package api import ( "context" "encoding/json" "errors" "fmt" "io" "sort" "strconv" "sync" "time" "github.com/gorilla/websocket" ) var ( // NodeDownErr marks an operation as not able to complete since the node is // down. NodeDownErr = fmt.Errorf("node down") ) const ( AllocDesiredStatusRun = "run" // Allocation should run AllocDesiredStatusStop = "stop" // Allocation should stop AllocDesiredStatusEvict = "evict" // Allocation should stop, and was evicted ) const ( AllocClientStatusPending = "pending" AllocClientStatusRunning = "running" AllocClientStatusComplete = "complete" AllocClientStatusFailed = "failed" AllocClientStatusLost = "lost" ) // Allocations is used to query the alloc-related endpoints. type Allocations struct { client *Client } // Allocations returns a handle on the allocs endpoints. func (c *Client) Allocations() *Allocations { return &Allocations{client: c} } // List returns a list of all of the allocations. func (a *Allocations) List(q *QueryOptions) ([]*AllocationListStub, *QueryMeta, error) { var resp []*AllocationListStub qm, err := a.client.query("/v1/allocations", &resp, q) if err != nil { return nil, nil, err } sort.Sort(AllocIndexSort(resp)) return resp, qm, nil } func (a *Allocations) PrefixList(prefix string) ([]*AllocationListStub, *QueryMeta, error) { return a.List(&QueryOptions{Prefix: prefix}) } // Info is used to retrieve a single allocation. func (a *Allocations) Info(allocID string, q *QueryOptions) (*Allocation, *QueryMeta, error) { var resp Allocation qm, err := a.client.query("/v1/allocation/"+allocID, &resp, q) if err != nil { return nil, nil, err } return &resp, qm, nil } // Exec is used to execute a command inside a running task. The command is to run inside // the task environment. // // The parameters are: // * ctx: context to set deadlines or timeout // * allocation: the allocation to execute command inside // * task: the task's name to execute command in // * tty: indicates whether to start a pseudo-tty for the command // * stdin, stdout, stderr: the std io to pass to command. // If tty is true, then streams need to point to a tty that's alive for the whole process // * terminalSizeCh: A channel to send new tty terminal sizes // // The call blocks until command terminates (or an error occurs), and returns the exit code. func (a *Allocations) Exec(ctx context.Context, alloc *Allocation, task string, tty bool, command []string, stdin io.Reader, stdout, stderr io.Writer, terminalSizeCh <-chan TerminalSize, q *QueryOptions) (exitCode int, err error) { ctx, cancelFn := context.WithCancel(ctx) defer cancelFn() errCh := make(chan error, 4) sender, output := a.execFrames(ctx, alloc, task, tty, command, errCh, q) select { case err := <-errCh: return -2, err default: } // Errors resulting from sending input (in goroutines) are silently dropped. // To mitigate this, extra care is needed to distinguish between actual send errors // and from send errors due to command terminating and our race to detect failures. // If we have an actual network failure or send a bad input, we'd get an // error in the reading side of websocket. go func() { bytes := make([]byte, 2048) for { if ctx.Err() != nil { return } input := ExecStreamingInput{Stdin: &ExecStreamingIOOperation{}} n, err := stdin.Read(bytes) // always send data if we read some if n != 0 { input.Stdin.Data = bytes[:n] sender(&input) } // then handle error if err == io.EOF { // if n != 0, send data and we'll get n = 0 on next read if n == 0 { input.Stdin.Close = true sender(&input) return } } else if err != nil { errCh <- err return } } }() // forwarding terminal size go func() { for { resizeInput := ExecStreamingInput{} select { case <-ctx.Done(): return case size, ok := <-terminalSizeCh: if !ok { return } resizeInput.TTYSize = &size sender(&resizeInput) } } }() // send a heartbeat every 10 seconds go func() { for { select { case <-ctx.Done(): return // heartbeat message case <-time.After(10 * time.Second): sender(&execStreamingInputHeartbeat) } } }() for { select { case err := <-errCh: // drop websocket code, not relevant to user if wsErr, ok := err.