package structs import ( "bytes" "container/heap" "crypto/md5" "crypto/sha1" "crypto/sha256" "crypto/sha512" "encoding/base32" "encoding/hex" "errors" "fmt" "io" "math" "net" "net/url" "os" "path/filepath" "reflect" "regexp" "sort" "strconv" "strings" "time" "github.com/gorhill/cronexpr" "github.com/hashicorp/consul/api" hcodec "github.com/hashicorp/go-msgpack/codec" multierror "github.com/hashicorp/go-multierror" "github.com/hashicorp/go-version" "github.com/hashicorp/nomad/acl" "github.com/hashicorp/nomad/helper" "github.com/hashicorp/nomad/helper/args" "github.com/hashicorp/nomad/helper/uuid" "github.com/hashicorp/nomad/lib/kheap" psstructs "github.com/hashicorp/nomad/plugins/shared/structs" "github.com/mitchellh/copystructure" "github.com/ugorji/go/codec" "golang.org/x/crypto/blake2b" ) var ( // validPolicyName is used to validate a policy name validPolicyName = regexp.MustCompile("^[a-zA-Z0-9-]{1,128}$") // b32 is a lowercase base32 encoding for use in URL friendly service hashes b32 = base32.NewEncoding(strings.ToLower("abcdefghijklmnopqrstuvwxyz234567")) ) type MessageType uint8 const ( NodeRegisterRequestType MessageType = iota NodeDeregisterRequestType NodeUpdateStatusRequestType NodeUpdateDrainRequestType JobRegisterRequestType JobDeregisterRequestType EvalUpdateRequestType EvalDeleteRequestType AllocUpdateRequestType AllocClientUpdateRequestType ReconcileJobSummariesRequestType VaultAccessorRegisterRequestType VaultAccessorDeregisterRequestType ApplyPlanResultsRequestType DeploymentStatusUpdateRequestType DeploymentPromoteRequestType DeploymentAllocHealthRequestType DeploymentDeleteRequestType JobStabilityRequestType ACLPolicyUpsertRequestType ACLPolicyDeleteRequestType ACLTokenUpsertRequestType ACLTokenDeleteRequestType ACLTokenBootstrapRequestType AutopilotRequestType UpsertNodeEventsType JobBatchDeregisterRequestType AllocUpdateDesiredTransitionRequestType NodeUpdateEligibilityRequestType BatchNodeUpdateDrainRequestType ) const ( // IgnoreUnknownTypeFlag is set along with a MessageType // to indicate that the message type can be safely ignored // if it is not recognized. This is for future proofing, so // that new commands can be added in a way that won't cause // old servers to crash when the FSM attempts to process them. IgnoreUnknownTypeFlag MessageType = 128 // ApiMajorVersion is returned as part of the Status.Version request. // It should be incremented anytime the APIs are changed in a way // that would break clients for sane client versioning. ApiMajorVersion = 1 // ApiMinorVersion is returned as part of the Status.Version request. // It should be incremented anytime the APIs are changed to allow // for sane client versioning. Minor changes should be compatible // within the major version. ApiMinorVersion = 1 ProtocolVersion = "protocol" APIMajorVersion = "api.major" APIMinorVersion = "api.minor" GetterModeAny = "any" GetterModeFile = "file" GetterModeDir = "dir" // maxPolicyDescriptionLength limits a policy description length maxPolicyDescriptionLength = 256 // maxTokenNameLength limits a ACL token name length maxTokenNameLength = 256 // ACLClientToken and ACLManagementToken are the only types of tokens ACLClientToken = "client" ACLManagementToken = "management" // DefaultNamespace is the default namespace. DefaultNamespace = "default" DefaultNamespaceDescription = "Default shared namespace" // JitterFraction is a the limit to the amount of jitter we apply // to a user specified MaxQueryTime. We divide the specified time by // the fraction. So 16 == 6.25% limit of jitter. This jitter is also // applied to RPCHoldTimeout. JitterFraction = 16 // MaxRetainedNodeEvents is the maximum number of node events that will be // retained for a single node MaxRetainedNodeEvents = 10 // MaxRetainedNodeScores is the number of top scoring nodes for which we // retain scoring metadata MaxRetainedNodeScores = 5 // Normalized scorer name NormScorerName = "normalized-score" ) // Context defines the scope in which a search for Nomad object operates, and // is also used to query the matching index value for this context type Context string const ( Allocs Context = "allocs" Deployments Context = "deployment" Evals Context = "evals" Jobs Context = "jobs" Nodes Context = "nodes" Namespaces Context = "namespaces" Quotas Context = "quotas" All Context = "all" ) // NamespacedID is a tuple of an ID and a namespace type NamespacedID struct { ID string Namespace string } func (n NamespacedID) String() string { return fmt.Sprintf("", n.Namespace, n.ID) } // RPCInfo is used to describe common information about query type RPCInfo interface { RequestRegion() string IsRead() bool AllowStaleRead() bool IsForwarded() bool SetForwarded() } // InternalRpcInfo allows adding internal RPC metadata to an RPC. This struct // should NOT be replicated in the API package as it is internal only. type InternalRpcInfo struct { // Forwarded marks whether the RPC has been forwarded. Forwarded bool } // IsForwarded returns whether the RPC is forwarded from another server. func (i *InternalRpcInfo) IsForwarded() bool { return i.Forwarded } // SetForwarded marks that the RPC is being forwarded from another server. func (i *InternalRpcInfo) SetForwarded() { i.Forwarded = true } // QueryOptions is used to specify various flags for read queries type QueryOptions struct { // The target region for this query Region string // Namespace is the target namespace for the query. Namespace string // If set, wait until query exceeds given index. Must be provided // with MaxQueryTime. MinQueryIndex uint64 // Provided with MinQueryIndex to wait for change. MaxQueryTime time.Duration // If set, any follower can service the request. Results // may be arbitrarily stale. AllowStale bool // If set, used as prefix for resource list searches Prefix string // AuthToken is secret portion of the ACL token used for the request AuthToken string InternalRpcInfo } func (q QueryOptions) RequestRegion() string { return q.Region } func (q QueryOptions) RequestNamespace() string { if q.Namespace == "" { return DefaultNamespace } return q.Namespace } // QueryOption only applies to reads, so always true func (q QueryOptions) IsRead() bool { return true } func (q QueryOptions) AllowStaleRead() bool { return q.AllowStale } type WriteRequest struct { // The target region for this write Region string // Namespace is the target namespace for the write. Namespace string // AuthToken is secret portion of the ACL token used for the request AuthToken string InternalRpcInfo } func (w WriteRequest) RequestRegion() string { // The target region for this request return w.Region } func (w WriteRequest) RequestNamespace() string { if w.Namespace == "" { return DefaultNamespace } return w.Namespace } // WriteRequest only applies to writes, always false func (w WriteRequest) IsRead() bool { return false } func (w WriteRequest) AllowStaleRead() bool { return false } // QueryMeta allows a query response to include potentially // useful metadata about a query type QueryMeta struct { // This is the index associated with the read Index uint64 // If AllowStale is used, this is time elapsed since // last contact between the follower and leader. This // can be used to gauge staleness. LastContact time.Duration // Used to indicate if there is a known leader node KnownLeader bool } // WriteMeta allows a write response to include potentially // useful metadata about the write type WriteMeta struct { // This is the index associated with the write Index uint64 } // NodeRegisterRequest is used for Node.Register endpoint // to register a node as being a schedulable entity. type NodeRegisterRequest struct { Node *Node NodeEvent *NodeEvent WriteRequest } // NodeDeregisterRequest is used for Node.Deregister endpoint // to deregister a node as being a schedulable entity. type NodeDeregisterRequest struct { NodeID string WriteRequest } // NodeServerInfo is used to in NodeUpdateResponse to return Nomad server // information used in RPC server lists. type NodeServerInfo struct { // RPCAdvertiseAddr is the IP endpoint that a Nomad Server wishes to // be contacted at for RPCs. RPCAdvertiseAddr string // RpcMajorVersion is the major version number the Nomad Server // supports RPCMajorVersion int32 // RpcMinorVersion is the minor version number the Nomad Server // supports RPCMinorVersion int32 // Datacenter is the datacenter that a Nomad server belongs to Datacenter string } // NodeUpdateStatusRequest is used for Node.UpdateStatus endpoint // to update the status of a node. type NodeUpdateStatusRequest struct { NodeID string Status string NodeEvent *NodeEvent WriteRequest } // NodeUpdateDrainRequest is used for updating the drain strategy type NodeUpdateDrainRequest struct { NodeID string DrainStrategy *DrainStrategy // COMPAT Remove in version 0.10 // As part of Nomad 0.8 we have deprecated the drain boolean in favor of a // drain strategy but we need to handle the upgrade path where the Raft log // contains drain updates with just the drain boolean being manipulated. Drain bool // MarkEligible marks the node as eligible if removing the drain strategy. MarkEligible bool // NodeEvent is the event added to the node NodeEvent *NodeEvent WriteRequest } // BatchNodeUpdateDrainRequest is used for updating the drain strategy for a // batch of nodes type BatchNodeUpdateDrainRequest struct { // Updates is a mapping of nodes to their updated drain strategy Updates map[string]*DrainUpdate // NodeEvents is a mapping of the node to the event to add to the node NodeEvents map[string]*NodeEvent WriteRequest } // DrainUpdate is used to update the drain of a node type DrainUpdate struct { // DrainStrategy is the new strategy for the node DrainStrategy *DrainStrategy // MarkEligible marks the node as eligible if removing the drain strategy. MarkEligible bool } // NodeUpdateEligibilityRequest is used for updating the scheduling eligibility type NodeUpdateEligibilityRequest struct { NodeID string Eligibility string // NodeEvent is the event added to the node NodeEvent *NodeEvent WriteRequest } // NodeEvaluateRequest is used to re-evaluate the node type NodeEvaluateRequest struct { NodeID string WriteRequest } // NodeSpecificRequest is used when we just need to specify a target node type NodeSpecificRequest struct { NodeID string SecretID string QueryOptions } // SearchResponse is used to return matches and information about whether // the match list is truncated specific to each type of context. type SearchResponse struct { // Map of context types to ids which match a specified prefix Matches map[Context][]string // Truncations indicates whether the matches for a particular context have // been truncated Truncations map[Context]bool QueryMeta } // SearchRequest is used to parameterize a request, and returns a // list of matches made up of jobs, allocations, evaluations, and/or nodes, // along with whether or not the information returned is truncated. type SearchRequest struct { // Prefix is what ids are matched to. I.e, if the given prefix were // "a", potential matches might be "abcd" or "aabb" Prefix string // Context is the type that can be matched against. A context can be a job, // node, evaluation, allocation, or empty (indicated every context should be // matched) Context Context QueryOptions } // JobRegisterRequest is used for Job.Register endpoint // to register a job as being a schedulable entity. type JobRegisterRequest struct { Job *Job // If EnforceIndex is set then the job will only be registered if the passed // JobModifyIndex matches the current Jobs index. If the index is zero, the // register only occurs if the job is new. EnforceIndex bool JobModifyIndex uint64 // PolicyOverride is set when the user is attempting to override any policies PolicyOverride bool WriteRequest } // JobDeregisterRequest is used for Job.Deregister endpoint // to deregister a job as being a schedulable entity. type JobDeregisterRequest struct { JobID string // Purge controls whether the deregister purges the job from the system or // whether the job is just marked as stopped and will be removed by the // garbage collector Purge bool WriteRequest } // JobBatchDeregisterRequest is used to batch deregister jobs and upsert // evaluations. type JobBatchDeregisterRequest struct { // Jobs is the set of jobs to deregister Jobs map[NamespacedID]*JobDeregisterOptions // Evals is the set of evaluations to create. Evals []*Evaluation WriteRequest } // JobDeregisterOptions configures how a job is deregistered. type JobDeregisterOptions struct { // Purge controls whether the deregister purges the job from the system or // whether the job is just marked as stopped and will be removed by the // garbage collector Purge bool } // JobEvaluateRequest is used when we just need to re-evaluate a target job type JobEvaluateRequest struct { JobID string EvalOptions EvalOptions WriteRequest } // EvalOptions is used to encapsulate options when forcing a job evaluation type EvalOptions struct { ForceReschedule bool } // JobSpecificRequest is used when we just need to specify a target job type JobSpecificRequest struct { JobID string AllAllocs bool QueryOptions } // JobListRequest is used to parameterize a list request type JobListRequest struct { QueryOptions } // JobPlanRequest is used for the Job.Plan endpoint to trigger a dry-run // evaluation of the Job. type JobPlanRequest struct { Job *Job Diff bool // Toggles an annotated diff // PolicyOverride is set when the user is attempting to override any policies PolicyOverride bool WriteRequest } // JobSummaryRequest is used when we just need to get a specific job summary type JobSummaryRequest struct { JobID string QueryOptions } // JobDispatchRequest is used to dispatch a job based on a parameterized job type JobDispatchRequest struct { JobID string Payload []byte Meta map[string]string WriteRequest } // JobValidateRequest is used to validate a job type JobValidateRequest struct { Job *Job WriteRequest } // JobRevertRequest is used to revert a job to a prior version. type JobRevertRequest struct { // JobID is the ID of the job being reverted JobID string // JobVersion the version to revert to. JobVersion uint64 // EnforcePriorVersion if set will enforce that the job is at the given // version before reverting. EnforcePriorVersion *uint64 WriteRequest } // JobStabilityRequest is used to marked a job as stable. type JobStabilityRequest struct { // Job to set the stability on JobID string JobVersion uint64 // Set the stability Stable bool WriteRequest } // JobStabilityResponse is the response when marking a job as stable. type JobStabilityResponse struct { WriteMeta } // NodeListRequest is used to parameterize a list request type NodeListRequest struct { QueryOptions } // EvalUpdateRequest is used for upserting evaluations. type EvalUpdateRequest struct { Evals []*Evaluation EvalToken string WriteRequest } // EvalDeleteRequest is used for deleting an evaluation. type EvalDeleteRequest struct { Evals []string Allocs []string WriteRequest } // EvalSpecificRequest is used when we just need to specify a target evaluation type EvalSpecificRequest struct { EvalID string QueryOptions } // EvalAckRequest is used to Ack/Nack a specific evaluation type EvalAckRequest struct { EvalID string Token string WriteRequest } // EvalDequeueRequest is used when we want to dequeue an evaluation type EvalDequeueRequest struct { Schedulers []string Timeout time.Duration SchedulerVersion uint16 WriteRequest } // EvalListRequest is used to list the evaluations type EvalListRequest struct { QueryOptions } // PlanRequest is used to submit an allocation plan to the leader type PlanRequest struct { Plan *Plan WriteRequest } // ApplyPlanResultsRequest is used by the planner to apply a Raft transaction // committing the result of a plan. type ApplyPlanResultsRequest struct { // AllocUpdateRequest holds the allocation updates to be made by the // scheduler. AllocUpdateRequest // Deployment is the deployment created or updated as a result of a // scheduling event. Deployment *Deployment // DeploymentUpdates is a set of status updates to apply to the given // deployments. This allows the scheduler to cancel any unneeded deployment // because the job is stopped or the update block is removed. DeploymentUpdates []*DeploymentStatusUpdate // EvalID is the eval ID of the plan being applied. The modify index of the // evaluation is updated as part of applying the plan to ensure that subsequent // scheduling events for the same job will wait for the index that last produced // state changes. This is necessary for blocked evaluations since they can be // processed many times, potentially making state updates, without the state of // the evaluation itself being updated. EvalID string } // AllocUpdateRequest is used to submit changes to allocations, either // to cause evictions or to assign new allocations. Both can be done // within a single transaction type AllocUpdateRequest struct { // Alloc is the list of new allocations to assign Alloc []*Allocation // Evals is the list of new evaluations to create // Evals are valid only when used in the Raft RPC Evals []*Evaluation // Job is the shared parent job of the allocations. // It is pulled out since it is common to reduce payload size. Job *Job WriteRequest } // AllocUpdateDesiredTransitionRequest is used to submit changes to allocations // desired transition state. type AllocUpdateDesiredTransitionRequest struct { // Allocs is the mapping of allocation ids to their desired state // transition Allocs map[string]*DesiredTransition // Evals is the set of evaluations to create Evals []*Evaluation WriteRequest } // AllocListRequest is used to request a list of allocations type AllocListRequest struct { QueryOptions } // AllocSpecificRequest is used to query a specific allocation type AllocSpecificRequest struct { AllocID string QueryOptions } // AllocsGetRequest is used to query a set of allocations type AllocsGetRequest struct { AllocIDs []string QueryOptions } // PeriodicForceRequest is used to force a specific periodic job. type PeriodicForceRequest struct { JobID string WriteRequest } // ServerMembersResponse has the list of servers in a cluster type ServerMembersResponse struct { ServerName string ServerRegion string ServerDC string Members []*ServerMember } // ServerMember holds information about a Nomad server agent in a cluster type ServerMember struct { Name string Addr net.IP Port uint16 Tags map[string]string Status string ProtocolMin uint8 ProtocolMax uint8 ProtocolCur uint8 DelegateMin uint8 DelegateMax uint8 DelegateCur uint8 } // DeriveVaultTokenRequest is used to request wrapped Vault tokens for the // following tasks in the given allocation type DeriveVaultTokenRequest struct { NodeID string SecretID string AllocID string Tasks []string QueryOptions } // VaultAccessorsRequest is used to operate on a set of Vault accessors type VaultAccessorsRequest struct { Accessors []*VaultAccessor } // VaultAccessor is a reference to a created Vault token on behalf of // an allocation's task. type VaultAccessor struct { AllocID string Task string NodeID string Accessor string CreationTTL int // Raft Indexes CreateIndex uint64 } // DeriveVaultTokenResponse returns the wrapped tokens for each requested task type DeriveVaultTokenResponse struct { // Tasks is a mapping between the task name and the wrapped token Tasks map[string]string // Error stores any error that occurred. Errors are stored here so we can // communicate whether it is retriable Error *RecoverableError QueryMeta } // GenericRequest is used to request where no // specific information is needed. type GenericRequest struct { QueryOptions } // DeploymentListRequest is used to list the deployments type DeploymentListRequest struct { QueryOptions } // DeploymentDeleteRequest is used for deleting deployments. type DeploymentDeleteRequest struct { Deployments []string WriteRequest } // DeploymentStatusUpdateRequest is used to update the status of a deployment as // well as optionally creating an evaluation atomically. type DeploymentStatusUpdateRequest struct { // Eval, if set, is used to create an evaluation at the same time as // updating the status of a deployment. Eval *Evaluation // DeploymentUpdate is a status update to apply to the given // deployment. DeploymentUpdate *DeploymentStatusUpdate // Job is used to optionally upsert a job. This is used when setting the // allocation health results in a deployment failure and the deployment // auto-reverts to the latest stable job. Job *Job } // DeploymentAllocHealthRequest is used to set the health of a set of // allocations as part of a deployment. type DeploymentAllocHealthRequest struct { DeploymentID string // Marks these allocations as healthy, allow further allocations // to be rolled. HealthyAllocationIDs []string // Any unhealthy allocations fail the deployment UnhealthyAllocationIDs []string WriteRequest } // ApplyDeploymentAllocHealthRequest is used to apply an alloc health request via Raft type ApplyDeploymentAllocHealthRequest struct { DeploymentAllocHealthRequest // Timestamp is the timestamp to use when setting the allocations health. Timestamp time.Time // An optional field to update the status of a deployment DeploymentUpdate *DeploymentStatusUpdate // Job is used to optionally upsert a job. This is used when setting the // allocation health results in a deployment failure and the deployment // auto-reverts to the