package scheduler import ( "fmt" "log" memdb "github.com/hashicorp/go-memdb" "github.com/hashicorp/go-multierror" "github.com/hashicorp/nomad/nomad/structs" ) const ( // maxServiceScheduleAttempts is used to limit the number of times // we will attempt to schedule if we continue to hit conflicts for services. maxServiceScheduleAttempts = 5 // maxBatchScheduleAttempts is used to limit the number of times // we will attempt to schedule if we continue to hit conflicts for batch. maxBatchScheduleAttempts = 2 // allocNotNeeded is the status used when a job no longer requires an allocation allocNotNeeded = "alloc not needed due to job update" // allocMigrating is the status used when we must migrate an allocation allocMigrating = "alloc is being migrated" // allocUpdating is the status used when a job requires an update allocUpdating = "alloc is being updated due to job update" // allocLost is the status used when an allocation is lost allocLost = "alloc is lost since its node is down" // allocInPlace is the status used when speculating on an in-place update allocInPlace = "alloc updating in-place" // blockedEvalMaxPlanDesc is the description used for blocked evals that are // a result of hitting the max number of plan attempts blockedEvalMaxPlanDesc = "created due to placement conflicts" // blockedEvalFailedPlacements is the description used for blocked evals // that are a result of failing to place all allocations. blockedEvalFailedPlacements = "created to place remaining allocations" ) // SetStatusError is used to set the status of the evaluation to the given error type SetStatusError struct { Err error EvalStatus string } func (s *SetStatusError) Error() string { return s.Err.Error() } // GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is // designed for long-lived services, and as such spends more time attemping // to make a high quality placement. This is the primary scheduler for // most workloads. It also supports a 'batch' mode to optimize for fast decision // making at the cost of quality. type GenericScheduler struct { logger *log.Logger state State planner Planner batch bool eval *structs.Evaluation job *structs.Job plan *structs.Plan planResult *structs.PlanResult ctx *EvalContext stack *GenericStack limitReached bool nextEval *structs.Evaluation blocked *structs.Evaluation failedTGAllocs map[string]*structs.AllocMetric queuedAllocs map[string]int } // NewServiceScheduler is a factory function to instantiate a new service scheduler func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler { s := &GenericScheduler{ logger: logger, state: state, planner: planner, batch: false, } return s } // NewBatchScheduler is a factory function to instantiate a new batch scheduler func NewBatchScheduler(logger *log.Logger, state State, planner Planner) Scheduler { s := &GenericScheduler{ logger: logger, state: state, planner: planner, batch: true, } return s } // Process is used to handle a single evaluation func (s *GenericScheduler) Process(eval *structs.Evaluation) error { // Store the evaluation s.eval = eval // Verify the evaluation trigger reason is understood switch eval.TriggeredBy { case structs.EvalTriggerJobRegister, structs.EvalTriggerNodeUpdate, structs.EvalTriggerJobDeregister, structs.EvalTriggerRollingUpdate, structs.EvalTriggerPeriodicJob, structs.EvalTriggerMaxPlans: default: desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason", eval.TriggeredBy) return setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked, s.failedTGAllocs, structs.EvalStatusFailed, desc, s.queuedAllocs) } // Retry up to the maxScheduleAttempts and reset if progress is made. progress := func() bool { return progressMade(s.planResult) } limit := maxServiceScheduleAttempts if s.batch { limit = maxBatchScheduleAttempts } if err := retryMax(limit, s.process, progress); err != nil { if statusErr, ok := err.