package nomad import ( "errors" "fmt" "time" "github.com/armon/go-metrics" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/raft" "github.com/hashicorp/serf/serf" ) const ( // failedEvalUnblockInterval is the interval at which failed evaluations are // unblocked to re-enter the scheduler. A failed evaluation occurs under // high contention when the schedulers plan does not make progress. failedEvalUnblockInterval = 1 * time.Minute ) // monitorLeadership is used to monitor if we acquire or lose our role // as the leader in the Raft cluster. There is some work the leader is // expected to do, so we must react to changes func (s *Server) monitorLeadership() { var stopCh chan struct{} for { select { case isLeader := <-s.leaderCh: if isLeader { stopCh = make(chan struct{}) go s.leaderLoop(stopCh) s.logger.Printf("[INFO] nomad: cluster leadership acquired") } else if stopCh != nil { close(stopCh) stopCh = nil s.logger.Printf("[INFO] nomad: cluster leadership lost") } case <-s.shutdownCh: return } } } // leaderLoop runs as long as we are the leader to run various // maintence activities func (s *Server) leaderLoop(stopCh chan struct{}) { // Ensure we revoke leadership on stepdown defer s.revokeLeadership() var reconcileCh chan serf.Member establishedLeader := false RECONCILE: // Setup a reconciliation timer reconcileCh = nil interval := time.After(s.config.ReconcileInterval) // Apply a raft barrier to ensure our FSM is caught up start := time.Now() barrier := s.raft.Barrier(0) if err := barrier.Error(); err != nil { s.logger.Printf("[ERR] nomad: failed to wait for barrier: %v", err) goto WAIT } metrics.MeasureSince([]string{"nomad", "leader", "barrier"}, start) // Check if we need to handle initial leadership actions if !establishedLeader { if err := s.establishLeadership(stopCh); err != nil { s.logger.Printf("[ERR] nomad: failed to establish leadership: %v", err) goto WAIT } establishedLeader = true } // Reconcile any missing data if err := s.reconcile(); err != nil { s.logger.Printf("[ERR] nomad: failed to reconcile: %v", err) goto WAIT } // Initial reconcile worked, now we can process the channel // updates reconcileCh = s.reconcileCh WAIT: // Wait until leadership is lost for { select { case <-stopCh: return case <-s.shutdownCh: return case <-interval: goto RECONCILE case member := <-reconcileCh: s.reconcileMember(member) } } } // establishLeadership is invoked once we become leader and are able // to invoke an initial barrier. The barrier is used to ensure any // previously inflight transactions have been committed and that our // state is up-to-date. func (s *Server) establishLeadership(stopCh chan struct{}) error { // Disable workers to free half the cores for use in the plan queue and // evaluation broker if numWorkers := len(s.workers); numWorkers > 1 { // Disabling 3/4 of the workers frees CPU for raft and the // plan applier which uses 1/2 the cores. for i := 0; i < (3 * numWorkers / 4); i++ { s.workers[i].SetPause(true) } } // Enable the plan queue, since we are now the leader s.planQueue.SetEnabled(true) // Start the plan evaluator go s.planApply() // Enable the eval broker, since we are now the leader s.evalBroker.SetEnabled(true) // Enable the blocked eval tracker, since we are now the leader s.blockedEvals.SetEnabled(true) // Restore the eval broker state if err := s.restoreEvals(); err != nil { return err } // Enable the periodic dispatcher, since we are now the leader. s.periodicDispatcher.SetEnabled(true) s.periodicDispatcher.Start() // Restore the periodic dispatcher state if err := s.restorePeriodicDispatcher(); err != nil { return err } // Scheduler periodic jobs go s.schedulePeriodic(stopCh) // Reap any failed evaluations go s.reapFailedEvaluations(stopCh) // Reap any duplicate blocked evaluations go s.reapDupBlockedEvaluations(stopCh) // Periodically unblock failed allocations go s.periodicUnblockFailedEvals(stopCh) // Setup the heartbeat timers. This is done both when starting up or when // a leader fail over happens. Since the timers are maintained by the leader // node, effectively this means all the timers are renewed at the time of failover. // The TTL contract is that the session will not be expired before the TTL, // so expiring it later is allowable. // // This MUST be done after the initial barrier to ensure the latest Nodes // are available to be initialized. Otherwise initialization may use stale // data. if err := s.initializeHeartbeatTimers(); err != nil { s.logger.Printf("[ERR] nomad: heartbeat timer setup failed: %v", err) return err } // COMPAT 0.4 - 0.4.1 // Reconcile the summaries of the registered jobs. We reconcile summaries // only if the server is 0.4.1 since summaries are not present in 0.4 they // might be incorrect after upgrading to 0.4.1 the summaries might not be // correct if err := s.reconcileJobSummaries(); err != nil { return fmt.Errorf("unable to reconcile job summaries: %v", err) } return nil } // restoreEvals is used to restore pending evaluations into the eval broker and // blocked evaluations into the blocked eval tracker. The broker and blocked // eval tracker is maintained only by the leader, so it must be restored anytime // a leadership transition takes place. func (s *Server) restoreEvals() error { // Get an iterator over every evaluation iter, err := s.fsm.State().Evals() if err != nil { return fmt.Errorf("failed to get evaluations: %v", err) } for { raw := iter.Next() if raw == nil { break } eval := raw.