latest stable job. Job *Job // An optional evaluation to create after promoting the canaries Eval *Evaluation } // DeploymentPromoteRequest is used to promote task groups in a deployment type DeploymentPromoteRequest struct { DeploymentID string // All is to promote all task groups All bool // Groups is used to set the promotion status per task group Groups []string WriteRequest } // ApplyDeploymentPromoteRequest is used to apply a promotion request via Raft type ApplyDeploymentPromoteRequest struct { DeploymentPromoteRequest // An optional evaluation to create after promoting the canaries Eval *Evaluation } // DeploymentPauseRequest is used to pause a deployment type DeploymentPauseRequest struct { DeploymentID string // Pause sets the pause status Pause bool WriteRequest } // DeploymentSpecificRequest is used to make a request specific to a particular // deployment type DeploymentSpecificRequest struct { DeploymentID string QueryOptions } // DeploymentFailRequest is used to fail a particular deployment type DeploymentFailRequest struct { DeploymentID string WriteRequest } // SingleDeploymentResponse is used to respond with a single deployment type SingleDeploymentResponse struct { Deployment *Deployment QueryMeta } // GenericResponse is used to respond to a request where no // specific response information is needed. type GenericResponse struct { WriteMeta } // VersionResponse is used for the Status.Version response type VersionResponse struct { Build string Versions map[string]int QueryMeta } // JobRegisterResponse is used to respond to a job registration type JobRegisterResponse struct { EvalID string EvalCreateIndex uint64 JobModifyIndex uint64 // Warnings contains any warnings about the given job. These may include // deprecation warnings. Warnings string QueryMeta } // JobDeregisterResponse is used to respond to a job deregistration type JobDeregisterResponse struct { EvalID string EvalCreateIndex uint64 JobModifyIndex uint64 QueryMeta } // JobBatchDeregisterResponse is used to respond to a batch job deregistration type JobBatchDeregisterResponse struct { // JobEvals maps the job to its created evaluation JobEvals map[NamespacedID]string QueryMeta } // JobValidateResponse is the response from validate request type JobValidateResponse struct { // DriverConfigValidated indicates whether the agent validated the driver // config DriverConfigValidated bool // ValidationErrors is a list of validation errors ValidationErrors []string // Error is a string version of any error that may have occurred Error string // Warnings contains any warnings about the given job. These may include // deprecation warnings. Warnings string } // NodeUpdateResponse is used to respond to a node update type NodeUpdateResponse struct { HeartbeatTTL time.Duration EvalIDs []string EvalCreateIndex uint64 NodeModifyIndex uint64 // LeaderRPCAddr is the RPC address of the current Raft Leader. If // empty, the current Nomad Server is in the minority of a partition. LeaderRPCAddr string // NumNodes is the number of Nomad nodes attached to this quorum of // Nomad Servers at the time of the response. This value can // fluctuate based on the health of the cluster between heartbeats. NumNodes int32 // Servers is the full list of known Nomad servers in the local // region. Servers []*NodeServerInfo QueryMeta } // NodeDrainUpdateResponse is used to respond to a node drain update type NodeDrainUpdateResponse struct { NodeModifyIndex uint64 EvalIDs []string EvalCreateIndex uint64 WriteMeta } // NodeEligibilityUpdateResponse is used to respond to a node eligibility update type NodeEligibilityUpdateResponse struct { NodeModifyIndex uint64 EvalIDs []string EvalCreateIndex uint64 WriteMeta } // NodeAllocsResponse is used to return allocs for a single node type NodeAllocsResponse struct { Allocs []*Allocation QueryMeta } // NodeClientAllocsResponse is used to return allocs meta data for a single node type NodeClientAllocsResponse struct { Allocs map[string]uint64 // MigrateTokens are used when ACLs are enabled to allow cross node, // authenticated access to sticky volumes MigrateTokens map[string]string QueryMeta } // SingleNodeResponse is used to return a single node type SingleNodeResponse struct { Node *Node QueryMeta } // NodeListResponse is used for a list request type NodeListResponse struct { Nodes []*NodeListStub QueryMeta } // SingleJobResponse is used to return a single job type SingleJobResponse struct { Job *Job QueryMeta } // JobSummaryResponse is used to return a single job summary type JobSummaryResponse struct { JobSummary *JobSummary QueryMeta } type JobDispatchResponse struct { DispatchedJobID string EvalID string EvalCreateIndex uint64 JobCreateIndex uint64 WriteMeta } // JobListResponse is used for a list request type JobListResponse struct { Jobs []*JobListStub QueryMeta } // JobVersionsRequest is used to get a jobs versions type JobVersionsRequest struct { JobID string Diffs bool QueryOptions } // JobVersionsResponse is used for a job get versions request type JobVersionsResponse struct { Versions []*Job Diffs []*JobDiff QueryMeta } // JobPlanResponse is used to respond to a job plan request type JobPlanResponse struct { // Annotations stores annotations explaining decisions the scheduler made. Annotations *PlanAnnotations // FailedTGAllocs is the placement failures per task group. FailedTGAllocs map[string]*AllocMetric // JobModifyIndex is the modification index of the job. The value can be // used when running `nomad run` to ensure that the Job wasn’t modified // since the last plan. If the job is being created, the value is zero. JobModifyIndex uint64 // CreatedEvals is the set of evaluations created by the scheduler. The // reasons for this can be rolling-updates or blocked evals. CreatedEvals []*Evaluation // Diff contains the diff of the job and annotations on whether the change // causes an in-place update or create/destroy Diff *JobDiff // NextPeriodicLaunch is the time duration till the job would be launched if // submitted. NextPeriodicLaunch time.Time // Warnings contains any warnings about the given job. These may include // deprecation warnings. Warnings string WriteMeta } // SingleAllocResponse is used to return a single allocation type SingleAllocResponse struct { Alloc *Allocation QueryMeta } // AllocsGetResponse is used to return a set of allocations type AllocsGetResponse struct { Allocs []*Allocation QueryMeta } // JobAllocationsResponse is used to return the allocations for a job type JobAllocationsResponse struct { Allocations []*AllocListStub QueryMeta } // JobEvaluationsResponse is used to return the evaluations for a job type JobEvaluationsResponse struct { Evaluations []*Evaluation QueryMeta } // SingleEvalResponse is used to return a single evaluation type SingleEvalResponse struct { Eval *Evaluation QueryMeta } // EvalDequeueResponse is used to return from a dequeue type EvalDequeueResponse struct { Eval *Evaluation Token string // WaitIndex is the Raft index the worker should wait until invoking the // scheduler. WaitIndex uint64 QueryMeta } // GetWaitIndex is used to retrieve the Raft index in which state should be at // or beyond before invoking the scheduler. func (e *EvalDequeueResponse) GetWaitIndex() uint64 { // Prefer the wait index sent. This will be populated on all responses from // 0.7.0 and above if e.WaitIndex != 0 { return e.WaitIndex } else if e.Eval != nil { return e.Eval.ModifyIndex } // This should never happen return 1 } // PlanResponse is used to return from a PlanRequest type PlanResponse struct { Result *PlanResult WriteMeta } // AllocListResponse is used for a list request type AllocListResponse struct { Allocations []*AllocListStub QueryMeta } // DeploymentListResponse is used for a list request type DeploymentListResponse struct { Deployments []*Deployment QueryMeta } // EvalListResponse is used for a list request type EvalListResponse struct { Evaluations []*Evaluation QueryMeta } // EvalAllocationsResponse is used to return the allocations for an evaluation type EvalAllocationsResponse struct { Allocations []*AllocListStub QueryMeta } // PeriodicForceResponse is used to respond to a periodic job force launch type PeriodicForceResponse struct { EvalID string EvalCreateIndex uint64 WriteMeta } // DeploymentUpdateResponse is used to respond to a deployment change. The // response will include the modify index of the deployment as well as details // of any triggered evaluation. type DeploymentUpdateResponse struct { EvalID string EvalCreateIndex uint64 DeploymentModifyIndex uint64 // RevertedJobVersion is the version the job was reverted to. If unset, the // job wasn't reverted RevertedJobVersion *uint64 WriteMeta } // NodeConnQueryResponse is used to respond to a query of whether a server has // a connection to a specific Node type NodeConnQueryResponse struct { // Connected indicates whether a connection to the Client exists Connected bool // Established marks the time at which the connection was established Established time.Time QueryMeta } // EmitNodeEventsRequest is a request to update the node events source // with a new client-side event type EmitNodeEventsRequest struct { // NodeEvents are a map where the key is a node id, and value is a list of // events for that node NodeEvents map[string][]*NodeEvent WriteRequest } // EmitNodeEventsResponse is a response to the client about the status of // the node event source update. type EmitNodeEventsResponse struct { Index uint64 WriteMeta } const ( NodeEventSubsystemDrain = "Drain" NodeEventSubsystemDriver = "Driver" NodeEventSubsystemHeartbeat = "Heartbeat" NodeEventSubsystemCluster = "Cluster" ) // NodeEvent is a single unit representing a node’s state change type NodeEvent struct { Message string Subsystem string Details map[string]string Timestamp time.Time CreateIndex uint64 } func (ne *NodeEvent) String() string { var details []string for k, v := range ne.Details { details = append(details, fmt.Sprintf("%s: %s", k, v)) } return fmt.Sprintf("Message: %s, Subsystem: %s, Details: %s, Timestamp: %s", ne.Message, ne.Subsystem, strings.Join(details, ","), ne.Timestamp.String()) } func (ne *NodeEvent) Copy() *NodeEvent { c := new(NodeEvent) *c = *ne c.Details = helper.CopyMapStringString(ne.Details) return c } // NewNodeEvent generates a new node event storing the current time as the // timestamp func NewNodeEvent() *NodeEvent { return &NodeEvent{Timestamp: time.Now()} } // SetMessage is used to set the message on the node event func (ne *NodeEvent) SetMessage(msg string) *NodeEvent { ne.Message = msg return ne } // SetSubsystem is used to set the subsystem on the node event func (ne *NodeEvent) SetSubsystem(sys string) *NodeEvent { ne.Subsystem = sys return ne } // SetTimestamp is used to set the timestamp on the node event func (ne *NodeEvent) SetTimestamp(ts time.Time) *NodeEvent { ne.Timestamp = ts return ne } // AddDetail is used to add a detail to the node event func (ne *NodeEvent) AddDetail(k, v string) *NodeEvent { if ne.Details == nil { ne.Details = make(map[string]string, 1) } ne.Details[k] = v return ne } const ( NodeStatusInit = "initializing" NodeStatusReady = "ready" NodeStatusDown = "down" ) // ShouldDrainNode checks if a given node status should trigger an // evaluation. Some states don't require any further action. func ShouldDrainNode(status string) bool { switch status { case NodeStatusInit, NodeStatusReady: return false case NodeStatusDown: return true default: panic(fmt.Sprintf("unhandled node status %s", status)) } } // ValidNodeStatus is used to check if a node status is valid func ValidNodeStatus(status string) bool { switch status { case NodeStatusInit, NodeStatusReady, NodeStatusDown: return true default: return false } } const ( // NodeSchedulingEligible and Ineligible marks the node as eligible or not, // respectively, for receiving allocations. This is orthoginal to the node // status being ready. NodeSchedulingEligible = "eligible" NodeSchedulingIneligible = "ineligible" ) // DrainSpec describes a Node's desired drain behavior. type DrainSpec struct { // Deadline is the duration after StartTime when the remaining // allocations on a draining Node should be told to stop. Deadline time.Duration // IgnoreSystemJobs allows systems jobs to remain on the node even though it // has been marked for draining. IgnoreSystemJobs bool } // DrainStrategy describes a Node's drain behavior. type DrainStrategy struct { // DrainSpec is the user declared drain specification DrainSpec // ForceDeadline is the deadline time for the drain after which drains will // be forced ForceDeadline time.Time } func (d *DrainStrategy) Copy() *DrainStrategy { if d == nil { return nil } nd := new(DrainStrategy) *nd = *d return nd } // DeadlineTime returns a boolean whether the drain strategy allows an infinite // duration or otherwise the deadline time. The force drain is captured by the // deadline time being in the past. func (d *DrainStrategy) DeadlineTime() (infinite bool, deadline time.Time) { // Treat the nil case as a force drain so during an upgrade where a node may // not have a drain strategy but has Drain set to true, it is treated as a // force to mimick old behavior. if d == nil { return false, time.Time{} } ns := d.Deadline.Nanoseconds() switch { case ns < 0: // Force return false, time.Time{} case ns == 0: // Infinite return true, time.Time{} default: return false, d.ForceDeadline } } func (d *DrainStrategy) Equal(o *DrainStrategy) bool { if d == nil && o == nil { return true } else if o != nil && d == nil { return false } else if d != nil && o == nil { return false } // Compare values if d.ForceDeadline != o.ForceDeadline { return false } else if d.Deadline != o.Deadline { return false } else if d.IgnoreSystemJobs != o.IgnoreSystemJobs { return false } return true } // Node is a representation of a schedulable client node type Node struct { // ID is a unique identifier for the node. It can be constructed // by doing a concatenation of the Name and Datacenter as a simple // approach. Alternatively a UUID may be used. ID string // SecretID is an ID that is only known by the Node and the set of Servers. // It is not accessible via the API and is used to authenticate nodes // conducting privileged activities. SecretID string // Datacenter for this node Datacenter string // Node name Name string // HTTPAddr is the address on which the Nomad client is listening for http // requests HTTPAddr string // TLSEnabled indicates if the Agent has TLS enabled for the HTTP API TLSEnabled bool // Attributes is an arbitrary set of key/value // data that can be used for constraints. Examples // include "kernel.name=linux", "arch=386", "driver.docker=1", // "docker.runtime=1.8.3" Attributes map[string]string // NodeResources captures the available resources on the client. NodeResources *NodeResources // ReservedResources captures the set resources on the client that are // reserved from scheduling. ReservedResources *NodeReservedResources // Resources is the available resources on the client. // For example 'cpu=2' 'memory=2048' Resources *Resources // Reserved is the set of resources that are reserved, // and should be subtracted from the total resources for // the purposes of scheduling. This may be provide certain // high-watermark tolerances or because of external schedulers // consuming resources. Reserved *Resources // Links are used to 'link' this client to external // systems. For example 'consul=foo.dc1' 'aws=i-83212' // 'ami=ami-123' Links map[string]string // Meta is used to associate arbitrary metadata with this // client. This is opaque to Nomad. Meta map[string]string // NodeClass is an opaque identifier used to group nodes // together for the purpose of determining scheduling pressure. NodeClass string // ComputedClass is a unique id that identifies nodes with a common set of // attributes and capabilities. ComputedClass string // COMPAT: Remove in Nomad 0.9 // Drain is controlled by the servers, and not the client. // If true, no jobs will be scheduled to this node, and existing // allocations will be drained. Superceded by DrainStrategy in Nomad // 0.8 but kept for backward compat. Drain bool // DrainStrategy determines the node's draining behavior. Will be nil // when Drain=false. DrainStrategy *DrainStrategy // SchedulingEligibility determines whether this node will receive new // placements. SchedulingEligibility string // Status of this node Status string // StatusDescription is meant to provide more human useful information StatusDescription string // StatusUpdatedAt is the time stamp at which the state of the node was // updated StatusUpdatedAt int64 // Events is the most recent set of events generated for the node, // retaining only MaxRetainedNodeEvents number at a time Events []*NodeEvent // Drivers is a map of driver names to current driver information Drivers map[string]*DriverInfo // Raft Indexes CreateIndex uint64 ModifyIndex uint64 } // Ready returns true if the node is ready for running allocations func (n *Node) Ready() bool { // Drain is checked directly to support pre-0.8 Node data return n.Status == NodeStatusReady && !n.Drain && n.SchedulingEligibility == NodeSchedulingEligible } func (n *Node) Canonicalize() { if n == nil { return } // COMPAT Remove in 0.10 // In v0.8.0 we introduced scheduling eligibility, so we need to set it for // upgrading nodes if n.SchedulingEligibility == "" { if n.Drain { n.SchedulingEligibility = NodeSchedulingIneligible } else { n.SchedulingEligibility = NodeSchedulingEligible } } } func (n *Node) Copy() *Node { if n == nil { return nil } nn := new(Node) *nn = *n nn.Attributes = helper.CopyMapStringString(nn.Attributes) nn.Resources = nn.Resources.Copy() nn.Reserved = nn.Reserved.Copy() nn.NodeResources = nn.NodeResources.Copy() nn.ReservedResources = nn.ReservedResources.Copy() nn.Links = helper.CopyMapStringString(nn.Links) nn.Meta = helper.CopyMapStringString(nn.Meta) nn.Events = copyNodeEvents(n.Events) nn.DrainStrategy = nn.DrainStrategy.Copy() nn.Drivers = copyNodeDrivers(n.Drivers) return nn } // copyNodeEvents is a helper to copy a list of NodeEvent's func copyNodeEvents(events []*NodeEvent) []*NodeEvent { l := len(events) if l == 0 { return nil } c := make([]*NodeEvent, l) for i, event := range events { c[i] = event.Copy() } return c } // copyNodeDrivers is a helper to copy a map of DriverInfo func copyNodeDrivers(drivers map[string]*DriverInfo) map[string]*DriverInfo { l := len(drivers) if l == 0 { return nil } c := make(map[string]*DriverInfo, l) for driver, info := range drivers { c[driver] = info.Copy() } return c } // TerminalStatus returns if the current status is terminal and // will no longer transition. func (n *Node) TerminalStatus() bool { switch n.Status { case NodeStatusDown: return true default: return false } } // COMPAT(0.11): Remove in 0.11 // ComparableReservedResources returns the reserved resouces on the node // handling upgrade paths. Reserved networks must be handled separately. After // 0.11 calls to this should be replaced with: // node.ReservedResources.Comparable() func (n *Node) ComparableReservedResources() *ComparableResources { // See if we can no-op if n.Reserved == nil && n.ReservedResources == nil { return nil } // Node already has 0.9+ behavior if n.ReservedResources != nil { return n.ReservedResources.Comparable() } // Upgrade path return &ComparableResources{ Flattened: AllocatedTaskResources{ Cpu: AllocatedCpuResources{ CpuShares: int64(n.Reserved.CPU), }, Memory: AllocatedMemoryResources{ MemoryMB: int64(n.Reserved.MemoryMB), }, }, Shared: AllocatedSharedResources{ DiskMB: int64(n.Reserved.DiskMB), }, } } // COMPAT(0.11): Remove in 0.11 // ComparableResources returns the resouces on the node // handling upgrade paths. Networking must be handled separately. After 0.11 // calls to this should be replaced with: node.NodeResources.Comparable() func (n *Node) ComparableResources() *ComparableResources { // Node already has 0.9+ behavior if n.NodeResources != nil { return n.NodeResources.Comparable() } // Upgrade path return &ComparableResources{ Flattened: AllocatedTaskResources{ Cpu: AllocatedCpuResources{ CpuShares: int64(n.Resources.CPU), }, Memory: AllocatedMemoryResources{ MemoryMB: int64(n.Resources.MemoryMB), }, }, Shared: AllocatedSharedResources{ DiskMB: int64(n.Resources.DiskMB), }, } } // Stub returns a summarized version of the node func (n *Node) Stub() *NodeListStub { addr, _, _ := net.SplitHostPort(n.HTTPAddr) return &NodeListStub{ Address: addr, ID: n.ID, Datacenter: n.Datacenter, Name: n.Name, NodeClass: n.NodeClass, Version: n.Attributes["nomad.version"], Drain: n.Drain, SchedulingEligibility: n.SchedulingEligibility, Status: n.Status, StatusDescription: n.StatusDescription, Drivers: n.Drivers, CreateIndex: n.CreateIndex, ModifyIndex: n.ModifyIndex, } } // NodeListStub is used to return a subset of job information // for the job list type NodeListStub struct { Address string ID string Datacenter string Name string NodeClass string Version string Drain bool SchedulingEligibility string Status string StatusDescription string Drivers map[string]*DriverInfo CreateIndex uint64 ModifyIndex uint64 } // Resources is used to define the resources available // on a client type Resources struct { CPU int MemoryMB int DiskMB int IOPS int Networks Networks Devices []*RequestedDevice } const ( BytesInMegabyte = 1024 * 1024 ) // DefaultResources is a small