package nomad import ( "fmt" "net" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/raft" "github.com/hashicorp/serf/serf" ) // Operator endpoint is used to perform low-level operator tasks for Nomad. type Operator struct { srv *Server } // RaftGetConfiguration is used to retrieve the current Raft configuration. func (op *Operator) RaftGetConfiguration(args *structs.GenericRequest, reply *structs.RaftConfigurationResponse) error { if done, err := op.srv.forward("Operator.RaftGetConfiguration", args, args, reply); done { return err } // Check management permissions if aclObj, err := op.srv.ResolveToken(args.AuthToken); err != nil { return err } else if aclObj != nil && !aclObj.IsManagement() { return structs.ErrPermissionDenied } // We can't fetch the leader and the configuration atomically with // the current Raft API. future := op.srv.raft.GetConfiguration() if err := future.Error(); err != nil { return err } // Index the Nomad information about the servers. serverMap := make(map[raft.ServerAddress]serf.Member) for _, member := range op.srv.serf.Members() { valid, parts := isNomadServer(member) if !valid { continue } addr := (&net.TCPAddr{IP: member.Addr, Port: parts.Port}).String() serverMap[raft.ServerAddress(addr)] = member } // Fill out the reply. leader := op.srv.raft.Leader() reply.Index = future.Index() for _, server := range future.Configuration().Servers { node := "(unknown)" if member, ok := serverMap[server.Address]; ok { node = member.Name } entry := &structs.RaftServer{ ID: server.ID, Node: node, Address: server.Address, Leader: server.Address == leader, Voter: server.Suffrage == raft.Voter, } reply.Servers = append(reply.Servers, entry) } return nil } // RaftRemovePeerByAddress is used to kick a stale peer (one that it in the Raft // quorum but no longer known to Serf or the catalog) by address in the form of // "IP:port". The reply argument is not used, but it required to fulfill the RPC // interface. func (op *Operator) RaftRemovePeerByAddress(args *structs.RaftPeerByAddressRequest, reply *struct{}) error { if done, err := op.srv.forward("Operator.RaftRemovePeerByAddress", args, args, reply); done { return err } // Check management permissions if aclObj, err := op.srv.ResolveToken(args.AuthToken); err != nil { return err } else if aclObj != nil && !aclObj.IsManagement() { return structs.ErrPermissionDenied } // Since this is an operation designed for humans to use, we will return // an error if the supplied address isn't among the peers since it's // likely they screwed up. { future := op.srv.raft.GetConfiguration() if err := future.Error(); err != nil { return err } for _, s := range future.Configuration().Servers { if s.Address == args.Address { goto REMOVE } } return fmt.Errorf("address %q was not found in the Raft configuration", args.Address) } REMOVE: // The Raft library itself will prevent various forms of foot-shooting, // like making a configuration with no voters. Some consideration was // given here to adding more checks, but it was decided to make this as // low-level and direct as possible. We've got ACL coverage to lock this // down, and if you are an operator, it's assumed you know what you are // doing if you are calling this. If you remove a peer that's known to // Serf, for example, it will come back when the leader does a reconcile // pass. future := op.srv.raft.RemovePeer(args.Address) if err := future.Error(); err != nil { op.srv.logger.Printf("[WARN] nomad.operator: Failed to remove Raft peer %q: %v", args.Address, err) return err } op.srv.logger.Printf("[WARN] nomad.operator: Removed Raft peer %q", args.Address) return nil }