package nomad import ( "context" "crypto/tls" "crypto/x509" "errors" "fmt" "io" "math/rand" "net" "net/rpc" "strings" "time" golog "log" metrics "github.com/armon/go-metrics" "github.com/hashicorp/go-connlimit" log "github.com/hashicorp/go-hclog" memdb "github.com/hashicorp/go-memdb" "github.com/hashicorp/consul/lib" "github.com/hashicorp/go-msgpack/codec" "github.com/hashicorp/nomad/helper/pool" "github.com/hashicorp/nomad/nomad/state" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/nomad/nomad/structs/config" "github.com/hashicorp/raft" "github.com/hashicorp/yamux" ) const ( // Warn if the Raft command is larger than this. // If it's over 1MB something is probably being abusive. raftWarnSize = 1024 * 1024 // enqueueLimit caps how long we will wait to enqueue // a new Raft command. Something is probably wrong if this // value is ever reached. However, it prevents us from blocking // the requesting goroutine forever. enqueueLimit = 30 * time.Second ) type rpcHandler struct { *Server // connLimiter is used to limit the number of RPC connections per // remote address. It is distinct from the HTTP connection limit. // // nil if limiting is disabled connLimiter *connlimit.Limiter connLimit int // streamLimiter is used to limit the number of *streaming* RPC // connections per remote address. It is lower than the overall // connection limit to ensure their are free connections for Raft and // other RPCs. streamLimiter *connlimit.Limiter streamLimit int logger log.Logger gologger *golog.Logger } func newRpcHandler(s *Server) *rpcHandler { logger := s.logger.NamedIntercept("rpc") r := rpcHandler{ Server: s, connLimit: s.config.RPCMaxConnsPerClient, logger: logger, gologger: logger.StandardLoggerIntercept(&log.StandardLoggerOptions{InferLevels: true}), } // Setup connection limits if r.connLimit > 0 { r.connLimiter = connlimit.NewLimiter(connlimit.Config{ MaxConnsPerClientIP: r.connLimit, }) r.streamLimit = r.connLimit - config.LimitsNonStreamingConnsPerClient r.streamLimiter = connlimit.NewLimiter(connlimit.Config{ MaxConnsPerClientIP: r.streamLimit, }) } return &r } // RPCContext provides metadata about the RPC connection. type RPCContext struct { // Conn exposes the raw connection. Conn net.Conn // Session exposes the multiplexed connection session. Session *yamux.Session // TLS marks whether the RPC is over a TLS based connection TLS bool // VerifiedChains is is the Verified certificates presented by the incoming // connection. VerifiedChains [][]*x509.Certificate // NodeID marks the NodeID that initiated the connection. NodeID string } // listen is used to listen for incoming RPC connections func (r *rpcHandler) listen(ctx context.Context) { defer close(r.listenerCh) var acceptLoopDelay time.Duration for { select { case <-ctx.Done(): r.logger.Info("closing server RPC connection") return default: } // Accept a connection conn, err := r.rpcListener.Accept() if err != nil { if r.shutdown { return } r.handleAcceptErr(ctx, err, &acceptLoopDelay) continue } // No error, reset loop delay acceptLoopDelay = 0 // Apply per-connection limits (if enabled) *prior* to launching // goroutine to block further Accept()s until limits are checked. if r.connLimiter != nil { free, err := r.connLimiter.Accept(conn) if err != nil { r.logger.Error("rejecting client for exceeding maximum RPC connections", "remote_addr", conn.RemoteAddr(), "limit", r.connLimit) conn.Close() continue } // Wrap the connection so that conn.Close calls free() as well. // This is required for libraries like raft which handoff the // net.Conn to another goroutine and therefore can't be tracked // within this func. conn = connlimit.Wrap(conn, free) } go r.handleConn(ctx, conn, &RPCContext{Conn: conn}) metrics.IncrCounter([]string{"nomad", "rpc", "accept_conn"}, 1) } } // handleAcceptErr sleeps to avoid spamming the log, // with a maximum delay according to whether or not the error is temporary func (r *rpcHandler) handleAcceptErr(ctx context.Context, err error, loopDelay *time.Duration) { const baseDelay = 5 * time.Millisecond const maxDelayPerm = 5 * time.Second const maxDelayTemp = 1 * time.Second if *loopDelay == 0 { *loopDelay = baseDelay } else { *loopDelay *= 2 } temporaryError := false if ne, ok := err.