resources object that contains the // default resources requests that we will provide to an object. // --- THIS FUNCTION IS REPLICATED IN api/resources.go and should // be kept in sync. func DefaultResources() *Resources { return &Resources{ CPU: 100, MemoryMB: 300, IOPS: 0, } } // MinResources is a small resources object that contains the // absolute minimum resources that we will provide to an object. // This should not be confused with the defaults which are // provided in Canonicalize() --- THIS FUNCTION IS REPLICATED IN // api/resources.go and should be kept in sync. func MinResources() *Resources { return &Resources{ CPU: 20, MemoryMB: 10, IOPS: 0, } } // DiskInBytes returns the amount of disk resources in bytes. func (r *Resources) DiskInBytes() int64 { return int64(r.DiskMB * BytesInMegabyte) } func (r *Resources) Validate() error { var mErr multierror.Error if err := r.MeetsMinResources(); err != nil { mErr.Errors = append(mErr.Errors, err) } // Ensure the task isn't asking for disk resources if r.DiskMB > 0 { mErr.Errors = append(mErr.Errors, errors.New("Task can't ask for disk resources, they have to be specified at the task group level.")) } for i, d := range r.Devices { if err := d.Validate(); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("device %d failed validation: %v", i+1, err)) } } return mErr.ErrorOrNil() } // Merge merges this resource with another resource. func (r *Resources) Merge(other *Resources) { if other.CPU != 0 { r.CPU = other.CPU } if other.MemoryMB != 0 { r.MemoryMB = other.MemoryMB } if other.DiskMB != 0 { r.DiskMB = other.DiskMB } if other.IOPS != 0 { r.IOPS = other.IOPS } if len(other.Networks) != 0 { r.Networks = other.Networks } if len(other.Devices) != 0 { r.Devices = other.Devices } } func (r *Resources) Canonicalize() { // Ensure that an empty and nil slices are treated the same to avoid scheduling // problems since we use reflect DeepEquals. if len(r.Networks) == 0 { r.Networks = nil } if len(r.Devices) == 0 { r.Devices = nil } for _, n := range r.Networks { n.Canonicalize() } } // MeetsMinResources returns an error if the resources specified are less than // the minimum allowed. // This is based on the minimums defined in the Resources type func (r *Resources) MeetsMinResources() error { var mErr multierror.Error minResources := MinResources() if r.CPU < minResources.CPU { mErr.Errors = append(mErr.Errors, fmt.Errorf("minimum CPU value is %d; got %d", minResources.CPU, r.CPU)) } if r.MemoryMB < minResources.MemoryMB { mErr.Errors = append(mErr.Errors, fmt.Errorf("minimum MemoryMB value is %d; got %d", minResources.MemoryMB, r.MemoryMB)) } if r.IOPS < minResources.IOPS { mErr.Errors = append(mErr.Errors, fmt.Errorf("minimum IOPS value is %d; got %d", minResources.IOPS, r.IOPS)) } for i, n := range r.Networks { if err := n.MeetsMinResources(); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("network resource at index %d failed: %v", i, err)) } } return mErr.ErrorOrNil() } // Copy returns a deep copy of the resources func (r *Resources) Copy() *Resources { if r == nil { return nil } newR := new(Resources) *newR = *r // Copy the network objects if r.Networks != nil { n := len(r.Networks) newR.Networks = make([]*NetworkResource, n) for i := 0; i < n; i++ { newR.Networks[i] = r.Networks[i].Copy() } } // Copy the devices if r.Devices != nil { n := len(r.Devices) newR.Devices = make([]*RequestedDevice, n) for i := 0; i < n; i++ { newR.Devices[i] = r.Devices[i].Copy() } } return newR } // NetIndex finds the matching net index using device name func (r *Resources) NetIndex(n *NetworkResource) int { return r.Networks.NetIndex(n) } // Superset checks if one set of resources is a superset // of another. This ignores network resources, and the NetworkIndex // should be used for that. func (r *Resources) Superset(other *Resources) (bool, string) { if r.CPU < other.CPU { return false, "cpu" } if r.MemoryMB < other.MemoryMB { return false, "memory" } if r.DiskMB < other.DiskMB { return false, "disk" } if r.IOPS < other.IOPS { return false, "iops" } return true, "" } // Add adds the resources of the delta to this, potentially // returning an error if not possible. func (r *Resources) Add(delta *Resources) error { if delta == nil { return nil } r.CPU += delta.CPU r.MemoryMB += delta.MemoryMB r.DiskMB += delta.DiskMB r.IOPS += delta.IOPS for _, n := range delta.Networks { // Find the matching interface by IP or CIDR idx := r.NetIndex(n) if idx == -1 { r.Networks = append(r.Networks, n.Copy()) } else { r.Networks[idx].Add(n) } } return nil } func (r *Resources) GoString() string { return fmt.Sprintf("*%#v", *r) } type Port struct { Label string Value int } // NetworkResource is used to represent available network // resources type NetworkResource struct { Device string // Name of the device CIDR string // CIDR block of addresses IP string // Host IP address MBits int // Throughput ReservedPorts []Port // Host Reserved ports DynamicPorts []Port // Host Dynamically assigned ports } func (nr *NetworkResource) Equals(other *NetworkResource) bool { if nr.Device != other.Device { return false } if nr.CIDR != other.CIDR { return false } if nr.IP != other.IP { return false } if nr.MBits != other.MBits { return false } if len(nr.ReservedPorts) != len(other.ReservedPorts) { return false } for i, port := range nr.ReservedPorts { if len(other.ReservedPorts) <= i { return false } if port != other.ReservedPorts[i] { return false } } if len(nr.DynamicPorts) != len(other.DynamicPorts) { return false } for i, port := range nr.DynamicPorts { if len(other.DynamicPorts) <= i { return false } if port != other.DynamicPorts[i] { return false } } return true } func (n *NetworkResource) Canonicalize() { // Ensure that an empty and nil slices are treated the same to avoid scheduling // problems since we use reflect DeepEquals. if len(n.ReservedPorts) == 0 { n.ReservedPorts = nil } if len(n.DynamicPorts) == 0 { n.DynamicPorts = nil } } // MeetsMinResources returns an error if the resources specified are less than // the minimum allowed. func (n *NetworkResource) MeetsMinResources() error { var mErr multierror.Error if n.MBits < 1 { mErr.Errors = append(mErr.Errors, fmt.Errorf("minimum MBits value is 1; got %d", n.MBits)) } return mErr.ErrorOrNil() } // Copy returns a deep copy of the network resource func (n *NetworkResource) Copy() *NetworkResource { if n == nil { return nil } newR := new(NetworkResource) *newR = *n if n.ReservedPorts != nil { newR.ReservedPorts = make([]Port, len(n.ReservedPorts)) copy(newR.ReservedPorts, n.ReservedPorts) } if n.DynamicPorts != nil { newR.DynamicPorts = make([]Port, len(n.DynamicPorts)) copy(newR.DynamicPorts, n.DynamicPorts) } return newR } // Add adds the resources of the delta to this, potentially // returning an error if not possible. func (n *NetworkResource) Add(delta *NetworkResource) { if len(delta.ReservedPorts) > 0 { n.ReservedPorts = append(n.ReservedPorts, delta.ReservedPorts...) } n.MBits += delta.MBits n.DynamicPorts = append(n.DynamicPorts, delta.DynamicPorts...) } func (n *NetworkResource) GoString() string { return fmt.Sprintf("*%#v", *n) } // PortLabels returns a map of port labels to their assigned host ports. func (n *NetworkResource) PortLabels() map[string]int { num := len(n.ReservedPorts) + len(n.DynamicPorts) labelValues := make(map[string]int, num) for _, port := range n.ReservedPorts { labelValues[port.Label] = port.Value } for _, port := range n.DynamicPorts { labelValues[port.Label] = port.Value } return labelValues } // Networks defined for a task on the Resources struct. type Networks []*NetworkResource // Port assignment and IP for the given label or empty values. func (ns Networks) Port(label string) (string, int) { for _, n := range ns { for _, p := range n.ReservedPorts { if p.Label == label { return n.IP, p.Value } } for _, p := range n.DynamicPorts { if p.Label == label { return n.IP, p.Value } } } return "", 0 } func (ns Networks) NetIndex(n *NetworkResource) int { for idx, net := range ns { if net.Device == n.Device { return idx } } return -1 } // RequestedDevice is used to request a device for a task. type RequestedDevice struct { // Name is the request name. The possible values are as follows: // * : A single value only specifies the type of request. // * /: A single slash delimiter assumes the vendor and type of device is specified. // * //: Two slash delimiters assume vendor, type and specific model are specified. // // Examples are as follows: // * "gpu" // * "nvidia/gpu" // * "nvidia/gpu/GTX2080Ti" Name string // Count is the number of requested devices Count uint64 // Constraints are a set of constraints to apply when selecting the device // to use. Constraints []*Constraint // Affinities are a set of affinites to apply when selecting the device // to use. Affinities []*Affinity } func (r *RequestedDevice) Copy() *RequestedDevice { if r == nil { return nil } nr := *r nr.Constraints = CopySliceConstraints(nr.Constraints) nr.Affinities = CopySliceAffinities(nr.Affinities) return &nr } func (r *RequestedDevice) ID() *DeviceIdTuple { if r == nil || r.Name == "" { return nil } parts := strings.SplitN(r.Name, "/", 3) switch len(parts) { case 1: return &DeviceIdTuple{ Type: parts[0], } case 2: return &DeviceIdTuple{ Vendor: parts[0], Type: parts[1], } default: return &DeviceIdTuple{ Vendor: parts[0], Type: parts[1], Name: parts[2], } } } func (r *RequestedDevice) Validate() error { if r == nil { return nil } var mErr multierror.Error if r.Name == "" { multierror.Append(&mErr, errors.New("device name must be given as one of the following: type, vendor/type, or vendor/type/name")) } for idx, constr := range r.Constraints { // Ensure that the constraint doesn't use an operand we do not allow switch constr.Operand { case ConstraintDistinctHosts, ConstraintDistinctProperty: outer := fmt.Errorf("Constraint %d validation failed: using unsupported operand %q", idx+1, constr.Operand) multierror.Append(&mErr, outer) default: if err := constr.Validate(); err != nil { outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err) multierror.Append(&mErr, outer) } } } for idx, affinity := range r.Affinities { if err := affinity.Validate(); err != nil { outer := fmt.Errorf("Affinity %d validation failed: %s", idx+1, err) multierror.Append(&mErr, outer) } } return mErr.ErrorOrNil() } // NodeResources is used to define the resources available on a client node. type NodeResources struct { Cpu NodeCpuResources Memory NodeMemoryResources Disk NodeDiskResources Networks Networks Devices []*NodeDeviceResource } func (n *NodeResources) Copy() *NodeResources { if n == nil { return nil } newN := new(NodeResources) *newN = *n // Copy the networks if n.Networks != nil { networks := len(n.Networks) newN.Networks = make([]*NetworkResource, networks) for i := 0; i < networks; i++ { newN.Networks[i] = n.Networks[i].Copy() } } // Copy the devices if n.Devices != nil { devices := len(n.Devices) newN.Devices = make([]*NodeDeviceResource, devices) for i := 0; i < devices; i++ { newN.Devices[i] = n.Devices[i].Copy() } } return newN } // Comparable returns a comparable version of the nodes resources. This // conversion can be lossy so care must be taken when using it. func (n *NodeResources) Comparable() *ComparableResources { if n == nil { return nil } c := &ComparableResources{ Flattened: AllocatedTaskResources{ Cpu: AllocatedCpuResources{ CpuShares: n.Cpu.CpuShares, }, Memory: AllocatedMemoryResources{ MemoryMB: n.Memory.MemoryMB, }, Networks: n.Networks, }, Shared: AllocatedSharedResources{ DiskMB: n.Disk.DiskMB, }, } return c } func (n *NodeResources) Merge(o *NodeResources) { if o == nil { return } n.Cpu.Merge(&o.Cpu) n.Memory.Merge(&o.Memory) n.Disk.Merge(&o.Disk) if len(o.Networks) != 0 { n.Networks = o.Networks } if len(o.Devices) != 0 { n.Devices = o.Devices } } func (n *NodeResources) Equals(o *NodeResources) bool { if o == nil && n == nil { return true } else if o == nil { return false } else if n == nil { return false } if !n.Cpu.Equals(&o.Cpu) { return false } if !n.Memory.Equals(&o.Memory) { return false } if !n.Disk.Equals(&o.Disk) { return false } if len(n.Networks) != len(o.Networks) { return false } for i, n := range n.Networks { if !n.Equals(o.Networks[i]) { return false } } // Check the devices if len(n.Devices) != len(o.Devices) { return false } idMap := make(map[DeviceIdTuple]*NodeDeviceResource, len(n.Devices)) for _, d := range n.Devices { idMap[*d.ID()] = d } for _, otherD := range o.Devices { if d, ok := idMap[*otherD.ID()]; !ok || !d.Equals(otherD) { return false } } return true } // NodeCpuResources captures the CPU resources of the node. type NodeCpuResources struct { // CpuShares is the CPU shares available. This is calculated by number of // cores multiplied by the core frequency. CpuShares int64 } func (n *NodeCpuResources) Merge(o *NodeCpuResources) { if o == nil { return } if o.CpuShares != 0 { n.CpuShares = o.CpuShares } } func (n *NodeCpuResources) Equals(o *NodeCpuResources) bool { if o == nil && n == nil { return true } else if o == nil { return false } else if n == nil { return false } if n.CpuShares != o.CpuShares { return false } return true } // NodeMemoryResources captures the memory resources of the node type NodeMemoryResources struct { // MemoryMB is the total available memory on the node MemoryMB int64 } func (n *NodeMemoryResources) Merge(o *NodeMemoryResources) { if o == nil { return } if o.MemoryMB != 0 { n.MemoryMB = o.MemoryMB } } func (n *NodeMemoryResources) Equals(o *NodeMemoryResources) bool { if o == nil && n == nil { return true } else if o == nil { return false } else if n == nil { return false } if n.MemoryMB != o.MemoryMB { return false } return true } // NodeDiskResources captures the disk resources of the node type NodeDiskResources struct { // DiskMB is the total available disk space on the node DiskMB int64 } func (n *NodeDiskResources) Merge(o *NodeDiskResources) { if o == nil { return } if o.DiskMB != 0 { n.DiskMB = o.DiskMB } } func (n *NodeDiskResources) Equals(o *NodeDiskResources) bool { if o == nil && n == nil { return true } else if o == nil { return false } else if n == nil { return false } if n.DiskMB != o.DiskMB { return false } return true } // DeviceIdTuple is the tuple that identifies a device type DeviceIdTuple struct { Vendor string Type string Name string } // Matches returns if this Device ID is a superset of the passed ID. func (id *DeviceIdTuple) Matches(other *DeviceIdTuple) bool { if other == nil { return false } if other.Name != "" && other.Name != id.Name { return false } if other.Vendor != "" && other.Vendor != id.Vendor { return false } if other.Type != "" && other.Type != id.Type { return false } return true } // NodeDeviceResource captures a set of devices sharing a common // vendor/type/device_name tuple. type NodeDeviceResource struct { Vendor string Type string Name string Instances []*NodeDevice Attributes map[string]*psstructs.Attribute } func (n *NodeDeviceResource) ID() *DeviceIdTuple { if n == nil { return nil } return &DeviceIdTuple{ Vendor: n.Vendor, Type: n.Type, Name: n.Name, } } func (n *NodeDeviceResource) Copy() *NodeDeviceResource { if n == nil { return nil } // Copy the primitives nn := *n // Copy the device instances if l := len(nn.Instances); l != 0 { nn.Instances = make([]*NodeDevice, 0, l) for _, d := range n.Instances { nn.Instances = append(nn.Instances, d.Copy()) } } // Copy the Attributes nn.Attributes = psstructs.CopyMapStringAttribute(nn.Attributes) return &nn } func (n *NodeDeviceResource) Equals(o *NodeDeviceResource) bool { if o == nil && n == nil { return true } else if o == nil { return false } else if n == nil { return false } if n.Vendor != o.Vendor { return false } else if n.Type != o.Type { return false } else if n.Name != o.Name { return false } // Check the attributes if len(n.Attributes) != len(o.Attributes) { return false } for k, v := range n.Attributes { if otherV, ok := o.Attributes[k]; !ok || v != otherV { return false } } // Check the instances if len(n.Instances) != len(o.Instances) { return false } idMap := make(map[string]*NodeDevice, len(n.Instances)) for _, d := range n.Instances { idMap[d.ID] = d } for _, otherD := range o.Instances { if d, ok := idMap[otherD.ID]; !ok || !d.Equals(otherD) { return false } } return true } // NodeDevice is an instance of a particular device. type NodeDevice struct { // ID is the ID of the device. ID string // Healthy captures whether the device is healthy. Healthy bool // HealthDescription is used to provide a human readable description of why // the device may be unhealthy. HealthDescription string // Locality stores HW locality information for the node to optionally be // used when making placement decisions. Locality *NodeDeviceLocality } func (n *NodeDevice) Equals(o *NodeDevice) bool { if o == nil && n == nil { return true } else if o == nil { return false } else if n == nil { return false } if n.ID != o.ID { return false } else if n.Healthy != o.Healthy { return false } else if n.HealthDescription != o.HealthDescription { return false } else if !n.Locality.Equals(o.Locality) { return false } return false } func (n *NodeDevice) Copy() *NodeDevice { if n == nil { return nil } // Copy the primitives nn := *n // Copy the locality nn.Locality = nn.Locality.Copy() return &nn } // NodeDeviceLocality stores information about the devices hardware locality on // the node. type NodeDeviceLocality struct { // PciBusID is the PCI Bus ID for the device. PciBusID string } func (n *NodeDeviceLocality) Equals(o *NodeDeviceLocality) bool { if o == nil && n == nil { return true } else if o == nil { return false } else if n == nil { return false } if n.PciBusID != o.PciBusID { return false } return true } func (n *NodeDeviceLocality) Copy() *NodeDeviceLocality { if n == nil { return nil } // Copy the primitives nn := *n return &nn } // NodeReservedResources is used to capture the resources on a client node that // should be reserved and not made available to jobs. type NodeReservedResources struct { Cpu NodeReservedCpuResources Memory NodeReservedMemoryResources Disk NodeReservedDiskResources Networks NodeReservedNetworkResources } func (n *NodeReservedResources) Copy() *NodeReservedResources { if n == nil { return nil } newN := new(NodeReservedResources) *newN = *n return newN } // Comparable returns a comparable version of the node's reserved resources. The // returned resources doesn't contain any network information. This conversion // can be lossy so care must be taken when using it. func (n *NodeReservedResources) Comparable() *ComparableResources { if n == nil { return nil } c := &ComparableResources{ Flattened: AllocatedTaskResources{ Cpu: AllocatedCpuResources{ CpuShares: n.Cpu.CpuShares, }, Memory: AllocatedMemoryResources{ MemoryMB: n.Memory.MemoryMB, }, }, Shared: AllocatedSharedResources{ DiskMB: n.Disk.DiskMB, }, } return c } // NodeReservedCpuResources captures the reserved CPU resources of the node. type NodeReservedCpuResources struct { CpuShares int64 } // NodeReservedMemoryResources captures the reserved memory resources of the node. type NodeReservedMemoryResources struct { MemoryMB int64 } // NodeReservedDiskResources captures the reserved disk resources of the node. type NodeReservedDiskResources struct { DiskMB int64 } // NodeReservedNetworkResources captures the reserved network resources of the node. type NodeReservedNetworkResources struct { // ReservedHostPorts is the set of ports reserved on all host network // interfaces. Its format is a comma separate list of integers or integer // ranges. (80,443,1000-2000,2005) ReservedHostPorts string } // ParsePortHostPorts returns the reserved host ports. func (n *NodeReservedNetworkResources) ParseReservedHostPorts() ([]uint64, error) { return ParsePortRanges(n.ReservedHostPorts) } // AllocatedResources is the set of resources to be used by an allocation. type AllocatedResources struct { // Tasks is a mapping of task name to the resources for the task. Tasks map[string]*AllocatedTaskResources // Shared is the set of resource that are shared by all tasks in the group. Shared AllocatedSharedResources } func (a *AllocatedResources) Copy() *AllocatedResources { if a == nil { return nil } newA := new(AllocatedResources) *newA = *a if a.Tasks != nil { tr := make(map[string]*AllocatedTaskResources, len(newA.Tasks)) for task, resource := range newA.Tasks { tr[task] = resource.Copy() } newA.Tasks = tr } return newA } // Comparable returns a comparable version of the allocations allocated // resources. This conversion can be lossy so care must be taken when using it. func (a *AllocatedResources) Comparable() *ComparableResources { if a == nil { return nil } c := &ComparableResources{ Shared: a.Shared, } for _, r := range a.Tasks { c.Flattened.Add(r) } return c } // OldTaskResources returns the pre-0.9.0 map of task resources func (a *AllocatedResources) OldTaskResources() map[string]*Resources { m := make(map[string]*Resources, len(a.Tasks)) for name, res := range a.Tasks { m[name] = &Resources{ CPU: int(res.Cpu.CpuShares), MemoryMB: int(res.Memory.MemoryMB), Networks: res.Networks, } } return m } // AllocatedTaskResources are the set of resources allocated to a task. type AllocatedTaskResources struct { Cpu AllocatedCpuResources Memory AllocatedMemoryResources Networks Networks } func (a *AllocatedTaskResources) Copy() *AllocatedTaskResources { if a == nil { return