(*SetStatusError); ok { // Scheduling was tried but made no forward progress so create a // blocked eval to retry once resources become available. var mErr multierror.Error if err := s.createBlockedEval(true); err != nil { mErr.Errors = append(mErr.Errors, err) } if err := setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked, s.failedTGAllocs, statusErr.EvalStatus, err.Error(), s.queuedAllocs); err != nil { mErr.Errors = append(mErr.Errors, err) } return mErr.ErrorOrNil() } return err } // If the current evaluation is a blocked evaluation and we didn't place // everything, do not update the status to complete. if s.eval.Status == structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 { e := s.ctx.Eligibility() newEval := s.eval.Copy() newEval.EscapedComputedClass = e.HasEscaped() newEval.ClassEligibility = e.GetClasses() return s.planner.ReblockEval(newEval) } // Update the status to complete return setStatus(s.logger, s.planner, s.eval, s.nextEval, s.blocked, s.failedTGAllocs, structs.EvalStatusComplete, "", s.queuedAllocs) } // createBlockedEval creates a blocked eval and submits it to the planner. If // failure is set to true, the eval's trigger reason reflects that. func (s *GenericScheduler) createBlockedEval(planFailure bool) error { e := s.ctx.Eligibility() escaped := e.HasEscaped() // Only store the eligible classes if the eval hasn't escaped. var classEligibility map[string]bool if !escaped { classEligibility = e.GetClasses() } s.blocked = s.eval.CreateBlockedEval(classEligibility, escaped) if planFailure { s.blocked.TriggeredBy = structs.EvalTriggerMaxPlans s.blocked.StatusDescription = blockedEvalMaxPlanDesc } else { s.blocked.StatusDescription = blockedEvalFailedPlacements } return s.planner.CreateEval(s.blocked) } // process is wrapped in retryMax to iteratively run the handler until we have no // further work or we've made the maximum number of attempts. func (s *GenericScheduler) process() (bool, error) { // Lookup the Job by ID var err error ws := memdb.NewWatchSet() s.job, err = s.state.JobByID(ws, s.eval.JobID) if err != nil { return false, fmt.Errorf("failed to get job '%s': %v", s.eval.JobID, err) } numTaskGroups := 0 if !s.job.Stopped() { numTaskGroups = len(s.job.TaskGroups) } s.queuedAllocs = make(map[string]int, numTaskGroups) // Create a plan s.plan = s.eval.MakePlan(s.job) // Reset the failed allocations s.failedTGAllocs = nil // Create an evaluation context s.ctx = NewEvalContext(s.state, s.plan, s.logger) // Construct the placement stack s.stack = NewGenericStack(s.batch, s.ctx) if !s.job.Stopped() { s.stack.SetJob(s.job) } // Compute the target job allocations if err := s.computeJobAllocs(); err != nil { s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err) return false, err } // If there are failed allocations, we need to create a blocked evaluation // to place the failed allocations when resources become available. If the // current evaluation is already a blocked eval, we reuse it. if s.eval.Status != structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 && s.blocked == nil { if err := s.createBlockedEval(false); err != nil { s.logger.Printf("[ERR] sched: %#v failed to make blocked eval: %v", s.eval, err) return false, err } s.logger.Printf("[DEBUG] sched: %#v: failed to place all allocations, blocked eval '%s' created", s.eval, s.blocked.ID) } // If the plan is a no-op, we can bail. If AnnotatePlan is set submit the plan // anyways to get the annotations. if s.plan.IsNoOp() && !s.eval.AnnotatePlan { return true, nil } // If the limit of placements was reached we need to create an evaluation // to pickup from here after the stagger period. if s.limitReached && s.nextEval == nil { s.nextEval = s.eval.NextRollingEval(s.job.Update.Stagger) if err := s.planner.CreateEval(s.nextEval); err != nil { s.logger.Printf("[ERR] sched: %#v failed to make next eval for rolling update: %v", s.eval, err) return false, err } s.logger.Printf("[DEBUG] sched: %#v: rolling update limit reached, next eval '%s' created", s.eval, s.nextEval.ID) } // Submit the plan and store the results. result, newState, err := s.planner.SubmitPlan(s.plan) s.planResult = result if err != nil { return false, err } // Decrement the number of allocations pending per task group based on the // number of allocations successfully placed adjustQueuedAllocations(s.logger, result, s.queuedAllocs) // If we got a state refresh, try again since we have stale data if newState != nil { s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval) s.state = newState return false, nil } // Try again if the plan was not fully committed, potential conflict fullCommit, expected, actual := result.FullCommit(s.plan) if !fullCommit { s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed", s.eval, expected, actual) if newState == nil { return false, fmt.Errorf("missing state refresh after partial commit") } return false, nil } // Success! return true, nil } // filterCompleteAllocs filters allocations that are terminal and should be // re-placed. func (s *GenericScheduler) filterCompleteAllocs(allocs []*structs.Allocation) ([]*structs.Allocation, map[string]*structs.Allocation) { filter := func(a *structs.Allocation) bool { if s.batch { // Allocs from batch jobs should be filtered when the desired status // is terminal and the client did not finish or when the client // status is failed so that they will be replaced. If they are // complete but not failed, they shouldn't be replaced. switch a.DesiredStatus { case structs.AllocDesiredStatusStop, structs.AllocDesiredStatusEvict: return !a.RanSuccessfully() default: } switch a.ClientStatus { case structs.AllocClientStatusFailed: return true default: return false } } // Filter terminal, non batch allocations return a.TerminalStatus() } terminalAllocsByName := make(map[string]*structs.Allocation) n := len(allocs) for i := 0; i < n; i++ { if filter(allocs[i]) { // Add the allocation to the terminal allocs map if it's not already // added or has a higher create index than the one which is // currently present. alloc, ok := terminalAllocsByName[allocs[i].Name] if !ok || alloc.CreateIndex < allocs[i].CreateIndex { terminalAllocsByName[allocs[i].Name] = allocs[i] } // Remove the allocation allocs[i], allocs[n-1] = allocs[n-1], nil i-- n-- } } // If the job is batch, we want to filter allocations that have been // replaced by a newer version for the same task group. filtered := allocs[:n] if s.batch { byTG := make(map[string]*structs.Allocation) for _, alloc := range filtered { existing := byTG[alloc.Name] if existing == nil || existing.CreateIndex < alloc.CreateIndex { byTG[alloc.Name] = alloc } } filtered = make([]*structs.Allocation, 0, len(byTG)) for _, alloc := range byTG { filtered = append(filtered, alloc) } } return filtered, terminalAllocsByName } // computeJobAllocs is used to reconcile differences between the job, // existing allocations and node status to update the allocations. func (s *GenericScheduler) computeJobAllocs() error { // Materialize all the task groups, job could be missing if deregistered var groups map[string]*structs.TaskGroup if !s.job.Stopped() { groups = materializeTaskGroups(s.job) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() allocs, err := s.state.AllocsByJob(ws, s.eval.JobID, true) if err != nil { return fmt.Errorf("failed to get allocs for job '%s': %v", s.eval.JobID, err) } // Determine the tainted nodes containing job allocs tainted, err := taintedNodes(s.state, allocs) if err != nil { return fmt.Errorf("failed to get tainted nodes for job '%s': %v", s.eval.JobID, err) } // Update the allocations which are in pending/running state on tainted // nodes to lost updateNonTerminalAllocsToLost(s.plan, tainted, allocs) // Filter out the allocations in a terminal state allocs, terminalAllocs := s.filterCompleteAllocs(allocs) // Diff the required and existing allocations diff := diffAllocs(s.job, tainted, groups, allocs, terminalAllocs) s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, diff) // Add all the allocs to stop for _, e := range diff.stop { s.plan.AppendUpdate(e.Alloc, structs.AllocDesiredStatusStop, allocNotNeeded, "") } // Attempt