package nomad import ( "container/heap" "errors" "fmt" "math/rand" "sync" "time" "github.com/armon/go-metrics" "github.com/hashicorp/nomad/nomad/structs" ) const ( // failedQueue is the queue we add Evaluations to once // they've reached the deliveryLimit. This allows the leader to // set the status to failed. failedQueue = "_failed" ) var ( // ErrNotOutstanding is returned if an evaluation is not outstanding ErrNotOutstanding = errors.New("evaluation is not outstanding") // ErrTokenMismatch is the outstanding eval has a different token ErrTokenMismatch = errors.New("evaluation token does not match") // ErrNackTimeoutReached is returned if an expired evaluation is reset ErrNackTimeoutReached = errors.New("evaluation nack timeout reached") ) // EvalBroker is used to manage brokering of evaluations. When an evaluation is // created, due to a change in a job specification or a node, we put it into the // broker. The broker sorts by evaluations by priority and scheduler type. This // allows us to dequeue the highest priority work first, while also allowing sub-schedulers // to only dequeue work they know how to handle. The broker is designed to be entirely // in-memory and is managed by the leader node. // // The broker must provide at-least-once delivery semantics. It relies on explicit // Ack/Nack messages to handle this. If a delivery is not Ack'd in a sufficient time // span, it will be assumed Nack'd. type EvalBroker struct { nackTimeout time.Duration deliveryLimit int enabled bool stats *BrokerStats // evals tracks queued evaluations by ID to de-duplicate enqueue. // The counter is the number of times we've attempted delivery, // and is used to eventually fail an evaluation. evals map[string]int // jobEvals tracks queued evaluations by JobID to serialize them jobEvals map[string]string // blocked tracks the blocked evaluations by JobID in a priority queue blocked map[string]PendingEvaluations // ready tracks the ready jobs by scheduler in a priority queue ready map[string]PendingEvaluations // unack is a map of evalID to an un-acknowledged evaluation unack map[string]*unackEval // waiting is used to notify on a per-scheduler basis of ready work waiting map[string]chan struct{} // timeWait has evaluations that are waiting for time to elapse timeWait map[string]*time.Timer l sync.RWMutex } // unackEval tracks an unacknowledged evaluation along with the Nack timer type unackEval struct { Eval *structs.Evaluation Token string NackTimer *time.Timer } // PendingEvaluations is a list of waiting evaluations. // We implement the container/heap interface so that this is a // priority queue type PendingEvaluations []*structs.Evaluation // NewEvalBroker creates a new evaluation broker. This is parameterized // with the timeout used for messages that are not acknowledged before we // assume a Nack and attempt to redeliver as well as the deliveryLimit // which prevents a failing eval from being endlessly delivered. func NewEvalBroker(timeout time.Duration, deliveryLimit int) (*EvalBroker, error) { if timeout < 0 { return nil, fmt.Errorf("timeout cannot be negative") } b := &EvalBroker{ nackTimeout: timeout, deliveryLimit: deliveryLimit, enabled: false, stats: new(BrokerStats), evals: make(map[string]int), jobEvals: make(map[string]string), blocked: make(map[string]PendingEvaluations), ready: make(map[string]PendingEvaluations), unack: make(map[string]*unackEval), waiting: make(map[string]chan struct{}), timeWait: make(map[string]*time.Timer), } b.stats.ByScheduler = make(map[string]*SchedulerStats) return b, nil } // Enabled is used to check if the broker is enabled. func (b *EvalBroker) Enabled() bool { b.l.RLock() defer b.l.RUnlock() return b.enabled } // SetEnabled is used to control if the broker is enabled. The broker // should only be enabled on the active leader. func (b *EvalBroker) SetEnabled(enabled bool) { b.l.Lock() b.enabled = enabled b.l.Unlock() if !enabled { b.Flush() } } // Enqueue