(*websocket.CloseError); ok && wsErr.Text != "" { return -2, errors.New(wsErr.Text) } return -2, err case <-ctx.Done(): return -2, ctx.Err() case frame, ok := <-output: if !ok { return -2, errors.New("disconnected without receiving the exit code") } switch { case frame.Stdout != nil: if len(frame.Stdout.Data) != 0 { stdout.Write(frame.Stdout.Data) } // don't really do anything if stdout is closing case frame.Stderr != nil: if len(frame.Stderr.Data) != 0 { stderr.Write(frame.Stderr.Data) } // don't really do anything if stderr is closing case frame.Exited && frame.Result != nil: return frame.Result.ExitCode, nil default: // noop - heartbeat } } } } func (a *Allocations) execFrames(ctx context.Context, alloc *Allocation, task string, tty bool, command []string, errCh chan<- error, q *QueryOptions) (sendFn func(*ExecStreamingInput) error, output <-chan *ExecStreamingOutput) { nodeClient, _ := a.client.GetNodeClientWithTimeout(alloc.NodeID, ClientConnTimeout, q) if q == nil { q = &QueryOptions{} } if q.Params == nil { q.Params = make(map[string]string) } commandBytes, err := json.Marshal(command) if err != nil { errCh <- fmt.Errorf("failed to marshal command: %s", err) return nil, nil } q.Params["tty"] = strconv.FormatBool(tty) q.Params["task"] = task q.Params["command"] = string(commandBytes) reqPath := fmt.Sprintf("/v1/client/allocation/%s/exec", alloc.ID) var conn *websocket.Conn if nodeClient != nil { conn, _, _ = nodeClient.websocket(reqPath, q) } if conn == nil { conn, _, err = a.client.websocket(reqPath, q) if err != nil { errCh <- err return nil, nil } } // Create the output channel frames := make(chan *ExecStreamingOutput, 10) go func() { defer conn.Close() for ctx.Err() == nil { // Decode the next frame var frame ExecStreamingOutput err := conn.ReadJSON(&frame) if websocket.IsCloseError(err, websocket.CloseNormalClosure) { close(frames) return } else if err != nil { errCh <- err return } frames <- &frame } }() var sendLock sync.Mutex send := func(v *ExecStreamingInput) error { sendLock.Lock() defer sendLock.Unlock() return conn.WriteJSON(v) } return send, frames } func (a *Allocations) Stats(alloc *Allocation, q *QueryOptions) (*AllocResourceUsage, error) { var resp AllocResourceUsage path := fmt.Sprintf("/v1/client/allocation/%s/stats", alloc.ID) _, err := a.client.query(path, &resp, q) return &resp, err } func (a *Allocations) GC(alloc *Allocation, q *QueryOptions) error { nodeClient, err := a.client.GetNodeClient(alloc.NodeID, q) if err != nil { return err } var resp struct{} _, err = nodeClient.query("/v1/client/allocation/"+alloc.ID+"/gc", &resp, nil) return err } func (a *Allocations) Restart(alloc *Allocation, taskName string, q *QueryOptions) error { req := AllocationRestartRequest{ TaskName: taskName, } var resp struct{} _, err := a.client.putQuery("/v1/client/allocation/"+alloc.ID+"/restart", &req, &resp, q) return err } func (a *Allocations) Stop(alloc *Allocation, q *QueryOptions) (*AllocStopResponse, error) { var resp AllocStopResponse _, err := a.client.putQuery("/v1/allocation/"+alloc.ID+"/stop", nil, &resp, q) return &resp, err } // AllocStopResponse is the response to an `AllocStopRequest` type AllocStopResponse struct { // EvalID is the id of the follow up evalution for the rescheduled alloc. EvalID string WriteMeta } func (a *Allocations) Signal(alloc *Allocation, q *QueryOptions, task, signal string) error { nodeClient, err := a.client.GetNodeClient(alloc.NodeID, q) if err != nil { return err } req := AllocSignalRequest{ Signal: signal, Task: task, } var resp GenericResponse _, err = nodeClient.putQuery("/v1/client/allocation/"+alloc.ID+"/signal", &req, &resp, q) return