(net.Error); ok && ne.Temporary() { temporaryError = true } if temporaryError && *loopDelay > maxDelayTemp { *loopDelay = maxDelayTemp } else if *loopDelay > maxDelayPerm { *loopDelay = maxDelayPerm } r.logger.Error("failed to accept RPC conn", "error", err, "delay", *loopDelay) select { case <-ctx.Done(): case <-time.After(*loopDelay): } } // handleConn is used to determine if this is a Raft or // Nomad type RPC connection and invoke the correct handler // // **Cannot** use defer conn.Close in this method because the Raft handler uses // the conn beyond the scope of this func. func (r *rpcHandler) handleConn(ctx context.Context, conn net.Conn, rpcCtx *RPCContext) { // Limit how long an unauthenticated client can hold the connection // open before they send the magic byte. if !rpcCtx.TLS && r.config.RPCHandshakeTimeout > 0 { conn.SetDeadline(time.Now().Add(r.config.RPCHandshakeTimeout)) } // Read a single byte buf := make([]byte, 1) if _, err := conn.Read(buf); err != nil { if err != io.EOF { r.logger.Error("failed to read first RPC byte", "error", err) } conn.Close() return } // Reset the deadline as we aren't sure what is expected next - it depends on // the protocol. if !rpcCtx.TLS && r.config.RPCHandshakeTimeout > 0 { conn.SetDeadline(time.Time{}) } // Enforce TLS if EnableRPC is set if r.config.TLSConfig.EnableRPC && !rpcCtx.TLS && pool.RPCType(buf[0]) != pool.RpcTLS { if !r.config.TLSConfig.RPCUpgradeMode { r.logger.Warn("non-TLS connection attempted with RequireTLS set", "remote_addr", conn.RemoteAddr()) conn.Close() return } } // Switch on the byte switch pool.RPCType(buf[0]) { case pool.RpcNomad: // Create an RPC Server and handle the request server := rpc.NewServer() r.setupRpcServer(server, rpcCtx) r.handleNomadConn(ctx, conn, server) // Remove any potential mapping between a NodeID to this connection and // close the underlying connection. r.removeNodeConn(rpcCtx) case pool.RpcRaft: metrics.IncrCounter([]string{"nomad", "rpc", "raft_handoff"}, 1) r.raftLayer.Handoff(ctx, conn) case pool.RpcMultiplex: r.handleMultiplex(ctx, conn, rpcCtx) case pool.RpcTLS: if r.rpcTLS == nil { r.logger.Warn("TLS connection attempted, server not configured for TLS") conn.Close() return } // Don't allow malicious client to create TLS-in-TLS forever. if rpcCtx.TLS { r.logger.Error("TLS connection attempting to establish inner TLS connection", "remote_addr", conn.RemoteAddr()) conn.Close() return } conn = tls.Server(conn, r.rpcTLS) // Force a handshake so we can get information about the TLS connection // state. tlsConn, ok := conn.(*tls.Conn) if !ok { r.logger.Error("expected TLS connection", "got", log.Fmt("%T", conn)) conn.Close() return } // Enforce handshake timeout during TLS handshake to prevent // unauthenticated users from holding connections open // indefinitely. if r.config.RPCHandshakeTimeout > 0 { tlsConn.SetDeadline(time.Now().Add(r.config.RPCHandshakeTimeout)) } if err := tlsConn.Handshake(); err != nil { r.logger.Warn("failed TLS handshake", "remote_addr", tlsConn.RemoteAddr(), "error", err) conn.Close() return } // Reset the deadline as unauthenticated users have now been rejected. if r.config.RPCHandshakeTimeout > 0 { tlsConn.SetDeadline(time.Time{}) } // Update the connection