package scheduler import ( "fmt" "math" "github.com/hashicorp/nomad/nomad/structs" ) const ( // binPackingMaxFitScore is the maximum possible bin packing fitness score. // This is used to normalize bin packing score to a value between 0 and 1 binPackingMaxFitScore = 18.0 ) // Rank is used to provide a score and various ranking metadata // along with a node when iterating. This state can be modified as // various rank methods are applied. type RankedNode struct { Node *structs.Node FinalScore float64 Scores []float64 TaskResources map[string]*structs.AllocatedTaskResources // Allocs is used to cache the proposed allocations on the // node. This can be shared between iterators that require it. Proposed []*structs.Allocation // PreemptedAllocs is used by the BinpackIterator to identify allocs // that should be preempted in order to make the placement PreemptedAllocs []*structs.Allocation } func (r *RankedNode) GoString() string { return fmt.Sprintf("", r.Node.ID, r.FinalScore) } func (r *RankedNode) ProposedAllocs(ctx Context) ([]*structs.Allocation, error) { if r.Proposed != nil { return r.Proposed, nil } p, err := ctx.ProposedAllocs(r.Node.ID) if err != nil { return nil, err } r.Proposed = p return p, nil } func (r *RankedNode) SetTaskResources(task *structs.Task, resource *structs.AllocatedTaskResources) { if r.TaskResources == nil { r.TaskResources = make(map[string]*structs.AllocatedTaskResources) } r.TaskResources[task.Name] = resource } // RankFeasibleIterator is used to iteratively yield nodes along // with ranking metadata. The iterators may manage some state for // performance optimizations. type RankIterator interface { // Next yields a ranked option or nil if exhausted Next() *RankedNode // Reset is invoked when an allocation has been placed // to reset any stale state. Reset() } // FeasibleRankIterator is used to consume from a FeasibleIterator // and return an unranked node with base ranking. type FeasibleRankIterator struct { ctx Context source FeasibleIterator } // NewFeasibleRankIterator is used to return a new FeasibleRankIterator // from a FeasibleIterator source. func NewFeasibleRankIterator(ctx Context, source FeasibleIterator) *FeasibleRankIterator { iter := &FeasibleRankIterator{ ctx: ctx, source: source, } return iter } func (iter *FeasibleRankIterator) Next() *RankedNode { option := iter.source.Next() if option == nil { return nil } ranked := &RankedNode{ Node: option, } return ranked } func (iter *FeasibleRankIterator) Reset() { iter.source.Reset() } // StaticRankIterator is a RankIterator that returns a static set of results. // This is largely only useful for testing. type StaticRankIterator struct { ctx Context nodes []*RankedNode offset int seen int } // NewStaticRankIterator returns a new static rank iterator over the given nodes func NewStaticRankIterator(ctx Context, nodes []*RankedNode) *StaticRankIterator { iter := &StaticRankIterator{ ctx: ctx, nodes: nodes, } return iter } func (iter *StaticRankIterator) Next() *RankedNode { // Check if exhausted n := len(iter.nodes) if iter.offset == n || iter.seen == n { if iter.seen != n { iter.offset = 0 } else { return nil } } // Return the next offset offset := iter.offset iter.offset += 1 iter.seen += 1 return iter.nodes[offset] } func (iter *StaticRankIterator) Reset() { iter.seen = 0 } // BinPackIterator is a RankIterator that scores potential options // based on a bin-packing algorithm. type BinPackIterator struct { ctx Context source RankIterator evict bool priority int taskGroup *structs.TaskGroup } // NewBinPackIterator returns a BinPackIterator which tries to fit tasks // potentially evicting other tasks based on a given priority. func NewBinPackIterator(ctx Context, source RankIterator, evict bool, priority int) *BinPackIterator { iter := &BinPackIterator{ ctx: ctx, source: source, evict: evict, priority: priority, } return iter } func (iter *BinPackIterator) SetPriority(p int) { iter.priority = p } func (iter *BinPackIterator) SetTaskGroup(taskGroup *structs.TaskGroup) { iter.taskGroup = taskGroup } func (iter *BinPackIterator) Next() *RankedNode { OUTER: for { // Get the next potential option option := iter.source.Next() if option == nil { return nil } // Get the proposed allocations proposed, err := option.ProposedAllocs(iter.ctx) if err != nil { iter.ctx.Logger().Named("binpack").Error("failed retrieving