package scheduler import ( "math" "time" "github.com/hashicorp/nomad/nomad/structs" ) const ( // skipScoreThreshold is a threshold used in the limit iterator to skip nodes // that have a score lower than this. -1 is the lowest possible score for a // node with penalties (based on job anti affinity and node rescheduling penalties skipScoreThreshold = 0.0 // maxSkip limits the number of nodes that can be skipped in the limit iterator maxSkip = 3 ) // Stack is a chained collection of iterators. The stack is used to // make placement decisions. Different schedulers may customize the // stack they use to vary the way placements are made. type Stack interface { // SetNodes is used to set the base set of potential nodes SetNodes([]*structs.Node) // SetTaskGroup is used to set the job for selection SetJob(job *structs.Job) // Select is used to select a node for the task group Select(tg *structs.TaskGroup, options *SelectOptions) *RankedNode } type SelectOptions struct { PenaltyNodeIDs map[string]struct{} PreferredNodes []*structs.Node Preempt bool } // GenericStack is the Stack used for the Generic scheduler. It is // designed to make better placement decisions at the cost of performance. type GenericStack struct { batch bool ctx Context source *StaticIterator wrappedChecks *FeasibilityWrapper quota FeasibleIterator jobConstraint *ConstraintChecker taskGroupDrivers *DriverChecker taskGroupConstraint *ConstraintChecker taskGroupDevices *DeviceChecker distinctHostsConstraint *DistinctHostsIterator distinctPropertyConstraint *DistinctPropertyIterator binPack *BinPackIterator jobAntiAff *JobAntiAffinityIterator nodeReschedulingPenalty *NodeReschedulingPenaltyIterator limit *LimitIterator maxScore *MaxScoreIterator nodeAffinity *NodeAffinityIterator spread *SpreadIterator scoreNorm *ScoreNormalizationIterator } func (s *GenericStack) SetNodes(baseNodes []*structs.Node) { // Shuffle base nodes shuffleNodes(baseNodes) // Update the set of base nodes s.source.SetNodes(baseNodes) // Apply a limit function. This is to avoid scanning *every* possible node. // For batch jobs we only need to evaluate 2 options and depend on the // power of two choices. For services jobs we need to visit "enough". // Using a log of the total number of nodes is a good restriction, with // at least 2 as the floor limit := 2 if n := len(baseNodes); !s.batch && n > 0 { logLimit := int(math.Ceil(math.Log2(float64(n)))) if logLimit > limit { limit = logLimit } } s.limit.SetLimit(limit) } func (s *GenericStack) SetJob(job *structs.Job) { s.jobConstraint.SetConstraints(job.Constraints) s.distinctHostsConstraint.SetJob(job) s.distinctPropertyConstraint.SetJob(job) s.binPack.SetJob(job) s.jobAntiAff.SetJob(job) s.nodeAffinity.SetJob(job) s.spread.SetJob(job) s.ctx.Eligibility().SetJob(job) if contextual, ok := s.quota.(ContextualIterator); ok { contextual.SetJob(job) } } func (s *GenericStack) Select(tg *structs.TaskGroup, options *SelectOptions) *RankedNode { // This block handles trying to select from preferred nodes if options specify them // It also sets back the set of nodes to the original nodes if options != nil && len(options.PreferredNodes) > 0 { originalNodes := s.source.nodes s.source.SetNodes(options.PreferredNodes) optionsNew := *options optionsNew.PreferredNodes = nil if option := s.Select(tg, &optionsNew); option != nil { s.source.SetNodes(originalNodes) return option } s.source.SetNodes(originalNodes) return s.Select(tg, &optionsNew) } // Reset the max selector and context s.maxScore.Reset() s.ctx.Reset() start := time.Now() // Get the task groups constraints. tgConstr := taskGroupConstraints(tg) // Update the parameters of iterators s.taskGroupDrivers.SetDrivers(tgConstr.drivers) s.taskGroupConstraint.SetConstraints(tgConstr.constraints) s.taskGroupDevices.SetTaskGroup(tg) s.distinctHostsConstraint.SetTaskGroup(tg) s.distinctPropertyConstraint.SetTaskGroup(tg) s.wrappedChecks.SetTaskGroup(tg.Name) s.binPack.SetTaskGroup(tg) if options != nil { s.binPack.evict = options.Preempt } s.jobAntiAff.SetTaskGroup(tg) if options != nil { s.nodeReschedulingPenalty.SetPenaltyNodes(options.PenaltyNodeIDs) } s.nodeAffinity.SetTaskGroup(tg) s.spread.SetTaskGroup(tg) if s.nodeAffinity.hasAffinities() || s.spread.hasSpreads() { s.limit.SetLimit(math.MaxInt32) } if contextual, ok := s.quota.