context with the fact that the connection is // using TLS rpcCtx.TLS = true // Store the verified chains so they can be inspected later. state := tlsConn.ConnectionState() rpcCtx.VerifiedChains = state.VerifiedChains r.handleConn(ctx, conn, rpcCtx) case pool.RpcStreaming: // Apply a lower limit to streaming RPCs to avoid denial of // service by repeatedly starting streaming RPCs. // // TODO Remove once MultiplexV2 is used. if r.streamLimiter != nil { free, err := r.streamLimiter.Accept(conn) if err != nil { r.logger.Error("rejecting client for exceeding maximum streaming RPC connections", "remote_addr", conn.RemoteAddr(), "stream_limit", r.streamLimit) conn.Close() return } defer free() } r.handleStreamingConn(conn) case pool.RpcMultiplexV2: r.handleMultiplexV2(ctx, conn, rpcCtx) default: r.logger.Error("unrecognized RPC byte", "byte", buf[0]) conn.Close() return } } // handleMultiplex is used to multiplex a single incoming connection // using the Yamux multiplexer func (r *rpcHandler) handleMultiplex(ctx context.Context, conn net.Conn, rpcCtx *RPCContext) { defer func() { // Remove any potential mapping between a NodeID to this connection and // close the underlying connection. r.removeNodeConn(rpcCtx) conn.Close() }() conf := yamux.DefaultConfig() conf.LogOutput = nil conf.Logger = r.gologger server, err := yamux.Server(conn, conf) if err != nil { r.logger.Error("multiplex failed to create yamux server", "error", err) return } // Update the context to store the yamux session rpcCtx.Session = server // Create the RPC server for this connection rpcServer := rpc.NewServer() r.setupRpcServer(rpcServer, rpcCtx) for { // stop handling connections if context was cancelled if ctx.Err() != nil { return } sub, err := server.Accept() if err != nil { if err != io.EOF { r.logger.Error("multiplex conn accept failed", "error", err) } return } go r.handleNomadConn(ctx, sub, rpcServer) } } // handleNomadConn is used to service a single Nomad RPC connection func (r *rpcHandler) handleNomadConn(ctx context.Context, conn net.Conn, server *rpc.Server) { defer conn.Close() rpcCodec := pool.NewServerCodec(conn) for { select { case <-ctx.Done(): r.logger.Info("closing server RPC connection") return case <-r.shutdownCh: return default: } if err := server.ServeRequest(rpcCodec); err != nil { if err != io.EOF && !strings.Contains(err.Error(), "closed") { r.logger.Error("RPC error", "error", err, "connection", conn) metrics.IncrCounter([]string{"nomad", "rpc", "request_error"}, 1) } return } metrics.IncrCounter([]string{"nomad", "rpc", "request"}, 1) } } // handleStreamingConn is used to handle a single Streaming Nomad RPC connection. func (r *rpcHandler) handleStreamingConn(conn net.Conn) { defer conn.Close() // Decode the header var header structs.StreamingRpcHeader decoder := codec.NewDecoder(conn, structs.MsgpackHandle) if err := decoder.Decode(&header); err != nil { if err != io.EOF && !strings.Contains(err.Error(), "closed") { r.logger.Error("streaming RPC error", "error", err, "connection", conn) metrics.IncrCounter([]string{"nomad", "streaming_rpc", "request_error"}, 1) } return } ack := structs.StreamingRpcAck{} handler, err := r.streamingRpcs.GetHandler(header.Method) if err != nil { r.logger.Error("streaming RPC error", "error", err, "connection", conn) metrics.IncrCounter([]string{"nomad", "streaming_rpc", "request_error"}, 1) ack.Error = err.Error() } // Send the acknowledgement encoder := codec.NewEncoder(conn, structs.MsgpackHandle) if err := encoder.Encode(ack); err != nil { conn.Close() return } if ack.Error != "" { return } // Invoke the handler metrics.IncrCounter([]string{"nomad", "streaming_rpc", "request"}, 1) handler(conn) } // handleMultiplexV2 is used to multiplex a