proposed allocations", "error", err) continue } // Index the existing network usage netIdx := structs.NewNetworkIndex() netIdx.SetNode(option.Node) netIdx.AddAllocs(proposed) // Create a device allocator devAllocator := newDeviceAllocator(iter.ctx, option.Node) devAllocator.AddAllocs(proposed) // Track the affinities of the devices totalDeviceAffinityWeight := 0.0 sumMatchingAffinities := 0.0 // Assign the resources for each task total := &structs.AllocatedResources{ Tasks: make(map[string]*structs.AllocatedTaskResources, len(iter.taskGroup.Tasks)), Shared: structs.AllocatedSharedResources{ DiskMB: int64(iter.taskGroup.EphemeralDisk.SizeMB), }, } var allocsToPreempt []*structs.Allocation // Initialize preemptor with node preemptor := NewPreemptor(iter.priority, iter.ctx) preemptor.SetNode(option.Node) // Count the number of existing preemptions allPreemptions := iter.ctx.Plan().NodePreemptions var currentPreemptions []*structs.Allocation for _, allocs := range allPreemptions { currentPreemptions = append(currentPreemptions, allocs...) } preemptor.SetPreemptions(currentPreemptions) for _, task := range iter.taskGroup.Tasks { // Allocate the resources taskResources := &structs.AllocatedTaskResources{ Cpu: structs.AllocatedCpuResources{ CpuShares: int64(task.Resources.CPU), }, Memory: structs.AllocatedMemoryResources{ MemoryMB: int64(task.Resources.MemoryMB), }, } // Check if we need a network resource if len(task.Resources.Networks) > 0 { ask := task.Resources.Networks[0].Copy() offer, err := netIdx.AssignNetwork(ask) if offer == nil { // If eviction is not enabled, mark this node as exhausted and continue if !iter.evict { iter.ctx.Metrics().ExhaustedNode(option.Node, fmt.Sprintf("network: %s", err)) netIdx.Release() continue OUTER } // Look for preemptible allocations to satisfy the network resource for this task preemptor.SetCandidates(proposed) netPreemptions := preemptor.PreemptForNetwork(ask, netIdx) if netPreemptions == nil { iter.ctx.Logger().Named("binpack").Error("preemption not possible ", "network_resource", ask) netIdx.Release() continue OUTER } allocsToPreempt = append(allocsToPreempt, netPreemptions...) // First subtract out preempted allocations proposed = structs.RemoveAllocs(proposed, netPreemptions) // Reset the network index and try the offer again netIdx.Release() netIdx = structs.NewNetworkIndex() netIdx.SetNode(option.Node) netIdx.AddAllocs(proposed) offer, err = netIdx.AssignNetwork(ask) if offer == nil { iter.ctx.Logger().Named("binpack").Error("unexpected error, unable to create network offer after considering preemption", "error", err) netIdx.Release() continue OUTER } } // Reserve this to prevent another task from colliding netIdx.AddReserved(offer) // Update the network ask to the offer taskResources.Networks = []*structs.NetworkResource{offer} } // Check if we need to assign devices for _, req := range task.Resources.Devices { offer, sumAffinities, err := devAllocator.AssignDevice(req) if offer == nil { // If eviction is not enabled, mark this node as exhausted and continue if !iter.evict { iter.ctx.Metrics().ExhaustedNode(option.Node, fmt.Sprintf("devices: %s", err)) continue OUTER } // Attempt preemption preemptor.SetCandidates(proposed) devicePreemptions := preemptor.PreemptForDevice(req, devAllocator) if devicePreemptions == nil { iter.ctx.Logger().Named("binpack").Error("preemption not possible", "requested_device", req) netIdx.Release() continue OUTER } allocsToPreempt = append(allocsToPreempt, devicePreemptions...) // First subtract out preempted allocations proposed = structs.RemoveAllocs(proposed, allocsToPreempt) // Reset the device allocator with new set of proposed allocs devAllocator := newDeviceAllocator(iter.ctx, option.Node) devAllocator.AddAllocs(proposed) // Try offer again offer, sumAffinities, err = devAllocator.AssignDevice(req) if offer == nil { iter.ctx.Logger().Named("binpack").Error("unexpected error, unable to create device offer after considering preemption", "error", err) continue OUTER } } // Store the resource devAllocator.AddReserved(offer) taskResources.Devices = append(taskResources.Devices, offer) // Add the scores if len(req.Affinities) != 0 { for _, a := range req.Affinities { totalDeviceAffinityWeight += math.Abs(float64(a.Weight)) } sumMatchingAffinities += sumAffinities } } // Store the task resource option.SetTaskResources(task, taskResources) // Accumulate