(*structs.Evaluation) if eval.ShouldEnqueue() { s.evalBroker.Enqueue(eval) } else if eval.ShouldBlock() { s.blockedEvals.Block(eval) } } return nil } // restorePeriodicDispatcher is used to restore all periodic jobs into the // periodic dispatcher. It also determines if a periodic job should have been // created during the leadership transition and force runs them. The periodic // dispatcher is maintained only by the leader, so it must be restored anytime a // leadership transition takes place. func (s *Server) restorePeriodicDispatcher() error { iter, err := s.fsm.State().JobsByPeriodic(true) if err != nil { return fmt.Errorf("failed to get periodic jobs: %v", err) } now := time.Now() for i := iter.Next(); i != nil; i = iter.Next() { job := i.(*structs.Job) s.periodicDispatcher.Add(job) // If the periodic job has never been launched before, launch will hold // the time the periodic job was added. Otherwise it has the last launch // time of the periodic job. launch, err := s.fsm.State().PeriodicLaunchByID(job.ID) if err != nil || launch == nil { return fmt.Errorf("failed to get periodic launch time: %v", err) } // nextLaunch is the next launch that should occur. nextLaunch := job.Periodic.Next(launch.Launch) // We skip force launching the job if there should be no next launch // (the zero case) or if the next launch time is in the future. If it is // in the future, it will be handled by the periodic dispatcher. if nextLaunch.IsZero() || !nextLaunch.Before(now) { continue } if _, err := s.periodicDispatcher.ForceRun(job.ID); err != nil { msg := fmt.Sprintf("force run of periodic job %q failed: %v", job.ID, err) s.logger.Printf("[ERR] nomad.periodic: %s", msg) return errors.New(msg) } s.logger.Printf("[DEBUG] nomad.periodic: periodic job %q force"+ " run during leadership establishment", job.ID) } return nil } // schedulePeriodic is used to do periodic job dispatch while we are leader func (s *Server) schedulePeriodic(stopCh chan struct{}) { evalGC := time.NewTicker(s.config.EvalGCInterval) defer evalGC.Stop() nodeGC := time.NewTicker(s.config.NodeGCInterval) defer nodeGC.Stop() jobGC := time.NewTicker(s.config.JobGCInterval) defer jobGC.Stop() // getLatest grabs the latest index from the state store. It returns true if // the index was retrieved successfully. getLatest := func() (uint64, bool) { snapshotIndex, err := s.fsm.State().LatestIndex() if err != nil { s.logger.Printf("[ERR] nomad: failed to determine state store's index: %v", err) return 0, false } return snapshotIndex, true } for { select { case <-evalGC.C: if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobEvalGC, index)) } case <-nodeGC.C: if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobNodeGC, index)) } case <-jobGC.C: if index, ok := getLatest(); ok { s.evalBroker.Enqueue(s.coreJobEval(structs.CoreJobJobGC, index)) } case <-stopCh: return } } } // coreJobEval returns an evaluation for a core job func (s *Server) coreJobEval(job string, modifyIndex uint64) *structs.Evaluation { return &structs.Evaluation{ ID: structs.GenerateUUID(), Priority: structs.CoreJobPriority, Type: structs.JobTypeCore, TriggeredBy: structs.EvalTriggerScheduled, JobID: job, Status: structs.EvalStatusPending, ModifyIndex: modifyIndex, } } // reapFailedEvaluations is used to reap evaluations that // have reached their delivery limit and should be failed func (s *Server) reapFailedEvaluations(stopCh chan struct{}) { for { select { case <-stopCh: return default: // Scan for a failed evaluation eval, token, err := s.evalBroker.Dequeue([]string{failedQueue}, time.Second) if err != nil { return } if eval == nil { continue } // Update the status to failed newEval := eval.Copy() newEval.Status = structs.EvalStatusFailed newEval.StatusDescription = fmt.Sprintf("evaluation reached delivery limit (%d)", s.config.EvalDeliveryLimit) s.logger.Printf("[WARN] nomad: eval %#v reached delivery limit, marking as failed", newEval) // Update via Raft req := structs.EvalUpdateRequest{ Evals: []*structs.Evaluation{newEval}, } if _, _, err := s.raftApply(structs.EvalUpdateRequestType, &req); err != nil { s.logger.Printf("[ERR] nomad: failed to update failed eval %#v: %v", newEval, err) continue } // Ack completion s.evalBroker.Ack(eval.ID, token) } } } // reapDupBlockedEvaluations is used to reap duplicate blocked evaluations and // should be cancelled. func (s *Server) reapDupBlockedEvaluations(stopCh chan struct{}) { for { select { case <-stopCh: return default: // Scan for duplicate blocked evals. dups := s.blockedEvals.GetDuplicates(time.Second) if dups == nil { continue } cancel := make([]*structs.Evaluation, len(dups)) for i, dup := range dups { // Update the status to cancelled newEval := dup.Copy() newEval.Status = structs.EvalStatusCancelled newEval.StatusDescription = fmt.Sprintf("existing blocked evaluation exists for job %q", newEval.JobID) cancel[i] = newEval } // Update via Raft req := structs.EvalUpdateRequest{ Evals: cancel, } if _, _, err := s.raftApply(structs.EvalUpdateRequestType, &req); err != nil { s.logger.Printf("[ERR] nomad: failed to update duplicate evals %#v: %v", cancel, err) continue } } } } // periodicUnblockFailedEvals periodically unblocks failed, blocked evaluations. func (s *Server) periodicUnblockFailedEvals(stopCh chan struct{}) { ticker := time.NewTicker(failedEvalUnblockInterval) defer ticker.Stop() for { select { case <-stopCh: return case <-ticker.C: // Unblock the failed allocations s.blockedEvals.UnblockFailed() } } } // revokeLeadership is invoked once we step down as leader. // This is used to cleanup any state that may be specific to a leader. func (s *Server) revokeLeadership() error { // Disable the plan queue, since we are no longer leader s.planQueue.SetEnabled(false) // Disable the eval broker, since it is only useful as a leader s.evalBroker.SetEnabled(false) // Disable the blocked eval tracker, since it is only useful as a leader s.blockedEvals.SetEnabled(false) // Disable the periodic dispatcher, since it is only useful as a leader s.periodicDispatcher.SetEnabled(false) // Clear the heartbeat timers on either shutdown or step down, // since we are no longer responsible for TTL expirations. if err := s.clearAllHeartbeatTimers(); err != nil { s.logger.Printf("[ERR] nomad: clearing heartbeat timers failed: %v", err) return err } // Unpause our worker if we paused previously if len(s.workers) > 1 { for i := 0; i < len(s.workers)/2; i++ { s.workers[i].SetPause(false) } } return nil } // reconcile is used to reconcile the differences between Serf // membership and what is reflected in our strongly consistent store. func (s *Server) reconcile() error { defer metrics.MeasureSince([]string{"nomad", "leader", "reconcile"}, time.Now()) members := s.serf.Members() for _, member := range members { if err := s.reconcileMember(member); err != nil { return err } } return nil } // reconcileMember is used to do an async reconcile of a single serf member func (s *Server) reconcileMember(member serf.Member) error { // Check if this is a member we should handle valid, parts := isNomadServer(member) if !valid || parts.Region != s.config.Region { return nil } defer metrics.MeasureSince([]string{"nomad", "leader", "reconcileMember"}, time.Now()) // Do not reconcile ourself if member.Name == fmt.Sprintf("%s.%s", s.config.NodeName, s.config.Region) { return nil } var err error switch member.Status { case serf.StatusAlive: err = s.addRaftPeer(member, parts) case serf.StatusLeft, StatusReap: err = s.removeRaftPeer(member, parts) } if err != nil { s.logger.Printf("[ERR] nomad: failed to reconcile member: %v: %v", member, err) return err } return nil } // reconcileJobSummaries reconciles the summaries of all the jobs registered in // the system // COMPAT 0.4 -> 0.4.1 func (s *Server) reconcileJobSummaries() error { index, err := s.fsm.state.LatestIndex() if err != nil { return fmt.Errorf("unable to read latest index: %v", err) } s.logger.Printf("[DEBUG] leader: reconciling job summaries at index: %v", index) args := &structs.GenericResponse{} msg := structs.ReconcileJobSummariesRequestType | structs.IgnoreUnknownTypeFlag if _, _, err = s.raftApply(msg, args); err != nil { return fmt.Errorf("reconciliation of job summaries failed: %v", err) } return nil } // addRaftPeer is used to add a new Raft peer when a Nomad server joins func (s *Server) addRaftPeer(m serf.Member, parts *serverParts) error { // Check for possibility of multiple bootstrap nodes if parts.Bootstrap { members := s.serf.Members() for _, member := range members { valid, p := isNomadServer(member) if valid && member.Name != m.Name && p.Bootstrap { s.logger.Printf("[ERR] nomad: '%v' and '%v' are both in bootstrap mode. Only one node should be in bootstrap mode, not adding Raft peer.", m.Name, member.Name) return nil } } } // Attempt to add as a peer future := s.raft.AddPeer(parts.Addr.String()) if err := future.Error(); err != nil && err != raft.ErrKnownPeer { s.logger.Printf("[ERR] nomad: failed to add raft peer: %v", err) return err } else if err == nil { s.logger.Printf("[INFO] nomad: added raft peer: %v", parts) } return nil } // removeRaftPeer is used to remove a Raft peer when a Nomad server leaves // or is reaped func (s *Server) removeRaftPeer(m serf.Member, parts *serverParts) error { // Attempt to remove as peer future := s.raft.RemovePeer(parts.Addr.String()) if err := future.Error(); err != nil && err != raft.ErrUnknownPeer { s.logger.Printf("[ERR] nomad: failed to remove raft peer '%v': %v", parts, err) return err } else if err == nil { s.logger.Printf("[INFO] nomad: removed server '%s' as peer", m.Name) } return nil }