package nomad import ( "crypto/tls" "fmt" "io" "math/rand" "net" "net/rpc" "strings" "time" "github.com/armon/go-metrics" "github.com/hashicorp/net-rpc-msgpackrpc" "github.com/hashicorp/nomad/nomad/state" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/nomad/nomad/watch" "github.com/hashicorp/raft" "github.com/hashicorp/yamux" ) type RPCType byte const ( rpcNomad RPCType = 0x01 rpcRaft = 0x02 rpcMultiplex = 0x03 rpcTLS = 0x04 ) const ( // maxQueryTime is used to bound the limit of a blocking query maxQueryTime = 300 * time.Second // defaultQueryTime is the amount of time we block waiting for a change // if no time is specified. Previously we would wait the maxQueryTime. defaultQueryTime = 300 * time.Second // jitterFraction is a the limit to the amount of jitter we apply // to a user specified MaxQueryTime. We divide the specified time by // the fraction. So 16 == 6.25% limit of jitter jitterFraction = 16 // Warn if the Raft command is larger than this. // If it's over 1MB something is probably being abusive. raftWarnSize = 1024 * 1024 // enqueueLimit caps how long we will wait to enqueue // a new Raft command. Something is probably wrong if this // value is ever reached. However, it prevents us from blocking // the requesting goroutine forever. enqueueLimit = 30 * time.Second ) // NewClientCodec returns a new rpc.ClientCodec to be used to make RPC calls to // the Nomad Server. func NewClientCodec(conn io.ReadWriteCloser) rpc.ClientCodec { return msgpackrpc.NewCodecFromHandle(true, true, conn, structs.HashiMsgpackHandle) } // NewServerCodec returns a new rpc.ServerCodec to be used by the Nomad Server // to handle rpcs. func NewServerCodec(conn io.ReadWriteCloser) rpc.ServerCodec { return msgpackrpc.NewCodecFromHandle(true, true, conn, structs.HashiMsgpackHandle) } // listen is used to listen for incoming RPC connections func (s *Server) listen() { for { // Accept a connection conn, err := s.rpcListener.Accept() if err != nil { if s.shutdown { return } s.logger.Printf("[ERR] nomad.rpc: failed to accept RPC conn: %v", err) continue } go s.handleConn(conn, false) metrics.IncrCounter([]string{"nomad", "rpc", "accept_conn"}, 1) } } // handleConn is used to determine if this is a Raft or // Nomad type RPC connection and invoke the correct handler func (s *Server) handleConn(conn net.Conn, isTLS bool) { // Read a single byte buf := make([]byte, 1) if _, err := conn.Read(buf); err != nil { if err != io.EOF { s.logger.Printf("[ERR] nomad.rpc: failed to read byte: %v", err) } conn.Close() return } // Enforce TLS if VerifyIncoming is set if s.config.RequireTLS && !isTLS && RPCType(buf[0]) != rpcTLS { s.logger.Printf("[WARN] nomad.rpc: Non-TLS connection attempted with RequireTLS set") conn.Close() return } // Switch on the byte switch RPCType(buf[0]) { case rpcNomad: s.handleNomadConn(conn) case rpcRaft: metrics.IncrCounter([]string{"nomad", "rpc", "raft_handoff"}, 1) s.raftLayer.Handoff(conn) case rpcMultiplex: s.handleMultiplex(conn) case rpcTLS: if s.rpcTLS == nil { s.logger.Printf("[WARN] nomad.rpc: TLS connection attempted, server not configured for TLS") conn.Close() return } conn = tls.Server(conn, s.rpcTLS) s.handleConn(conn, true) default: s.logger.Printf("[ERR] nomad.rpc: unrecognized RPC byte: %v", buf[0]) conn.Close() return } } // handleMultiplex is used to multiplex a single incoming connection // using the Yamux multiplexer func (s *Server) handleMultiplex(conn net.Conn) { defer conn.Close() conf := yamux.DefaultConfig() conf.LogOutput = s.config.LogOutput server, _ := yamux.Server(conn, conf) for { sub, err := server.Accept() if err != nil { if err != io.EOF { s.logger.Printf("[ERR] nomad.rpc: multiplex conn accept failed: %v", err) } return } go s.handleNomadConn(sub) } } // handleNomadConn is used to service a single Nomad RPC connection func (s *Server) handleNomadConn(conn net.Conn) { defer conn.Close() rpcCodec := NewServerCodec(conn) for { select { case <-s.shutdownCh: return default: } if err := s.rpcServer.ServeRequest(rpcCodec); err != nil { if err != io.EOF && !strings.Contains(err.Error(), "closed") { s.logger.Printf("[ERR] nomad.rpc: RPC error: %v (%v)", err, conn) metrics.IncrCounter([]string{"nomad", "rpc", "request_error"}, 1) } return } metrics.IncrCounter([]string{"nomad", "rpc", "request"}, 1) } } // forward is used to forward to a remote region or to forward to the local leader // Returns a bool of if forwarding was performed, as well as any error func (s *Server) forward(method string, info structs.RPCInfo, args interface{}, reply interface{}) (bool, error) { region := info.RequestRegion() if region == "" { return