is used to enqueue an evaluation func (b *EvalBroker) Enqueue(eval *structs.Evaluation) error { b.l.Lock() defer b.l.Unlock() // Check if already enqueued if _, ok := b.evals[eval.ID]; ok { return nil } else if b.enabled { b.evals[eval.ID] = 0 } // Check if we need to enforce a wait if eval.Wait > 0 { timer := time.AfterFunc(eval.Wait, func() { b.enqueueWaiting(eval) }) b.timeWait[eval.ID] = timer b.stats.TotalWaiting += 1 return nil } b.enqueueLocked(eval, eval.Type) return nil } // enqueueWaiting is used to enqueue a waiting evaluation func (b *EvalBroker) enqueueWaiting(eval *structs.Evaluation) { b.l.Lock() defer b.l.Unlock() delete(b.timeWait, eval.ID) b.stats.TotalWaiting -= 1 b.enqueueLocked(eval, eval.Type) } // enqueueLocked is used to enqueue with the lock held func (b *EvalBroker) enqueueLocked(eval *structs.Evaluation, queue string) { // Do nothing if not enabled if !b.enabled { return } // Check if there is an evaluation for this JobID pending pendingEval := b.jobEvals[eval.JobID] if pendingEval == "" { b.jobEvals[eval.JobID] = eval.ID } else if pendingEval != eval.ID { blocked := b.blocked[eval.JobID] heap.Push(&blocked, eval) b.blocked[eval.JobID] = blocked b.stats.TotalBlocked += 1 return } // Find the pending by scheduler class pending, ok := b.ready[queue] if !ok { pending = make([]*structs.Evaluation, 0, 16) if _, ok := b.waiting[queue]; !ok { b.waiting[queue] = make(chan struct{}, 1) } } // Push onto the heap heap.Push(&pending, eval) b.ready[queue] = pending // Update the stats b.stats.TotalReady += 1 bySched, ok := b.stats.ByScheduler[queue] if !ok { bySched = &SchedulerStats{} b.stats.ByScheduler[queue] = bySched } bySched.Ready += 1 // Unblock any blocked dequeues select { case b.waiting[queue] <- struct{}{}: default: } } // Dequeue is used to perform a blocking dequeue func (b *EvalBroker) Dequeue(schedulers []string, timeout time.Duration) (*structs.Evaluation, string, error) { var timeoutTimer *time.Timer SCAN: // Scan for work eval, token, err := b.scanForSchedulers(schedulers) if err != nil { if timeoutTimer != nil { timeoutTimer.Stop() } return nil, "", err } // Check if we have something if eval != nil { if timeoutTimer != nil { timeoutTimer.Stop() } return eval, token, nil } // Setup the timeout channel the first time around if timeoutTimer == nil && timeout != 0 { timeoutTimer = time.NewTimer(timeout) } // Block until we get work scan := b.waitForSchedulers(schedulers, timeoutTimer.C) if scan { goto SCAN } return nil, "", nil } // scanForSchedulers scans for work on any of the schedulers. The highest priority work // is dequeued first. This may return nothing if there is no work waiting. func (b *EvalBroker) scanForSchedulers(schedulers []string) (*structs.Evaluation, string, error) { b.l.Lock() defer b.l.Unlock() // Do nothing if not enabled if !b.enabled { return nil, "", fmt.Errorf("eval broker disabled") } // Scan for eligible work var eligibleSched []string var eligiblePriority int for _, sched := range schedulers { // Get the pending queue pending, ok := b.ready[sched] if !ok { continue } // Peek at the next item ready := pending.Peek() if ready == nil { continue } // Add to eligible if equal or greater priority if len(eligibleSched) == 0 || ready.Priority > eligiblePriority { eligibleSched = []string{sched} eligiblePriority = ready.Priority } else if eligiblePriority > ready.Priority { continue } else if eligiblePriority == ready.Priority { eligibleSched = append(eligibleSched, sched) } } // Determine behavior based on eligible work switch n := len(eligibleSched); n { case 0: // No work to do! return nil, "", nil case 1: // Only a single task, dequeue return b.dequeueForSched(eligibleSched[0]) default: // Multiple tasks. We pick a random task so that we fairly // distribute work. offset := rand.Int63() % int64(n) return b.dequeueForSched(eligibleSched[offset]) } } // dequeueForSched is used to dequeue the next work item for a given scheduler. // This assumes locks are held and that this scheduler has work func (b *EvalBroker) dequeueForSched(sched string) (*structs.Evaluation, string, error) { // Get the pending queue pending := b.ready[sched] raw := heap.Pop(&pending) b.ready[sched] = pending eval := raw.