to do the upgrades in place destructiveUpdates, inplaceUpdates := inplaceUpdate(s.ctx, s.eval, s.job, s.stack, diff.update) diff.update = destructiveUpdates if s.eval.AnnotatePlan { s.plan.Annotations = &structs.PlanAnnotations{ DesiredTGUpdates: desiredUpdates(diff, inplaceUpdates, destructiveUpdates), } } // Check if a rolling upgrade strategy is being used limit := len(diff.update) + len(diff.migrate) + len(diff.lost) if !s.job.Stopped() && s.job.Update.Rolling() { limit = s.job.Update.MaxParallel } // Treat migrations as an eviction and a new placement. s.limitReached = evictAndPlace(s.ctx, diff, diff.migrate, allocMigrating, &limit) // Treat non in-place updates as an eviction and new placement. s.limitReached = s.limitReached || evictAndPlace(s.ctx, diff, diff.update, allocUpdating, &limit) // Lost allocations should be transistioned to desired status stop and client // status lost and a new placement should be made s.limitReached = s.limitReached || markLostAndPlace(s.ctx, diff, diff.lost, allocLost, &limit) // Nothing remaining to do if placement is not required if len(diff.place) == 0 { if !s.job.Stopped() { for _, tg := range s.job.TaskGroups { s.queuedAllocs[tg.Name] = 0 } } return nil } // Record the number of allocations that needs to be placed per Task Group for _, allocTuple := range diff.place { s.queuedAllocs[allocTuple.TaskGroup.Name] += 1 } // Compute the placements return s.computePlacements(diff.place) } // computePlacements computes placements for allocations func (s *GenericScheduler) computePlacements(place []allocTuple) error { // Get the base nodes nodes, byDC, err := readyNodesInDCs(s.state, s.job.Datacenters) if err != nil { return err } // Update the set of placement ndoes s.stack.SetNodes(nodes) for _, missing := range place { // Check if this task group has already failed if metric, ok := s.failedTGAllocs[missing.TaskGroup.Name]; ok { metric.CoalescedFailures += 1 continue } // Find the preferred node preferredNode, err := s.findPreferredNode(&missing) if err != nil { return err } // Attempt to match the task group var option *RankedNode if preferredNode != nil { option, _ = s.stack.SelectPreferringNodes(missing.TaskGroup, []*structs.Node{preferredNode}) } else { option, _ = s.stack.Select(missing.TaskGroup) } // Store the available nodes by datacenter s.ctx.Metrics().NodesAvailable = byDC // Set fields based on if we found an allocation option if option != nil { // Create an allocation for this alloc := &structs.Allocation{ ID: structs.GenerateUUID(), EvalID: s.eval.ID, Name: missing.Name, JobID: s.job.ID, TaskGroup: missing.TaskGroup.Name, Metrics: s.ctx.Metrics(), NodeID: option.Node.ID, TaskResources: option.TaskResources, DesiredStatus: structs.AllocDesiredStatusRun, ClientStatus: structs.AllocClientStatusPending, SharedResources: &structs.Resources{ DiskMB: missing.TaskGroup.EphemeralDisk.SizeMB, }, } // If the new allocation is replacing an older allocation then we // set the record the older allocation id so that they are chained if missing.Alloc != nil { alloc.PreviousAllocation = missing.Alloc.ID } s.plan.AppendAlloc(alloc) } else { // Lazy initialize the failed map if s.failedTGAllocs == nil { s.failedTGAllocs = make(map[string]*structs.AllocMetric) } s.failedTGAllocs[missing.TaskGroup.Name] = s.ctx.Metrics() } } return nil } // findPreferredNode finds the preferred node for an allocation func (s *GenericScheduler) findPreferredNode(allocTuple *allocTuple) (node *structs.Node, err error) { if allocTuple.Alloc != nil { taskGroup := allocTuple.Alloc.Job.LookupTaskGroup(allocTuple.Alloc.TaskGroup) if taskGroup == nil { err = fmt.Errorf("can't find task group of existing allocation %q", allocTuple.Alloc.ID) return } if taskGroup.EphemeralDisk.Sticky == true { var preferredNode *structs.Node ws := memdb.NewWatchSet() preferredNode, err = s.state.NodeByID(ws, allocTuple.Alloc.NodeID) if preferredNode.Ready() { node = preferredNode } } } return }