(ContextualIterator); ok { contextual.SetTaskGroup(tg) } // Find the node with the max score option := s.maxScore.Next() // Store the compute time s.ctx.Metrics().AllocationTime = time.Since(start) return option } // SystemStack is the Stack used for the System scheduler. It is designed to // attempt to make placements on all nodes. type SystemStack struct { ctx Context source *StaticIterator wrappedChecks *FeasibilityWrapper quota FeasibleIterator jobConstraint *ConstraintChecker taskGroupDrivers *DriverChecker taskGroupConstraint *ConstraintChecker taskGroupDevices *DeviceChecker distinctPropertyConstraint *DistinctPropertyIterator binPack *BinPackIterator scoreNorm *ScoreNormalizationIterator } // NewSystemStack constructs a stack used for selecting service placements func NewSystemStack(ctx Context) *SystemStack { // Create a new stack s := &SystemStack{ctx: ctx} // Create the source iterator. We visit nodes in a linear order because we // have to evaluate on all nodes. s.source = NewStaticIterator(ctx, nil) // Create the quota iterator to determine if placements would result in the // quota attached to the namespace of the job to go over. s.quota = NewQuotaIterator(ctx, s.source) // Attach the job constraints. The job is filled in later. s.jobConstraint = NewConstraintChecker(ctx, nil) // Filter on task group drivers first as they are faster s.taskGroupDrivers = NewDriverChecker(ctx, nil) // Filter on task group constraints second s.taskGroupConstraint = NewConstraintChecker(ctx, nil) // Filter on task group devices s.taskGroupDevices = NewDeviceChecker(ctx) // Create the feasibility wrapper which wraps all feasibility checks in // which feasibility checking can be skipped if the computed node class has // previously been marked as eligible or ineligible. Generally this will be // checks that only needs to examine the single node to determine feasibility. jobs := []FeasibilityChecker{s.jobConstraint} tgs := []FeasibilityChecker{s.taskGroupDrivers, s.taskGroupConstraint, s.taskGroupDevices} s.wrappedChecks = NewFeasibilityWrapper(ctx, s.quota, jobs, tgs) // Filter on distinct property constraints. s.distinctPropertyConstraint = NewDistinctPropertyIterator(ctx, s.wrappedChecks) // Upgrade from feasible to rank iterator rankSource := NewFeasibleRankIterator(ctx, s.distinctPropertyConstraint) // Apply the bin packing, this depends on the resources needed // by a particular task group. Enable eviction as system jobs are high // priority. _, schedConfig, _ := s.ctx.State().SchedulerConfig() enablePreemption := true if schedConfig != nil { enablePreemption = schedConfig.PreemptionConfig.SystemSchedulerEnabled } s.binPack = NewBinPackIterator(ctx, rankSource, enablePreemption, 0) // Apply score normalization s.scoreNorm = NewScoreNormalizationIterator(ctx, s.binPack) return s } func (s *SystemStack) SetNodes(baseNodes []*structs.Node) { // Update the set of base nodes s.source.SetNodes(baseNodes) } func (s *SystemStack) SetJob(job *structs.Job) { s.jobConstraint.SetConstraints(job.Constraints) s.distinctPropertyConstraint.SetJob(job) s.binPack.SetJob(job) s.ctx.Eligibility().SetJob(job) if contextual, ok := s.quota.(ContextualIterator); ok { contextual.SetJob(job) } } func (s *SystemStack) Select(tg *structs.TaskGroup, options *SelectOptions) *RankedNode { // Reset the binpack selector and context s.scoreNorm.Reset() s.ctx.Reset() start := time.Now() // Get the task groups constraints. tgConstr := taskGroupConstraints(tg) // Update the parameters of iterators s.taskGroupDrivers.SetDrivers(tgConstr.drivers) s.taskGroupConstraint.SetConstraints(tgConstr.constraints) s.taskGroupDevices.SetTaskGroup(tg) s.wrappedChecks.SetTaskGroup(tg.Name) s.distinctPropertyConstraint.SetTaskGroup(tg) s.binPack.SetTaskGroup(tg) if contextual, ok := s.quota.(ContextualIterator); ok { contextual.SetTaskGroup(tg) } // Get the next option that satisfies the constraints. option := s.scoreNorm.Next() // Store the compute time s.ctx.Metrics().AllocationTime = time.Since(start) return option }