(*structs.Evaluation) // Generate a UUID for the token token := structs.GenerateUUID() // Setup Nack timer nackTimer := time.AfterFunc(b.nackTimeout, func() { b.Nack(eval.ID, token) }) // Add to the unack queue b.unack[eval.ID] = &unackEval{ Eval: eval, Token: token, NackTimer: nackTimer, } // Increment the dequeue count b.evals[eval.ID] += 1 // Update the stats b.stats.TotalReady -= 1 b.stats.TotalUnacked += 1 bySched := b.stats.ByScheduler[sched] bySched.Ready -= 1 bySched.Unacked += 1 return eval, token, nil } // waitForSchedulers is used to wait for work on any of the scheduler or until a timeout. // Returns if there is work waiting potentially. func (b *EvalBroker) waitForSchedulers(schedulers []string, timeoutCh <-chan time.Time) bool { doneCh := make(chan struct{}) readyCh := make(chan struct{}, 1) defer close(doneCh) // Start all the watchers b.l.Lock() for _, sched := range schedulers { waitCh, ok := b.waiting[sched] if !ok { waitCh = make(chan struct{}, 1) b.waiting[sched] = waitCh } // Start a goroutine that either waits for the waitCh on this scheduler // to unblock or for this waitForSchedulers call to return go func() { select { case <-waitCh: select { case readyCh <- struct{}{}: default: } case <-doneCh: } }() } b.l.Unlock() // Block until we have ready work and should scan, or until we timeout // and should not make an attempt to scan for work select { case <-readyCh: return true case <-timeoutCh: return false } } // Outstanding checks if an EvalID has been delivered but not acknowledged // and returns the associated token for the evaluation. func (b *EvalBroker) Outstanding(evalID string) (string, bool) { b.l.RLock() defer b.l.RUnlock() unack, ok := b.unack[evalID] if !ok { return "", false } return unack.Token, true } // OutstandingReset resets the Nack timer for the EvalID if the // token matches and the eval is outstanding func (b *EvalBroker) OutstandingReset(evalID, token string) error { b.l.RLock() defer b.l.RUnlock() unack, ok := b.unack[evalID] if !ok { return ErrNotOutstanding } if unack.Token != token { return ErrTokenMismatch } if !unack.NackTimer.Reset(b.nackTimeout) { return ErrNackTimeoutReached } return nil } // Ack is used to positively acknowledge handling an evaluation func (b *EvalBroker) Ack(evalID, token string) error { b.l.Lock() defer b.l.Unlock() // Lookup the unack'd eval unack, ok := b.unack[evalID] if !ok { return fmt.Errorf("Evaluation ID not found") } if unack.Token != token { return fmt.Errorf("Token does not match for Evaluation ID") } jobID := unack.Eval.JobID // Ensure we were able to stop the timer if !unack.NackTimer.Stop() { return fmt.Errorf("Evaluation ID Ack'd after Nack timer expiration") } // Update the stats b.stats.TotalUnacked -= 1 queue := unack.Eval.Type if b.evals[evalID] >= b.deliveryLimit { queue = failedQueue } bySched := b.stats.ByScheduler[queue] bySched.Unacked -= 1 // Cleanup delete(b.unack, evalID) delete(b.evals, evalID) delete(b.jobEvals, jobID) // Check if there are any blocked evaluations if blocked := b.blocked[jobID]; len(blocked) != 0 { raw := heap.Pop(&blocked) if len(blocked) > 0 { b.blocked[jobID] = blocked } else { delete(b.blocked, jobID) } eval := raw.