the total resource requirement total.Tasks[task.Name] = taskResources } // Store current set of running allocs before adding resources for the task group current := proposed // Add the resources we are trying to fit proposed = append(proposed, &structs.Allocation{AllocatedResources: total}) // Check if these allocations fit, if they do not, simply skip this node fit, dim, util, _ := structs.AllocsFit(option.Node, proposed, netIdx, false) netIdx.Release() if !fit { // Skip the node if evictions are not enabled if !iter.evict { iter.ctx.Metrics().ExhaustedNode(option.Node, dim) continue } // If eviction is enabled and the node doesn't fit the alloc, check if // any allocs can be preempted // Initialize preemptor with candidate set preemptor.SetCandidates(current) preemptedAllocs := preemptor.PreemptForTaskGroup(total) allocsToPreempt = append(allocsToPreempt, preemptedAllocs...) // If we were unable to find preempted allocs to meet these requirements // mark as exhausted and continue if len(preemptedAllocs) == 0 { iter.ctx.Metrics().ExhaustedNode(option.Node, dim) continue } } if len(allocsToPreempt) > 0 { option.PreemptedAllocs = allocsToPreempt } // Score the fit normally otherwise fitness := structs.ScoreFit(option.Node, util) normalizedFit := fitness / binPackingMaxFitScore option.Scores = append(option.Scores, normalizedFit) iter.ctx.Metrics().ScoreNode(option.Node, "binpack", normalizedFit) // Score the device affinity if totalDeviceAffinityWeight != 0 { sumMatchingAffinities /= totalDeviceAffinityWeight option.Scores = append(option.Scores, sumMatchingAffinities) iter.ctx.Metrics().ScoreNode(option.Node, "devices", sumMatchingAffinities) } return option } } func (iter *BinPackIterator) Reset() { iter.source.Reset() } // JobAntiAffinityIterator is used to apply an anti-affinity to allocating // along side other allocations from this job. This is used to help distribute // load across the cluster. type JobAntiAffinityIterator struct { ctx Context source RankIterator jobID string taskGroup string desiredCount int } // NewJobAntiAffinityIterator is used to create a JobAntiAffinityIterator that // applies the given penalty for co-placement with allocs from this job. func NewJobAntiAffinityIterator(ctx Context, source RankIterator, jobID string) *JobAntiAffinityIterator { iter := &JobAntiAffinityIterator{ ctx: ctx, source: source, jobID: jobID, } return iter } func (iter *JobAntiAffinityIterator) SetJob(job *structs.Job) { iter.jobID = job.ID } func (iter *JobAntiAffinityIterator) SetTaskGroup(tg *structs.TaskGroup) { iter.taskGroup = tg.Name iter.desiredCount = tg.Count } func (iter *JobAntiAffinityIterator) Next() *RankedNode { for { option := iter.source.Next() if option == nil { return nil } // Get the proposed allocations proposed, err := option.ProposedAllocs(iter.ctx) if err != nil { iter.ctx.Logger().Named("job_anti_affinity").Error("failed retrieving proposed allocations", "error", err) continue } // Determine the number of collisions collisions := 0 for _, alloc := range proposed { if alloc.JobID == iter.jobID && alloc.TaskGroup == iter.taskGroup { collisions += 1 } } // Calculate the penalty based on number of collisions // TODO(preetha): Figure out if batch jobs need a different scoring penalty where collisions matter less if collisions > 0 { scorePenalty := -1 * float64(collisions+1) / float64(iter.desiredCount) option.Scores = append(option.Scores, scorePenalty) iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", scorePenalty) } else { iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", 0) } return option } } func (iter *JobAntiAffinityIterator) Reset() { iter.source.Reset() } // NodeReschedulingPenaltyIterator is used to apply a penalty to // a node that had a previous failed allocation for the same job. // This is used when attempting to reschedule a failed alloc type NodeReschedulingPenaltyIterator struct { ctx Context source RankIterator penaltyNodes map[string]struct{} } // NewNodeReschedulingPenaltyIterator is used to create a NodeReschedulingPenaltyIterator that // applies the given scoring penalty for placement onto nodes in penaltyNodes func NewNodeReschedulingPenaltyIterator(ctx Context, source RankIterator) *NodeReschedulingPenaltyIterator { iter := &NodeReschedulingPenaltyIterator{ ctx: ctx, source: source, } return iter } func (iter *NodeReschedulingPenaltyIterator) SetPenaltyNodes(penaltyNodes map[string]struct{}) { iter.penaltyNodes = penaltyNodes } func (iter *NodeReschedulingPenaltyIterator) Next() *RankedNode { for { option := iter.source.Next() if option == nil { return nil } _, ok := iter.penaltyNodes[option.Node.ID] if ok { option.Scores = append(option.Scores, -1) iter.ctx.Metrics().ScoreNode(option.Node, "node-reschedule-penalty", -1) } else { iter.ctx.Metrics().ScoreNode(option.Node, "node-reschedule-penalty", 0) } return option } } func (iter *NodeReschedulingPenaltyIterator) Reset() { iter.penaltyNodes = make(map[string]struct{}) iter.source.Reset() } // NodeAffinityIterator is used to resolve any affinity rules in the job or task group, // and apply a weighted score to nodes if they match. type NodeAffinityIterator struct { ctx Context source RankIterator jobAffinities []*structs.Affinity affinities []*structs.Affinity } // NewNodeAffinityIterator is used to create a NodeAffinityIterator that // applies a weighted score according to whether nodes match any // affinities in the job or task group. func NewNodeAffinityIterator(ctx Context, source RankIterator) *NodeAffinityIterator { return &NodeAffinityIterator{ ctx: ctx, source: source, } } func (iter *NodeAffinityIterator) SetJob(job *structs.Job) { iter.jobAffinities = job.Affinities } func (iter *NodeAffinityIterator) SetTaskGroup(tg *structs.TaskGroup) { // Merge job affinities if iter.jobAffinities != nil { iter.affinities = append(iter.affinities, iter.jobAffinities...) } // Merge task group affinities and task affinities if tg.Affinities != nil { iter.affinities = append(iter.affinities, tg.Affinities...) } for _, task := range tg.Tasks { if task.Affinities != nil { iter.affinities = append(iter.affinities, task.Affinities...) } } } func (iter *NodeAffinityIterator) Reset() { iter.source.Reset() // This method is called between each task group, so only reset the merged list iter.affinities = nil } func (iter *NodeAffinityIterator) hasAffinities() bool { return len(iter.affinities) > 0 } func (iter *NodeAffinityIterator) Next() *RankedNode { option := iter.source.Next() if option == nil { return nil } if !iter.hasAffinities() { iter.ctx.Metrics().ScoreNode(option.Node, "node-affinity", 0) return option } // TODO(preetha): we should calculate normalized weights once and reuse it here sumWeight := 0.0 for _, affinity := range iter.affinities { sumWeight += math.Abs(float64(affinity.Weight)) } totalAffinityScore := 0.0 for _, affinity := range iter.affinities { if matchesAffinity(iter.ctx, affinity, option.Node) { totalAffinityScore += float64(affinity.Weight) } } normScore := totalAffinityScore / sumWeight if totalAffinityScore != 0.0 { option.Scores = append(option.Scores, normScore) iter.ctx.Metrics().ScoreNode(option.Node, "node-affinity", normScore) } return option } func matchesAffinity(ctx Context, affinity *structs.Affinity, option *structs.Node) bool { //TODO(preetha): Add a step here that filters based on computed node class for potential speedup // Resolve the targets lVal, lOk := resolveTarget(affinity.LTarget, option) rVal, rOk := resolveTarget(affinity.RTarget, option) // Check if satisfied return checkAffinity(ctx, affinity.Operand, lVal, rVal, lOk, rOk) } // ScoreNormalizationIterator is used to combine scores from various prior // iterators and combine them into one final score. The current implementation // averages the scores together. type ScoreNormalizationIterator struct { ctx Context source RankIterator } // NewScoreNormalizationIterator is used to create a ScoreNormalizationIterator that // averages scores from various iterators into a final score. func NewScoreNormalizationIterator(ctx Context, source RankIterator) *ScoreNormalizationIterator { return &ScoreNormalizationIterator{ ctx: ctx, source: source} } func (iter *ScoreNormalizationIterator) Reset() { iter.source.Reset() } func (iter *ScoreNormalizationIterator) Next() *RankedNode { option := iter.source.Next() if option == nil || len(option.Scores) == 0 { return option } numScorers := len(option.Scores) sum := 0.0 for _, score := range option.Scores { sum += score } option.FinalScore = sum / float64(numScorers) //TODO(preetha): Turn map in allocmetrics into a heap of topK scores iter.ctx.Metrics().ScoreNode(option.Node, "normalized-score", option.FinalScore) return option }