true, fmt.Errorf("missing target RPC") } // Handle region forwarding if region != s.config.Region { err := s.forwardRegion(region, method, args, reply) return true, err } // Check if we can allow a stale read if info.IsRead() && info.AllowStaleRead() { return false, nil } // Handle leader forwarding if !s.IsLeader() { err := s.forwardLeader(method, args, reply) return true, err } return false, nil } // forwardLeader is used to forward an RPC call to the leader, or fail if no leader func (s *Server) forwardLeader(method string, args interface{}, reply interface{}) error { // Get the leader leader := s.raft.Leader() if leader == "" { return structs.ErrNoLeader } // Lookup the server s.peerLock.RLock() server := s.localPeers[leader] s.peerLock.RUnlock() // Handle a missing server if server == nil { return structs.ErrNoLeader } return s.connPool.RPC(s.config.Region, server.Addr, server.Version, method, args, reply) } // forwardRegion is used to forward an RPC call to a remote region, or fail if no servers func (s *Server) forwardRegion(region, method string, args interface{}, reply interface{}) error { // Bail if we can't find any servers s.peerLock.RLock() servers := s.peers[region] if len(servers) == 0 { s.peerLock.RUnlock() s.logger.Printf("[WARN] nomad.rpc: RPC request for region '%s', no path found", region) return structs.ErrNoRegionPath } // Select a random addr offset := rand.Int31() % int32(len(servers)) server := servers[offset] s.peerLock.RUnlock() // Forward to remote Nomad metrics.IncrCounter([]string{"nomad", "rpc", "cross-region", region}, 1) return s.connPool.RPC(region, server.Addr, server.Version, method, args, reply) } // raftApplyFuture is used to encode a message, run it through raft, and return the Raft future. func (s *Server) raftApplyFuture(t structs.MessageType, msg interface{}) (raft.ApplyFuture, error) { buf, err := structs.Encode(t, msg) if err != nil { return nil, fmt.Errorf("Failed to encode request: %v", err) } // Warn if the command is very large if n := len(buf); n > raftWarnSize { s.logger.Printf("[WARN] nomad: Attempting to apply large raft entry (type %d) (%d bytes)", t, n) } future := s.raft.Apply(buf, enqueueLimit) return future, nil } // raftApply is used to encode a message, run it through raft, and return // the FSM response along with any errors func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, uint64, error) { future, err := s.raftApplyFuture(t, msg) if err != nil { return nil, 0, err } if err := future.Error(); err != nil { return nil, 0, err } return future.Response(), future.Index(), nil } // setQueryMeta is used to populate the QueryMeta data for an RPC call func (s *Server) setQueryMeta(m *structs.QueryMeta) { if s.IsLeader() { m.LastContact = 0 m.KnownLeader = true } else { m.LastContact = time.Now().Sub(s.raft.LastContact()) m.KnownLeader = (s.raft.Leader() != "") } } // blockingOptions is used to parameterize blockingRPC type blockingOptions struct { queryOpts *structs.QueryOptions queryMeta *structs.QueryMeta watch watch.Items run func() error } // blockingRPC is used for queries that need to wait for a // minimum index. This is used to block and wait for changes. func (s *Server) blockingRPC(opts *blockingOptions) error { var timeout *time.Timer var notifyCh chan struct{} var state *state.StateStore // Fast path non-blocking if opts.queryOpts.MinQueryIndex == 0 { goto RUN_QUERY } // Restrict the max query time, and ensure there is always one if opts.queryOpts.MaxQueryTime > maxQueryTime { opts.queryOpts.MaxQueryTime = maxQueryTime } else if opts.queryOpts.MaxQueryTime <= 0 { opts.queryOpts.MaxQueryTime = defaultQueryTime } // Apply a small amount of jitter to the request opts.queryOpts.MaxQueryTime += randomStagger(opts.queryOpts.MaxQueryTime / jitterFraction) // Setup a query timeout timeout = time.NewTimer(opts.queryOpts.MaxQueryTime) // Setup the notify channel notifyCh = make(chan struct{}, 1) // Ensure we tear down any watchers on return state = s.fsm.State() defer func() { timeout.Stop() state.StopWatch(opts.watch, notifyCh) }() REGISTER_NOTIFY: // Register the notification channel. This may be done // multiple times if we have not reached the target wait index. state.Watch(opts.watch, notifyCh) RUN_QUERY: // Update the query meta data s.setQueryMeta(opts.queryMeta) // Run the query function metrics.IncrCounter([]string{"nomad", "rpc", "query"}, 1) err := opts.run() // Check for minimum query time if err == nil && opts.queryOpts.MinQueryIndex > 0 && opts.queryMeta.Index <= opts.queryOpts.MinQueryIndex { select { case <-notifyCh: goto REGISTER_NOTIFY case <-timeout.C: } } return err }