB := jobB.LookupTaskGroup(taskGroup) // Append jobA job and task group level affinities aAffinities = append(aAffinities, jobA.Affinities...) aAffinities = append(aAffinities, tgA.Affinities...) // Append jobB job and task group level affinities bAffinities = append(bAffinities, jobB.Affinities...) bAffinities = append(bAffinities, tgB.Affinities...) // append task affinities for _, task := range tgA.Tasks { aAffinities = append(aAffinities, task.Affinities...) } for _, task := range tgB.Tasks { bAffinities = append(bAffinities, task.Affinities...) } // Check for equality if len(aAffinities) != len(bAffinities) { return true } return !reflect.DeepEqual(aAffinities, bAffinities) } func spreadsUpdated(jobA, jobB *structs.Job, taskGroup string) bool { var aSpreads []*structs.Spread var bSpreads []*structs.Spread tgA := jobA.LookupTaskGroup(taskGroup) tgB := jobB.LookupTaskGroup(taskGroup) // append jobA and task group level spreads aSpreads = append(aSpreads, jobA.Spreads...) aSpreads = append(aSpreads, tgA.Spreads...) // append jobB and task group level spreads bSpreads = append(bSpreads, jobB.Spreads...) bSpreads = append(bSpreads, tgB.Spreads...) // Check for equality if len(aSpreads) != len(bSpreads) { return true } return !reflect.DeepEqual(aSpreads, bSpreads) } // setStatus is used to update the status of the evaluation func setStatus(logger log.Logger, planner Planner, eval, nextEval, spawnedBlocked *structs.Evaluation, tgMetrics map[string]*structs.AllocMetric, status, desc string, queuedAllocs map[string]int, deploymentID string) error { logger.Debug("setting eval status", "status", status) newEval := eval.Copy() newEval.Status = status newEval.StatusDescription = desc newEval.DeploymentID = deploymentID newEval.FailedTGAllocs = tgMetrics if nextEval != nil { newEval.NextEval = nextEval.ID } if spawnedBlocked != nil { newEval.BlockedEval = spawnedBlocked.ID } if queuedAllocs != nil { newEval.QueuedAllocations = queuedAllocs } return planner.UpdateEval(newEval) } // inplaceUpdate attempts to update allocations in-place where possible. It // returns the allocs that couldn't be done inplace and then those that could. func inplaceUpdate(ctx Context, eval *structs.Evaluation, job *structs.Job, stack Stack, updates []allocTuple) (destructive, inplace []allocTuple) { // doInplace manipulates the updates map to make the current allocation // an inplace update. doInplace := func(cur, last, inplaceCount *int) { updates[*cur], updates[*last-1] = updates[*last-1], updates[*cur] *cur-- *last-- *inplaceCount++ } ws := memdb.NewWatchSet() n := len(updates) inplaceCount := 0 for i := 0; i < n; i++ { // Get the update update := updates[i] // Check if the task drivers or config has changed, requires // a rolling upgrade since that cannot be done in-place. existing := update.Alloc.Job if tasksUpdated(job, existing, update.TaskGroup.Name) { continue } // Terminal batch allocations are not filtered when they are completed // successfully. We should avoid adding the allocation to the plan in // the case that it is an in-place update to avoid both additional data // in the plan and work for the clients. if update.Alloc.TerminalStatus() { doInplace(&i, &n, &inplaceCount) continue } // Get the existing node node, err := ctx.State().NodeByID(ws, update.Alloc.NodeID) if err != nil { ctx.Logger().Error("failed to get node", "node_id", update.Alloc.NodeID, "error", err) continue } if node == nil { continue } // Set the existing node as the base set stack.SetNodes([]*structs.Node{node}) // Stage an eviction of the current allocation. This is done so that // the current allocation is discounted when checking for feasibility. // Otherwise we would be trying to fit the tasks current resources and // updated resources. After select is called we can remove the evict. ctx.Plan().AppendStoppedAlloc(update.Alloc, allocInPlace, "") // Attempt to match the task group option := stack.Select(update.TaskGroup, nil) // This select only looks at one node so we don't pass selectOptions // Pop the allocation ctx.Plan().PopUpdate(update.Alloc) // Skip if we could not do an in-place update if option == nil { continue } // Restore the network offers from the existing allocation. // We do not allow network resources (reserved/dynamic ports) // to be updated. This is guarded in taskUpdated, so we can // safely restore those here. for task, resources := range option.TaskResources { var networks structs.Networks if update.Alloc.AllocatedResources != nil { if tr, ok := update.Alloc.AllocatedResources.Tasks[task]; ok { networks = tr.Networks } } else if tr, ok := update.Alloc.TaskResources[task]; ok { networks = tr.Networks } // Add