(*structs.Evaluation) b.stats.TotalBlocked -= 1 b.enqueueLocked(eval, eval.Type) return nil } return nil } // Nack is used to negatively acknowledge handling an evaluation func (b *EvalBroker) Nack(evalID, token string) error { b.l.Lock() defer b.l.Unlock() // Lookup the unack'd eval unack, ok := b.unack[evalID] if !ok { return fmt.Errorf("Evaluation ID not found") } if unack.Token != token { return fmt.Errorf("Token does not match for Evaluation ID") } // Stop the timer, doesn't matter if we've missed it unack.NackTimer.Stop() // Cleanup delete(b.unack, evalID) // Update the stats b.stats.TotalUnacked -= 1 bySched := b.stats.ByScheduler[unack.Eval.Type] bySched.Unacked -= 1 // Check if we've hit the delivery limit, and re-enqueue // in the failedQueue if b.evals[evalID] >= b.deliveryLimit { b.enqueueLocked(unack.Eval, failedQueue) } else { b.enqueueLocked(unack.Eval, unack.Eval.Type) } return nil } // Flush is used to clear the state of the broker func (b *EvalBroker) Flush() { b.l.Lock() defer b.l.Unlock() // Unblock any waiters for _, waitCh := range b.waiting { close(waitCh) } b.waiting = make(map[string]chan struct{}) // Cancel any Nack timers for _, unack := range b.unack { unack.NackTimer.Stop() } // Cancel any time wait evals for _, wait := range b.timeWait { wait.Stop() } // Reset the broker b.stats.TotalReady = 0 b.stats.TotalUnacked = 0 b.stats.TotalBlocked = 0 b.stats.TotalWaiting = 0 b.stats.ByScheduler = make(map[string]*SchedulerStats) b.evals = make(map[string]int) b.jobEvals = make(map[string]string) b.blocked = make(map[string]PendingEvaluations) b.ready = make(map[string]PendingEvaluations) b.unack = make(map[string]*unackEval) b.timeWait = make(map[string]*time.Timer) } // Stats is used to query the state of the broker func (b *EvalBroker) Stats() *BrokerStats { // Allocate a new stats struct stats := new(BrokerStats) stats.ByScheduler = make(map[string]*SchedulerStats) b.l.RLock() defer b.l.RUnlock() // Copy all the stats stats.TotalReady = b.stats.TotalReady stats.TotalUnacked = b.stats.TotalUnacked stats.TotalBlocked = b.stats.TotalBlocked stats.TotalWaiting = b.stats.TotalWaiting for sched, subStat := range b.stats.ByScheduler { subStatCopy := new(SchedulerStats) *subStatCopy = *subStat stats.ByScheduler[sched] = subStatCopy } return stats } // EmitStats is used to export metrics about the broker while enabled func (b *EvalBroker) EmitStats(period time.Duration, stopCh chan struct{}) { for { select { case <-time.After(period): stats := b.Stats() metrics.SetGauge([]string{"nomad", "broker", "total_ready"}, float32(stats.TotalReady)) metrics.SetGauge([]string{"nomad", "broker", "total_unacked"}, float32(stats.TotalUnacked)) metrics.SetGauge([]string{"nomad", "broker", "total_blocked"}, float32(stats.TotalBlocked)) metrics.SetGauge([]string{"nomad", "broker", "total_waiting"}, float32(stats.TotalWaiting)) for sched, schedStats := range stats.ByScheduler { metrics.SetGauge([]string{"nomad", "broker", sched, "ready"}, float32(schedStats.Ready)) metrics.SetGauge([]string{"nomad", "broker", sched, "unacked"}, float32(schedStats.Unacked)) } case <-stopCh: return } } } // BrokerStats returns all the stats about the broker type BrokerStats struct { TotalReady int TotalUnacked int TotalBlocked int TotalWaiting int ByScheduler map[string]*SchedulerStats } // SchedulerStats returns the stats per scheduler type SchedulerStats struct { Ready int Unacked int } // Len is for the sorting interface func (p PendingEvaluations) Len() int { return len(p) } // Less is for the sorting interface. We flip the check // so that the "min" in the min-heap is the element with the // highest priority func (p PendingEvaluations) Less(i, j int) bool { if p[i].JobID != p[j].JobID && p[i].Priority != p[j].Priority { return !(p[i].Priority < p[j].Priority) } return p[i].CreateIndex < p[j].CreateIndex } // Swap is for the sorting interface func (p PendingEvaluations) Swap(i, j int) { p[i], p[j] = p[j], p[i] } // Push is used to add a new evalution to the slice func (p *PendingEvaluations) Push(e interface{}) { *p = append(*p, e.(*structs.Evaluation)) } // Pop is used to remove an evaluation from the slice func (p *PendingEvaluations) Pop() interface{} { n := len(*p) e := (*p)[n-1] (*p)[n-1] = nil *p = (*p)[:n-1] return e } // Peek is used to peek at the next element that would be popped func (p PendingEvaluations) Peek() *structs.Evaluation { n := len(p) if n == 0 { return nil } return p[n-1] }