package scheduler import ( "fmt" "github.com/hashicorp/nomad/nomad/structs" ) // Rank is used to provide a score and various ranking metadata // along with a node when iterating. This state can be modified as // various rank methods are applied. type RankedNode struct { Node *structs.Node Score float64 // Allocs is used to cache the proposed allocations on the // node. This can be shared between iterators that require it. Proposed []*structs.Allocation } func (r *RankedNode) GoString() string { return fmt.Sprintf("", r.Node.ID, r.Score) } func (r *RankedNode) ProposedAllocs(ctx Context) ([]*structs.Allocation, error) { if r.Proposed != nil { return r.Proposed, nil } p, err := ctx.ProposedAllocs(r.Node.ID) if err != nil { return nil, err } r.Proposed = p return p, nil } // RankFeasibleIterator is used to iteratively yield nodes along // with ranking metadata. The iterators may manage some state for // performance optimizations. type RankIterator interface { // Next yields a ranked option or nil if exhausted Next() *RankedNode // Reset is invoked when an allocation has been placed // to reset any stale state. Reset() } // FeasibleRankIterator is used to consume from a FeasibleIterator // and return an unranked node with base ranking. type FeasibleRankIterator struct { ctx Context source FeasibleIterator } // NewFeasibleRankIterator is used to return a new FeasibleRankIterator // from a FeasibleIterator source. func NewFeasibleRankIterator(ctx Context, source FeasibleIterator) *FeasibleRankIterator { iter := &FeasibleRankIterator{ ctx: ctx, source: source, } return iter } func (iter *FeasibleRankIterator) Next() *RankedNode { option := iter.source.Next() if option == nil { return nil } ranked := &RankedNode{ Node: option, } return ranked } func (iter *FeasibleRankIterator) Reset() { iter.source.Reset() } // StaticRankIterator is a RankIterator that returns a static set of results. // This is largely only useful for testing. type StaticRankIterator struct { ctx Context nodes []*RankedNode offset int seen int } // NewStaticRankIterator returns a new static rank iterator over the given nodes func NewStaticRankIterator(ctx Context, nodes []*RankedNode) *StaticRankIterator { iter := &StaticRankIterator{ ctx: ctx, nodes: nodes, } return iter } func (iter *StaticRankIterator) Next() *RankedNode { // Check if exhausted n := len(iter.nodes) if iter.offset == n || iter.seen == n { if iter.seen != n { iter.offset = 0 } else { return nil } } // Return the next offset offset := iter.offset iter.offset += 1 iter.seen += 1 return iter.nodes[offset] } func (iter *StaticRankIterator) Reset() { iter.seen = 0 } // BinPackIterator is a RankIterator that scores potential options // based on a bin-packing algorithm. type BinPackIterator struct { ctx Context source RankIterator resources *structs.Resources evict bool priority int } // NewBinPackIterator returns a BinPackIterator which tries to fit the given // resources, potentially evicting other tasks based on a given priority. func NewBinPackIterator(ctx Context, source RankIterator, resources *structs.Resources, evict bool, priority int) *BinPackIterator { iter := &BinPackIterator{ ctx: ctx, source: source, resources: resources, evict: evict, priority: priority, } return iter } func (iter *BinPackIterator) SetResources(r *structs.Resources) { iter.resources = r } func (iter *BinPackIterator) SetPriority(p int) { iter.priority = p } func (iter *BinPackIterator) Next() *RankedNode { for { // Get the next potential option option := iter.source.Next() if option == nil { return nil } // Get the proposed allocations proposed, err := option.ProposedAllocs(iter.ctx) if err != nil { iter.ctx.Logger().Printf( "[ERR] sched.binpack: failed to get proposed allocations: %v", err) continue } // Add the resources we are trying to fit proposed = append(proposed, &structs.Allocation{Resources: iter.resources}) // Check if these allocations fit, if they do not, simply skip this node fit, util, _ := structs.AllocsFit(option.Node, proposed) if !fit { iter.ctx.Metrics().ExhaustedNode(option.Node) continue } // XXX: For now we completely ignore evictions. We should use that flag // to determine if its possible to evict other lower priority allocations // to make room. This explodes the search space, so it must be done // carefully. // Score the fit normally otherwise fitness := structs.ScoreFit(option.Node, util) option.Score += fitness iter.ctx.Metrics().ScoreNode(option.Node, "binpack", fitness) return option } } func (iter *BinPackIterator) Reset() { iter.source.Reset() } // JobAntiAffinityIterator is used to apply an anti-affinity to allocating // along side other allocations from this job. This is used to help distribute // load across the cluster. type JobAntiAffinityIterator struct { ctx Context source RankIterator penalty float64 jobID string } // NewJobAntiAffinityIterator is used to create a JobAntiAffinityIterator that // applies the given penalty for co-placement with allocs from this job. func NewJobAntiAffinityIterator(ctx Context, source RankIterator, penalty float64, jobID string) *JobAntiAffinityIterator { iter := &JobAntiAffinityIterator{ ctx: ctx, source: source, penalty: penalty, jobID: jobID, } return iter } func (iter *JobAntiAffinityIterator) SetJob(jobID string) { iter.jobID = jobID } func (iter *JobAntiAffinityIterator) Next() *RankedNode { for { option := iter.source.Next() if option == nil { return nil } // Get the proposed allocations proposed, err := option.ProposedAllocs(iter.ctx) if err != nil { iter.ctx.Logger().Printf( "[ERR] sched.job-anti-aff: failed to get proposed allocations: %v", err) continue } // Determine the number of collisions collisions := 0 for _, alloc := range proposed { if alloc.JobID == iter.jobID { collisions += 1 } } // Apply a penalty if there are collisions if collisions > 0 { scorePenalty := float64(collisions) * iter.penalty option.Score -= scorePenalty iter.ctx.Metrics().ScoreNode(option.Node, "job-anti-affinity", scorePenalty) } return option } } func (iter *JobAntiAffinityIterator) Reset() { iter.source.Reset() }