thhe networks back resources.Networks = networks } // Create a shallow copy newAlloc := new(structs.Allocation) *newAlloc = *update.Alloc // Update the allocation newAlloc.EvalID = eval.ID newAlloc.Job = nil // Use the Job in the Plan newAlloc.Resources = nil // Computed in Plan Apply newAlloc.AllocatedResources = &structs.AllocatedResources{ Tasks: option.TaskResources, TaskLifecycles: option.TaskLifecycles, Shared: structs.AllocatedSharedResources{ DiskMB: int64(update.TaskGroup.EphemeralDisk.SizeMB), }, } newAlloc.Metrics = ctx.Metrics() ctx.Plan().AppendAlloc(newAlloc) // Remove this allocation from the slice doInplace(&i, &n, &inplaceCount) } if len(updates) > 0 { ctx.Logger().Debug("made in-place updates", "in-place", inplaceCount, "total_updates", len(updates)) } return updates[:n], updates[n:] } // evictAndPlace is used to mark allocations for evicts and add them to the // placement queue. evictAndPlace modifies both the diffResult and the // limit. It returns true if the limit has been reached. func evictAndPlace(ctx Context, diff *diffResult, allocs []allocTuple, desc string, limit *int) bool { n := len(allocs) for i := 0; i < n && i < *limit; i++ { a := allocs[i] ctx.Plan().AppendStoppedAlloc(a.Alloc, desc, "") diff.place = append(diff.place, a) } if n <= *limit { *limit -= n return false } *limit = 0 return true } // tgConstrainTuple is used to store the total constraints of a task group. type tgConstrainTuple struct { // Holds the combined constraints of the task group and all it's sub-tasks. constraints []*structs.Constraint // The set of required drivers within the task group. drivers map[string]struct{} } // taskGroupConstraints collects the constraints, drivers and resources required by each // sub-task to aggregate the TaskGroup totals func taskGroupConstraints(tg *structs.TaskGroup) tgConstrainTuple { c := tgConstrainTuple{ constraints: make([]*structs.Constraint, 0, len(tg.Constraints)), drivers: make(map[string]struct{}), } c.constraints = append(c.constraints, tg.Constraints...) for _, task := range tg.Tasks { c.drivers[task.Driver] = struct{}{} c.constraints = append(c.constraints, task.Constraints...) } return c } // desiredUpdates takes the diffResult as well as the set of inplace and // destructive updates and returns a map of task groups to their set of desired // updates. func desiredUpdates(diff *diffResult, inplaceUpdates, destructiveUpdates []allocTuple) map[string]*structs.DesiredUpdates { desiredTgs := make(map[string]*structs.DesiredUpdates) for _, tuple := range diff.place { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Place++ } for _, tuple := range diff.stop { name := tuple.Alloc.TaskGroup des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Stop++ } for _, tuple := range diff.ignore { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Ignore++ } for _, tuple := range diff.migrate { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Migrate++ } for _, tuple := range inplaceUpdates { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.InPlaceUpdate++ } for _, tuple := range destructiveUpdates { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.DestructiveUpdate++ } return desiredTgs } // adjustQueuedAllocations decrements the number of allocations pending per task // group based on the number of allocations successfully placed func adjustQueuedAllocations(logger log.Logger, result *structs.PlanResult, queuedAllocs map[string]int) { if result == nil { return } for _, allocations := range result.NodeAllocation { for _, allocation := range allocations { // Ensure that the allocation is newly created. We check that // the CreateIndex is equal to the ModifyIndex in order to check // that the allocation was just created. We do not check that // the CreateIndex is equal to the results AllocIndex because // the allocations we get back have gone through the planner's // optimistic snapshot and thus their indexes may not be // correct, but they will be consistent. if allocation.CreateIndex != allocation.ModifyIndex { continue } if _, ok := queuedAllocs[allocation.TaskGroup]; ok { queuedAllocs[allocation.TaskGroup]-- } else { logger.Error("allocation placed but task group is not in list of unplaced allocations", "task_group", allocation.TaskGroup) } } } } // updateNonTerminalAllocsToLost updates the allocations which are in pending/running state on tainted node // to lost func updateNonTerminalAllocsToLost(plan *structs.Plan, tainted map[string]*structs.Node, allocs []*structs.Allocation) { for _, alloc := range allocs { node, ok := tainted[alloc.NodeID] if !ok { continue } // Only handle down nodes or nodes that are gone (node == nil) if