single incoming connection // using the Yamux multiplexer. Version 2 handling allows a single connection to // switch streams between regulars RPCs and Streaming RPCs. func (r *rpcHandler) handleMultiplexV2(ctx context.Context, conn net.Conn, rpcCtx *RPCContext) { defer func() { // Remove any potential mapping between a NodeID to this connection and // close the underlying connection. r.removeNodeConn(rpcCtx) conn.Close() }() conf := yamux.DefaultConfig() conf.LogOutput = nil conf.Logger = r.gologger server, err := yamux.Server(conn, conf) if err != nil { r.logger.Error("multiplex_v2 failed to create yamux server", "error", err) return } // Update the context to store the yamux session rpcCtx.Session = server // Create the RPC server for this connection rpcServer := rpc.NewServer() r.setupRpcServer(rpcServer, rpcCtx) for { // stop handling connections if context was cancelled if ctx.Err() != nil { return } // Accept a new stream sub, err := server.Accept() if err != nil { if err != io.EOF { r.logger.Error("multiplex_v2 conn accept failed", "error", err) } return } // Read a single byte buf := make([]byte, 1) if _, err := sub.Read(buf); err != nil { if err != io.EOF { r.logger.Error("multiplex_v2 failed to read first byte", "error", err) } return } // Determine which handler to use switch pool.RPCType(buf[0]) { case pool.RpcNomad: go r.handleNomadConn(ctx, sub, rpcServer) case pool.RpcStreaming: go r.handleStreamingConn(sub) default: r.logger.Error("multiplex_v2 unrecognized first RPC byte", "byte", buf[0]) return } } } // forward is used to forward to a remote region or to forward to the local leader // Returns a bool of if forwarding was performed, as well as any error func (r *rpcHandler) forward(method string, info structs.RPCInfo, args interface{}, reply interface{}) (bool, error) { region := info.RequestRegion() if region == "" { return true, fmt.Errorf("missing region for target RPC") } // Handle region forwarding if region != r.config.Region { // Mark that we are forwarding the RPC info.SetForwarded() err := r.forwardRegion(region, method, args, reply) return true, err } // Check if we can allow a stale read if info.IsRead() && info.AllowStaleRead() { return false, nil } remoteServer, err := r.getLeaderForRPC() if err != nil { return true, err } // we are the leader if remoteServer == nil { return false, nil } // forward to leader info.SetForwarded() err = r.forwardLeader(remoteServer, method, args, reply) return true, err } // getLeaderForRPC returns the server info of the currently known leader, or // nil if this server is the current leader. If the local server is the leader // it blocks until it is ready to handle consistent RPC invocations. If leader // is not known or consistency isn't guaranteed, an error is returned. func (r *rpcHandler) getLeaderForRPC() (*serverParts, error) { var firstCheck time.Time CHECK_LEADER: // Find the leader isLeader, remoteServer := r.getLeader() // Handle the case we are the leader if isLeader && r.Server.isReadyForConsistentReads() { return nil, nil } // Handle the case of a known leader if remoteServer != nil { return remoteServer, nil } // Gate the request until there is a leader if firstCheck.IsZero() { firstCheck = time.Now() } if time.Since(firstCheck) < r.config.RPCHoldTimeout { jitter := lib.RandomStagger(r.config.RPCHoldTimeout / structs.JitterFraction) select { case <-time.After(jitter): goto CHECK_LEADER case <-r.shutdownCh: } } // hold time exceeeded without being ready to respond if isLeader { return nil, structs.ErrNotReadyForConsistentReads } return nil, structs.ErrNoLeader } // getLeader returns if the current node is the leader, and if not // then it returns the leader which is potentially nil if the cluster // has not yet elected a leader. func (s *Server) getLeader() (bool, *serverParts) { // Check if we are the leader if s.IsLeader() { return true, nil } // Get the leader leader := s.raft.Leader() if leader == "" { return false, nil } // Lookup the server s.peerLock.RLock() server := s.localPeers[leader] s.peerLock.RUnlock() // Server could be nil return false, server } // forwardLeader is used to forward an RPC call to the leader, or fail if no leader func (r *rpcHandler) forwardLeader(server *serverParts, method string, args interface{}, reply interface{}) error { // Handle a missing server if server == nil { return structs.ErrNoLeader } return r.connPool.RPC(r.config.Region, server.Addr, server.MajorVersion, method, args, reply) } // forwardServer is used to forward an RPC call to a particular server func (r *rpcHandler) forwardServer(server *serverParts, method string, args interface{}, reply interface{}) error { // Handle a missing server if server == nil { return errors.New("must be given a valid server address") } return r.connPool.RPC(r.config.Region, server.Addr, server.MajorVersion, method, args, reply) } func (r *rpcHandler) findRegionServer(region string) (*serverParts, error) { r.peerLock.RLock() defer r.peerLock.RUnlock() servers := r.peers[region] if len(servers) == 0 { r.logger.Warn("no path found to region", "region", region) return nil, structs.ErrNoRegionPath } // Select a random addr offset := rand.Intn(len(servers)) return servers[offset], nil } // forwardRegion is used to forward an RPC call to a remote region, or fail if no servers func (r *rpcHandler) forwardRegion(region, method string, args interface{}, reply interface{}) error { server, err := r.findRegionServer(region) if err != nil { return err } // Forward to remote Nomad metrics.IncrCounter([]string{"nomad", "rpc", "cross-region", region}, 1) return r.connPool.RPC(region, server.Addr, server.MajorVersion, method, args, reply) } func (r *rpcHandler) getServer(region, serverID string) (*serverParts, error) { // Bail if we can't find any servers r.peerLock.RLock() defer r.peerLock.RUnlock() servers := r.peers[region] if len(servers) == 0 { r.logger.Warn("no path found to region", "region", region) return nil, structs.ErrNoRegionPath } // Lookup server by id or name for _, server := range servers { if server.Name == serverID || server.ID == serverID { return server, nil } } return nil, fmt.Errorf("unknown Nomad server %s", serverID) } // streamingRpc creates a connection to the given server and conducts the // initial handshake, returning the connection or an error. It is the callers // responsibility to close the connection if there is no returned error. func (r *rpcHandler) streamingRpc(server *serverParts, method string) (net.Conn, error) { c, err := r.connPool.StreamingRPC(r.config.Region, server.Addr, server.MajorVersion) if err != nil { return nil, err } return r.streamingRpcImpl(c, method) } // streamingRpcImpl takes a pre-established connection to a server and conducts // the handshake to establish a streaming RPC for the given method. If an error // is returned, the underlying connection has been closed. Otherwise it is // assumed that the connection has been hijacked by the RPC method. func (r *rpcHandler) streamingRpcImpl(conn net.Conn, method string) (net.Conn, error) { // Send the header encoder := codec.NewEncoder(conn, structs.MsgpackHandle) decoder := codec.NewDecoder(conn, structs.MsgpackHandle) header := structs.StreamingRpcHeader{ Method: method, } if err := encoder.Encode(header); err != nil { conn.Close() return nil, err } // Wait for the acknowledgement var ack structs.StreamingRpcAck if err := decoder.Decode(&ack); err != nil { conn.Close() return nil, err } if ack.Error != "" { conn.Close() return nil, errors.New(ack.Error) } return conn, nil } // raftApplyFuture is used to encode a message, run it through raft, and return the Raft future. func (s *Server) raftApplyFuture(t structs.MessageType, msg interface{}) (raft.ApplyFuture, error) { buf, err := structs.Encode(t, msg) if err != nil { return nil, fmt.Errorf("Failed to encode request: %v", err) } // Warn if the command is very large if n := len(buf); n > raftWarnSize { s.logger.Warn("attempting to apply large raft entry", "raft_type", t, "bytes", n) } future := s.raft.Apply(buf, enqueueLimit) return future, nil } // raftApplyFn is the function signature for applying a msg to Raft type raftApplyFn func(t structs.MessageType, msg interface{}) (interface{}, uint64, error) // raftApply is used to encode a message, run it through raft, and return // the FSM response along with any errors func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, uint64, error) { future, err := s.raftApplyFuture(t, msg) if err != nil { return nil, 0, err } if err := future.Error(); err != nil { return nil, 0, err } return future.Response(), future.Index(), nil } // setQueryMeta is used to populate the QueryMeta data for an RPC call func (r *rpcHandler) setQueryMeta(m *structs.QueryMeta) { if r.IsLeader() { m.LastContact = 0 m.KnownLeader = true } else { m.LastContact = time.Since(r.raft.LastContact()) m.KnownLeader = (r.raft.Leader() != "") } } // queryFn is used to perform a query operation. If a re-query is needed, the // passed-in watch set will be used to block for changes. The passed-in state // store should be used (vs. calling fsm.State()) since the given state store // will be correctly watched for changes if the state store is restored from // a snapshot. type queryFn func(memdb.WatchSet, *state.StateStore) error // blockingOptions is used to parameterize blockingRPC type blockingOptions struct { queryOpts *structs.QueryOptions queryMeta *structs.QueryMeta run queryFn } // blockingRPC is used for queries that need to wait for a // minimum index. This is used to block and wait for changes. func (r *rpcHandler) blockingRPC(opts *blockingOptions) error { ctx := context.Background() var cancel context.CancelFunc var state *state.StateStore // Fast path non-blocking if opts.queryOpts.MinQueryIndex == 0 { goto RUN_QUERY } opts.queryOpts.MaxQueryTime = opts.queryOpts.TimeToBlock() // Apply a small amount of jitter to the request opts.queryOpts.MaxQueryTime += lib.RandomStagger(opts.queryOpts.MaxQueryTime / structs.JitterFraction) // Setup a query timeout ctx, cancel = context.WithTimeout(context.Background(), opts.queryOpts.MaxQueryTime) defer cancel() RUN_QUERY: // Update the query meta data r.setQueryMeta(opts.queryMeta) // Increment the rpc query counter metrics.IncrCounter([]string{"nomad", "rpc", "query"}, 1) // We capture the state store and its abandon channel but pass a snapshot to // the blocking query function. We operate on the snapshot to allow separate // calls to the state store not all wrapped within the same transaction. state = r.fsm.State() abandonCh := state.AbandonCh() snap, _ := state.Snapshot() stateSnap := &snap.StateStore // We can skip all watch tracking if this isn't a blocking query. var ws memdb.WatchSet if opts.queryOpts.MinQueryIndex > 0 { ws = memdb.NewWatchSet() // This channel will be closed if a snapshot is restored and the // whole state store is abandoned. ws.Add(abandonCh) } // Block up to the timeout if we didn't see anything fresh. err := opts.run(ws, stateSnap) // Check for minimum query time if err == nil && opts.queryOpts.MinQueryIndex > 0 && opts.queryMeta.Index <= opts.queryOpts.MinQueryIndex { if err := ws.WatchCtx(ctx); err == nil { goto RUN_QUERY } } return err }