err } // Allocation is used for serialization of allocations. type Allocation struct { ID string Namespace string EvalID string Name string NodeID string NodeName string JobID string Job *Job TaskGroup string Resources *Resources TaskResources map[string]*Resources AllocatedResources *AllocatedResources Services map[string]string Metrics *AllocationMetric DesiredStatus string DesiredDescription string DesiredTransition DesiredTransition ClientStatus string ClientDescription string TaskStates map[string]*TaskState DeploymentID string DeploymentStatus *AllocDeploymentStatus FollowupEvalID string PreviousAllocation string NextAllocation string RescheduleTracker *RescheduleTracker PreemptedAllocations []string PreemptedByAllocation string CreateIndex uint64 ModifyIndex uint64 AllocModifyIndex uint64 CreateTime int64 ModifyTime int64 } // AllocationMetric is used to deserialize allocation metrics. type AllocationMetric struct { NodesEvaluated int NodesFiltered int NodesAvailable map[string]int ClassFiltered map[string]int ConstraintFiltered map[string]int NodesExhausted int ClassExhausted map[string]int DimensionExhausted map[string]int QuotaExhausted []string // Deprecated, replaced with ScoreMetaData Scores map[string]float64 AllocationTime time.Duration CoalescedFailures int ScoreMetaData []*NodeScoreMeta } // NodeScoreMeta is used to serialize node scoring metadata // displayed in the CLI during verbose mode type NodeScoreMeta struct { NodeID string Scores map[string]float64 NormScore float64 } // Stub returns a list stub for the allocation func (a *Allocation) Stub() *AllocationListStub { return &AllocationListStub{ ID: a.ID, EvalID: a.EvalID, Name: a.Name, Namespace: a.Namespace, NodeID: a.NodeID, NodeName: a.NodeName, JobID: a.JobID, JobType: *a.Job.Type, JobVersion: *a.Job.Version, TaskGroup: a.TaskGroup, DesiredStatus: a.DesiredStatus, DesiredDescription: a.DesiredDescription, ClientStatus: a.ClientStatus, ClientDescription: a.ClientDescription, TaskStates: a.TaskStates, DeploymentStatus: a.DeploymentStatus, FollowupEvalID: a.FollowupEvalID, RescheduleTracker: a.RescheduleTracker, PreemptedAllocations: a.PreemptedAllocations, PreemptedByAllocation: a.PreemptedByAllocation, CreateIndex: a.CreateIndex, ModifyIndex: a.ModifyIndex, CreateTime: a.CreateTime, ModifyTime: a.ModifyTime, } } // AllocationListStub is used to return a subset of an allocation // during list operations. type AllocationListStub struct { ID string EvalID string Name string Namespace string NodeID string NodeName string JobID string JobType string JobVersion uint64 TaskGroup string DesiredStatus string DesiredDescription string ClientStatus string ClientDescription string TaskStates map[string]*TaskState DeploymentStatus *AllocDeploymentStatus FollowupEvalID string RescheduleTracker *RescheduleTracker PreemptedAllocations []string PreemptedByAllocation string CreateIndex uint64 ModifyIndex uint64 CreateTime int64 ModifyTime int64 } // AllocDeploymentStatus captures the status of the allocation as part of the // deployment. This can include things like if the allocation has been marked as // healthy. type AllocDeploymentStatus struct { Healthy *bool Timestamp time.Time Canary bool ModifyIndex uint64 } type AllocatedResources struct { Tasks map[string]*AllocatedTaskResources Shared AllocatedSharedResources } type AllocatedTaskResources struct { Cpu AllocatedCpuResources Memory AllocatedMemoryResources Networks []*NetworkResource } type AllocatedSharedResources struct { DiskMB int64 Networks []*NetworkResource Ports []PortMapping } type PortMapping struct { Label string Value int To int HostIP string } type AllocatedCpuResources struct { CpuShares int64 } type AllocatedMemoryResources struct { MemoryMB int64 } // AllocIndexSort reverse sorts allocs by CreateIndex. type AllocIndexSort []*AllocationListStub func (a AllocIndexSort) Len() int { return len(a) } func (a AllocIndexSort) Less(i, j int) bool { return a[i].CreateIndex > a[j].CreateIndex } func (a AllocIndexSort) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a Allocation) GetTaskGroup() *TaskGroup { for _, tg := range a.Job.TaskGroups { if *tg.Name == a.TaskGroup { return tg } } return nil } // RescheduleInfo is used to calculate remaining reschedule attempts // according to the given time and the task groups reschedule policy func (a Allocation) RescheduleInfo(t time.Time) (int, int) { tg := a.GetTaskGroup() if tg == nil || tg.ReschedulePolicy == nil { return 0, 0 } reschedulePolicy := tg.ReschedulePolicy availableAttempts := *reschedulePolicy.Attempts interval := *reschedulePolicy.Interval attempted := 0 // Loop over reschedule tracker to find attempts within the restart policy's interval if a.RescheduleTracker != nil && availableAttempts > 0 && interval > 0 { for j := len(a.RescheduleTracker.Events) - 1; j >= 0; j-- { lastAttempt := a.RescheduleTracker.Events[j].RescheduleTime timeDiff := t.UTC().UnixNano() - lastAttempt if timeDiff < interval.Nanoseconds() { attempted += 1 } } } return attempted, availableAttempts } type AllocationRestartRequest struct { TaskName string } type AllocSignalRequest struct { Task string Signal string } // GenericResponse is used to respond to a request where no // specific response information is needed. type GenericResponse struct { WriteMeta } // RescheduleTracker encapsulates previous reschedule events type RescheduleTracker struct { Events []*RescheduleEvent } // RescheduleEvent is used to keep track of previous attempts at rescheduling an allocation type RescheduleEvent struct { // RescheduleTime is the timestamp of a reschedule attempt RescheduleTime int64 // PrevAllocID is the ID of the previous allocation being restarted PrevAllocID string // PrevNodeID is the node ID of the previous allocation PrevNodeID string } // DesiredTransition is used to mark an allocation as having a desired state // transition. This information can be used by the scheduler to make the // correct decision. type DesiredTransition struct { // Migrate is used to indicate that this allocation should be stopped and // migrated to another node. Migrate *bool // Reschedule is used to indicate that this allocation is eligible to be // rescheduled. Reschedule *bool } // ShouldMigrate returns whether the transition object dictates a migration. func (d DesiredTransition) ShouldMigrate() bool { return d.Migrate != nil && *d.Migrate } // ExecStreamingIOOperation represents a stream write operation: either appending data or close (exclusively) type ExecStreamingIOOperation struct { Data []byte `json:"data,omitempty"` Close bool `json:"close,omitempty"` } // TerminalSize represents the size of the terminal type TerminalSize struct { Height int `json:"height,omitempty"` Width int `json:"width,omitempty"` } var execStreamingInputHeartbeat = ExecStreamingInput{} // ExecStreamingInput represents user input to be sent to nomad exec handler. // // At most one field should be set. type ExecStreamingInput struct { Stdin *ExecStreamingIOOperation `json:"stdin,omitempty"` TTYSize *TerminalSize `json:"tty_size,omitempty"` } // ExecStreamingExitResults captures the exit code of just completed nomad exec command type ExecStreamingExitResult struct { ExitCode int `json:"exit_code"` } // ExecStreamingInput represents an output streaming entity, e.g. stdout/stderr update or termination // // At most one of these fields should be set: `Stdout`, `Stderr`, or `Result`. // If `Exited` is true, then `Result` is non-nil, and other fields are nil. type ExecStreamingOutput struct { Stdout *ExecStreamingIOOperation `json:"stdout,omitempty"` Stderr *ExecStreamingIOOperation `json:"stderr,omitempty"` Exited bool `json:"exited,omitempty"` Result *ExecStreamingExitResult `json:"result,omitempty"` }