node != nil && node.Status != structs.NodeStatusDown { continue } // If the scheduler has marked it as stop or evict already but the alloc // wasn't terminal on the client change the status to lost. if (alloc.DesiredStatus == structs.AllocDesiredStatusStop || alloc.DesiredStatus == structs.AllocDesiredStatusEvict) && (alloc.ClientStatus == structs.AllocClientStatusRunning || alloc.ClientStatus == structs.AllocClientStatusPending) { plan.AppendStoppedAlloc(alloc, allocLost, structs.AllocClientStatusLost) } } } // genericAllocUpdateFn is a factory for the scheduler to create an allocUpdateType // function to be passed into the reconciler. The factory takes objects that // exist only in the scheduler context and returns a function that can be used // by the reconciler to make decisions about how to update an allocation. The // factory allows the reconciler to be unaware of how to determine the type of // update necessary and can minimize the set of objects it is exposed to. func genericAllocUpdateFn(ctx Context, stack Stack, evalID string) allocUpdateType { return func(existing *structs.Allocation, newJob *structs.Job, newTG *structs.TaskGroup) (ignore, destructive bool, updated *structs.Allocation) { // Same index, so nothing to do if existing.Job.JobModifyIndex == newJob.JobModifyIndex { return true, false, nil } // Check if the task drivers or config has changed, requires // a destructive upgrade since that cannot be done in-place. if tasksUpdated(newJob, existing.Job, newTG.Name) { return false, true, nil } // Terminal batch allocations are not filtered when they are completed // successfully. We should avoid adding the allocation to the plan in // the case that it is an in-place update to avoid both additional data // in the plan and work for the clients. if existing.TerminalStatus() { return true, false, nil } // Get the existing node ws := memdb.NewWatchSet() node, err := ctx.State().NodeByID(ws, existing.NodeID) if err != nil { ctx.Logger().Error("failed to get node", "node_id", existing.NodeID, "error", err) return true, false, nil } if node == nil { return false, true, nil } // Set the existing node as the base set stack.SetNodes([]*structs.Node{node}) // Stage an eviction of the current allocation. This is done so that // the current allocation is discounted when checking for feasibility. // Otherwise we would be trying to fit the tasks current resources and // updated resources. After select is called we can remove the evict. ctx.Plan().AppendStoppedAlloc(existing, allocInPlace, "") // Attempt to match the task group option := stack.Select(newTG, nil) // This select only looks at one node so we don't pass selectOptions // Pop the allocation ctx.Plan().PopUpdate(existing) // Require destructive if we could not do an in-place update if option == nil { return false, true, nil } // Restore the network offers from the existing allocation. // We do not allow network resources (reserved/dynamic ports) // to be updated. This is guarded in taskUpdated, so we can // safely restore those here. for task, resources := range option.TaskResources { var networks structs.Networks if existing.AllocatedResources != nil { if tr, ok := existing.AllocatedResources.Tasks[task]; ok { networks = tr.Networks } } else if tr, ok := existing.TaskResources[task]; ok { networks = tr.Networks } // Add the networks back resources.Networks = networks } // Create a shallow copy newAlloc := new(structs.Allocation) *newAlloc = *existing // Update the allocation newAlloc.EvalID = evalID newAlloc.Job = nil // Use the Job in the Plan newAlloc.Resources = nil // Computed in Plan Apply newAlloc.AllocatedResources = &structs.AllocatedResources{ Tasks: option.TaskResources, TaskLifecycles: option.TaskLifecycles, Shared: structs.AllocatedSharedResources{ DiskMB: int64(newTG.EphemeralDisk.SizeMB), }, } // Since this is an inplace update, we should copy network // information from the original alloc. This is similar to how // we copy network info for task level networks above. // // existing.AllocatedResources is nil on Allocations created by // Nomad v0.8 or earlier. if existing.AllocatedResources != nil { newAlloc.AllocatedResources.Shared.Networks = existing.AllocatedResources.Shared.Networks } // Use metrics from existing alloc for in place upgrade // This is because if the inplace upgrade succeeded, any scoring metadata from // when it first went through the scheduler should still be preserved. Using scoring // metadata from the context would incorrectly replace it with metadata only from a single node that the // allocation is already on. newAlloc.Metrics = existing.Metrics.Copy() return false, false, newAlloc } }