nil } newA := new(AllocatedTaskResources) *newA = *a if a.Networks != nil { n := len(a.Networks) newA.Networks = make([]*NetworkResource, n) for i := 0; i < n; i++ { newA.Networks[i] = a.Networks[i].Copy() } } return newA } // NetIndex finds the matching net index using device name func (a *AllocatedTaskResources) NetIndex(n *NetworkResource) int { return a.Networks.NetIndex(n) } func (a *AllocatedTaskResources) Add(delta *AllocatedTaskResources) { if delta == nil { return } a.Cpu.Add(&delta.Cpu) a.Memory.Add(&delta.Memory) for _, n := range delta.Networks { // Find the matching interface by IP or CIDR idx := a.NetIndex(n) if idx == -1 { a.Networks = append(a.Networks, n.Copy()) } else { a.Networks[idx].Add(n) } } } // Comparable turns AllocatedTaskResources into ComparableResources // as a helper step in preemption func (a *AllocatedTaskResources) Comparable() *ComparableResources { ret := &ComparableResources{ Flattened: AllocatedTaskResources{ Cpu: AllocatedCpuResources{ CpuShares: a.Cpu.CpuShares, }, Memory: AllocatedMemoryResources{ MemoryMB: a.Memory.MemoryMB, }, }, } if len(a.Networks) > 0 { for _, net := range a.Networks { ret.Flattened.Networks = append(ret.Flattened.Networks, net) } } return ret } func (a *AllocatedTaskResources) Subtract(delta *AllocatedTaskResources) { if delta == nil { return } a.Cpu.Subtract(&delta.Cpu) a.Memory.Subtract(&delta.Memory) for _, n := range delta.Networks { // Find the matching interface by IP or CIDR idx := a.NetIndex(n) if idx != -1 { a.Networks[idx].MBits -= delta.Networks[idx].MBits } } } // AllocatedSharedResources are the set of resources allocated to a task group. type AllocatedSharedResources struct { DiskMB int64 } func (a *AllocatedSharedResources) Add(delta *AllocatedSharedResources) { if delta == nil { return } a.DiskMB += delta.DiskMB } func (a *AllocatedSharedResources) Subtract(delta *AllocatedSharedResources) { if delta == nil { return } a.DiskMB -= delta.DiskMB } // AllocatedCpuResources captures the allocated CPU resources. type AllocatedCpuResources struct { CpuShares int64 } func (a *AllocatedCpuResources) Add(delta *AllocatedCpuResources) { if delta == nil { return } a.CpuShares += delta.CpuShares } func (a *AllocatedCpuResources) Subtract(delta *AllocatedCpuResources) { if delta == nil { return } a.CpuShares -= delta.CpuShares } // AllocatedMemoryResources captures the allocated memory resources. type AllocatedMemoryResources struct { MemoryMB int64 } func (a *AllocatedMemoryResources) Add(delta *AllocatedMemoryResources) { if delta == nil { return } a.MemoryMB += delta.MemoryMB } func (a *AllocatedMemoryResources) Subtract(delta *AllocatedMemoryResources) { if delta == nil { return } a.MemoryMB -= delta.MemoryMB } // ComparableResources is the set of resources allocated to a task group but // not keyed by Task, making it easier to compare. type ComparableResources struct { Flattened AllocatedTaskResources Shared AllocatedSharedResources } func (c *ComparableResources) Add(delta *ComparableResources) { if delta == nil { return } c.Flattened.Add(&delta.Flattened) c.Shared.Add(&delta.Shared) } func (c *ComparableResources) Subtract(delta *ComparableResources) { if delta == nil { return } c.Flattened.Subtract(&delta.Flattened) c.Shared.Subtract(&delta.Shared) } func (c *ComparableResources) Copy() *ComparableResources { if c == nil { return nil } newR := new(ComparableResources) *newR = *c return newR } // Superset checks if one set of resources is a superset of another. This // ignores network resources, and the NetworkIndex should be used for that. func (c *ComparableResources) Superset(other *ComparableResources) (bool, string) { if c.Flattened.Cpu.CpuShares < other.Flattened.Cpu.CpuShares { return false, "cpu" } if c.Flattened.Memory.MemoryMB < other.Flattened.Memory.MemoryMB { return false, "memory" } if c.Shared.DiskMB < other.Shared.DiskMB { return false, "disk" } return true, "" } // allocated finds the matching net index using device name func (c *ComparableResources) NetIndex(n *NetworkResource) int { return c.Flattened.Networks.NetIndex(n) } const ( // JobTypeNomad is reserved for internal system tasks and is // always handled by the CoreScheduler. JobTypeCore = "_core" JobTypeService = "service" JobTypeBatch = "batch" JobTypeSystem = "system" ) const ( JobStatusPending = "pending" // Pending means the job is waiting on scheduling JobStatusRunning = "running" // Running means the job has non-terminal allocations JobStatusDead = "dead" // Dead means all evaluation's and allocations are terminal ) const ( // JobMinPriority is the minimum allowed priority JobMinPriority = 1 // JobDefaultPriority is the default priority if not // not specified. JobDefaultPriority = 50 // JobMaxPriority is the maximum allowed priority JobMaxPriority = 100 // Ensure CoreJobPriority is higher than any user // specified job so that it gets priority. This is important // for the system to remain healthy. CoreJobPriority = JobMaxPriority * 2 // JobTrackedVersions is the number of historic job versions that are // kept. JobTrackedVersions = 6 ) // Job is the scope of a scheduling request to Nomad. It is the largest // scoped object, and is a named collection of task groups. Each task group // is further composed of tasks. A task group (TG) is the unit of scheduling // however. type Job struct { // Stop marks whether the user has stopped the job. A stopped job will // have all created allocations stopped and acts as a way to stop a job // without purging it from the system. This allows existing allocs to be // queried and the job to be inspected as it is being killed. Stop bool // Region is the Nomad region that handles scheduling this job Region string // Namespace is the namespace the job is submitted into. Namespace string // ID is a unique identifier for the job per region. It can be // specified hierarchically like LineOfBiz/OrgName/Team/Project ID string // ParentID is the unique identifier of the job that spawned this job. ParentID string // Name is the logical name of the job used to refer to it. This is unique // per region, but not unique globally. Name string // Type is used to control various behaviors about the job. Most jobs // are service jobs, meaning they are expected to be long lived. // Some jobs are batch oriented meaning they run and then terminate. // This can be extended in the future to support custom schedulers. Type string // Priority is used to control scheduling importance and if this job // can preempt other jobs. Priority int // AllAtOnce is used to control if incremental scheduling of task groups // is allowed or if we must do a gang scheduling of the entire job. This // can slow down larger jobs if resources are not available. AllAtOnce bool // Datacenters contains all the datacenters this job is allowed to span Datacenters []string // Constraints can be specified at a job level and apply to // all the task groups and tasks. Constraints []*Constraint // Affinities can be specified at the job level to express // scheduling preferences that apply to all groups and tasks Affinities []*Affinity // Spread can be specified at the job level to express spreading // allocations across a desired attribute, such as datacenter Spreads []*Spread // TaskGroups are the collections of task groups that this job needs // to run. Each task group is an atomic unit of scheduling and placement. TaskGroups []*TaskGroup // COMPAT: Remove in 0.7.0. Stagger is deprecated in 0.6.0. Update UpdateStrategy // Periodic is used to define the interval the job is run at. Periodic *PeriodicConfig // ParameterizedJob is used to specify the job as a parameterized job // for dispatching. ParameterizedJob *ParameterizedJobConfig // Dispatched is used to identify if the Job has been dispatched from a // parameterized job. Dispatched bool // Payload is the payload supplied when the job was dispatched. Payload []byte // Meta is used to associate arbitrary metadata with this // job. This is opaque to Nomad. Meta map[string]string // VaultToken is the Vault token that proves the submitter of the job has // access to the specified Vault policies. This field is only used to // transfer the token and is not stored after Job submission. VaultToken string // Job status Status string // StatusDescription is meant to provide more human useful information StatusDescription string // Stable marks a job as stable. Stability is only defined on "service" and // "system" jobs. The stability of a job will be set automatically as part // of a deployment and can be manually set via APIs. Stable bool // Version is a monotonically increasing version number that is incremented // on each job register. Version uint64 // SubmitTime is the time at which the job was submitted as a UnixNano in // UTC SubmitTime int64 // Raft Indexes CreateIndex uint64 ModifyIndex uint64 JobModifyIndex uint64 } // NamespacedID returns the namespaced id useful for logging func (j *Job) NamespacedID() *NamespacedID { return &NamespacedID{ ID: j.ID, Namespace: j.Namespace, } } // Canonicalize is used to canonicalize fields in the Job. This should be called // when registering a Job. A set of warnings are returned if the job was changed // in anyway that the user should be made aware of. func (j *Job) Canonicalize() (warnings error) { if j == nil { return nil } var mErr multierror.Error // Ensure that an empty and nil map are treated the same to avoid scheduling // problems since we use reflect DeepEquals. if len(j.Meta) == 0 { j.Meta = nil } // Ensure the job is in a namespace. if j.Namespace == "" { j.Namespace = DefaultNamespace } for _, tg := range j.TaskGroups { tg.Canonicalize(j) } if j.ParameterizedJob != nil { j.ParameterizedJob.Canonicalize() } if j.Periodic != nil { j.Periodic.Canonicalize() } return mErr.ErrorOrNil() } // Copy returns a deep copy of the Job. It is expected that callers use recover. // This job can panic if the deep copy failed as it uses reflection. func (j *Job) Copy() *Job { if j == nil { return nil } nj := new(Job) *nj = *j nj.Datacenters = helper.CopySliceString(nj.Datacenters) nj.Constraints = CopySliceConstraints(nj.Constraints) nj.Affinities = CopySliceAffinities(nj.Affinities) if j.TaskGroups != nil { tgs := make([]*TaskGroup, len(nj.TaskGroups)) for i, tg := range nj.TaskGroups { tgs[i] = tg.Copy() } nj.TaskGroups = tgs } nj.Periodic = nj.Periodic.Copy() nj.Meta = helper.CopyMapStringString(nj.Meta) nj.ParameterizedJob = nj.ParameterizedJob.Copy() return nj } // Validate is used to sanity check a job input func (j *Job) Validate() error { var mErr multierror.Error if j.Region == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing job region")) } if j.ID == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing job ID")) } else if strings.Contains(j.ID, " ") { mErr.Errors = append(mErr.Errors, errors.New("Job ID contains a space")) } if j.Name == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing job name")) } if j.Namespace == "" { mErr.Errors = append(mErr.Errors, errors.New("Job must be in a namespace")) } switch j.Type { case JobTypeCore, JobTypeService, JobTypeBatch, JobTypeSystem: case "": mErr.Errors = append(mErr.Errors, errors.New("Missing job type")) default: mErr.Errors = append(mErr.Errors, fmt.Errorf("Invalid job type: %q", j.Type)) } if j.Priority < JobMinPriority || j.Priority > JobMaxPriority { mErr.Errors = append(mErr.Errors, fmt.Errorf("Job priority must be between [%d, %d]", JobMinPriority, JobMaxPriority)) } if len(j.Datacenters) == 0 { mErr.Errors = append(mErr.Errors, errors.New("Missing job datacenters")) } if len(j.TaskGroups) == 0 { mErr.Errors = append(mErr.Errors, errors.New("Missing job task groups")) } for idx, constr := range j.Constraints { if err := constr.Validate(); err != nil { outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } if j.Type == JobTypeSystem { if j.Affinities != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("System jobs may not have an affinity stanza")) } } else { for idx, affinity := range j.Affinities { if err := affinity.Validate(); err != nil { outer := fmt.Errorf("Affinity %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } } if j.Type == JobTypeSystem { if j.Spreads != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("System jobs may not have a spread stanza")) } } else { for idx, spread := range j.Spreads { if err := spread.Validate(); err != nil { outer := fmt.Errorf("Spread %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } } // Check for duplicate task groups taskGroups := make(map[string]int) for idx, tg := range j.TaskGroups { if tg.Name == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("Job task group %d missing name", idx+1)) } else if existing, ok := taskGroups[tg.Name]; ok { mErr.Errors = append(mErr.Errors, fmt.Errorf("Job task group %d redefines '%s' from group %d", idx+1, tg.Name, existing+1)) } else { taskGroups[tg.Name] = idx } if j.Type == "system" && tg.Count > 1 { mErr.Errors = append(mErr.Errors, fmt.Errorf("Job task group %s has count %d. Count cannot exceed 1 with system scheduler", tg.Name, tg.Count)) } } // Validate the task group for _, tg := range j.TaskGroups { if err := tg.Validate(j); err != nil { outer := fmt.Errorf("Task group %s validation failed: %v", tg.Name, err) mErr.Errors = append(mErr.Errors, outer) } } // Validate periodic is only used with batch jobs. if j.IsPeriodic() && j.Periodic.Enabled { if j.Type != JobTypeBatch { mErr.Errors = append(mErr.Errors, fmt.Errorf("Periodic can only be used with %q scheduler", JobTypeBatch)) } if err := j.Periodic.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } if j.IsParameterized() { if j.Type != JobTypeBatch { mErr.Errors = append(mErr.Errors, fmt.Errorf("Parameterized job can only be used with %q scheduler", JobTypeBatch)) } if err := j.ParameterizedJob.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } return mErr.ErrorOrNil() } // Warnings returns a list of warnings that may be from dubious settings or // deprecation warnings. func (j *Job) Warnings() error { var mErr multierror.Error // Check the groups for _, tg := range j.TaskGroups { if err := tg.Warnings(j); err != nil { outer := fmt.Errorf("Group %q has warnings: %v", tg.Name, err) mErr.Errors = append(mErr.Errors, outer) } } return mErr.ErrorOrNil() } // LookupTaskGroup finds a task group by name func (j *Job) LookupTaskGroup(name string) *TaskGroup { for _, tg := range j.TaskGroups { if tg.Name == name { return tg } } return nil } // CombinedTaskMeta takes a TaskGroup and Task name and returns the combined // meta data for the task. When joining Job, Group and Task Meta, the precedence // is by deepest scope (Task > Group > Job). func (j *Job) CombinedTaskMeta(groupName, taskName string) map[string]string { group := j.LookupTaskGroup(groupName) if group == nil { return nil } task := group.LookupTask(taskName) if task == nil { return nil } meta := helper.CopyMapStringString(task.Meta) if meta == nil { meta = make(map[string]string, len(group.Meta)+len(j.Meta)) } // Add the group specific meta for k, v := range group.Meta { if _, ok := meta[k]; !ok { meta[k] = v } } // Add the job specific meta for k, v := range j.Meta { if _, ok := meta[k]; !ok { meta[k] = v } } return meta } // Stopped returns if a job is stopped. func (j *Job) Stopped() bool { return j == nil || j.Stop } // HasUpdateStrategy returns if any task group in the job has an update strategy func (j *Job) HasUpdateStrategy() bool { for _, tg := range j.TaskGroups { if tg.Update != nil { return true } } return false } // Stub is used to return a summary of the job func (j *Job) Stub(summary *JobSummary) *JobListStub { return &JobListStub{ ID: j.ID, ParentID: j.ParentID, Name: j.Name, Type: j.Type, Priority: j.Priority, Periodic: j.IsPeriodic(), ParameterizedJob: j.IsParameterized(), Stop: j.Stop, Status: j.Status, StatusDescription: j.StatusDescription, CreateIndex: j.CreateIndex, ModifyIndex: j.ModifyIndex, JobModifyIndex: j.JobModifyIndex, SubmitTime: j.SubmitTime, JobSummary: summary, } } // IsPeriodic returns whether a job is periodic. func (j *Job) IsPeriodic() bool { return j.Periodic != nil } // IsPeriodicActive returns whether the job is an active periodic job that will // create child jobs func (j *Job) IsPeriodicActive() bool { return j.IsPeriodic() && j.Periodic.Enabled && !j.Stopped() && !j.IsParameterized() } // IsParameterized returns whether a job is parameterized job. func (j *Job) IsParameterized() bool { return j.ParameterizedJob != nil && !j.Dispatched } // VaultPolicies returns the set of Vault policies per task group, per task func (j *Job) VaultPolicies() map[string]map[string]*Vault { policies := make(map[string]map[string]*Vault, len(j.TaskGroups)) for _, tg := range j.TaskGroups { tgPolicies := make(map[string]*Vault, len(tg.Tasks)) for _, task := range tg.Tasks { if task.Vault == nil { continue } tgPolicies[task.Name] = task.Vault } if len(tgPolicies) != 0 { policies[tg.Name] = tgPolicies } } return policies } // RequiredSignals returns a mapping of task groups to tasks to their required // set of signals func (j *Job) RequiredSignals() map[string]map[string][]string { signals := make(map[string]map[string][]string) for _, tg := range j.TaskGroups { for _, task := range tg.Tasks { // Use this local one as a set taskSignals := make(map[string]struct{}) // Check if the Vault change mode uses signals if task.Vault != nil && task.Vault.ChangeMode == VaultChangeModeSignal { taskSignals[task.Vault.ChangeSignal] = struct{}{} } // If a user has specified a KillSignal, add it to required signals if task.KillSignal != "" { taskSignals[task.KillSignal] = struct{}{} } // Check if any template change mode uses signals for _, t := range task.Templates { if t.ChangeMode != TemplateChangeModeSignal { continue } taskSignals[t.ChangeSignal] = struct{}{} } // Flatten and sort the signals l := len(taskSignals) if l == 0 { continue } flat := make([]string, 0, l) for sig := range taskSignals { flat = append(flat, sig) } sort.Strings(flat) tgSignals, ok := signals[tg.Name] if !ok { tgSignals = make(map[string][]string) signals[tg.Name] = tgSignals } tgSignals[task.Name] = flat } } return signals } // SpecChanged determines if the functional specification has changed between // two job versions. func (j *Job) SpecChanged(new *Job) bool { if j == nil { return new != nil } // Create a copy of the new job c := new.Copy() // Update the new job so we can do a reflect c.Status = j.Status c.StatusDescription = j.StatusDescription c.Stable = j.Stable c.Version = j.Version c.CreateIndex = j.CreateIndex c.ModifyIndex = j.ModifyIndex c.JobModifyIndex = j.JobModifyIndex c.SubmitTime = j.SubmitTime // Deep equals the jobs return !reflect.DeepEqual(j, c) } func (j *Job) SetSubmitTime() { j.SubmitTime = time.Now().UTC().UnixNano() } // JobListStub is used to return a subset of job information // for the job list type JobListStub struct { ID string ParentID string Name string Type string Priority int Periodic bool ParameterizedJob bool Stop bool Status string StatusDescription string JobSummary *JobSummary CreateIndex uint64 ModifyIndex uint64 JobModifyIndex uint64 SubmitTime int64 } // JobSummary summarizes the state of the allocations of a job type JobSummary struct { // JobID is the ID of the job the summary is for JobID string // Namespace is the namespace of the job and its summary Namespace string // Summary contains the summary per task group for the Job Summary map[string]TaskGroupSummary // Children contains a summary for the children of this job. Children *JobChildrenSummary // Raft Indexes CreateIndex uint64 ModifyIndex uint64 } // Copy returns a new copy of JobSummary func (js *JobSummary) Copy() *JobSummary { newJobSummary := new(JobSummary) *newJobSummary = *js newTGSummary := make(map[string]TaskGroupSummary, len(js.Summary)) for k, v := range js.Summary { newTGSummary[k] = v } newJobSummary.Summary = newTGSummary newJobSummary.Children = newJobSummary.Children.Copy() return newJobSummary } // JobChildrenSummary contains the summary of children job statuses type JobChildrenSummary struct { Pending int64 Running int64 Dead int64 } // Copy returns a new copy of a JobChildrenSummary func (jc *JobChildrenSummary) Copy() *JobChildrenSummary { if jc == nil { return nil } njc := new(JobChildrenSummary) *njc = *jc return njc } // TaskGroup summarizes the state of all the allocations of a particular // TaskGroup type TaskGroupSummary struct { Queued int Complete int Failed int Running int Starting int Lost int } const ( // Checks uses any registered health check state in combination with task // states to determine if a allocation is healthy. UpdateStrategyHealthCheck_Checks = "checks" // TaskStates uses the task states of an allocation to determine if the // allocation is healthy. UpdateStrategyHealthCheck_TaskStates = "task_states" // Manual allows the operator to manually signal to Nomad when an // allocations is healthy. This allows more advanced health checking that is // outside of the scope of Nomad. UpdateStrategyHealthCheck_Manual = "manual" ) var ( // DefaultUpdateStrategy provides a baseline that can be used to upgrade // jobs with the old policy or for populating field defaults. DefaultUpdateStrategy = &UpdateStrategy{ Stagger: 30 * time.Second, MaxParallel: 1, HealthCheck: UpdateStrategyHealthCheck_Checks, MinHealthyTime: 10 * time.Second, HealthyDeadline: 5 * time.Minute, ProgressDeadline: 10 * time.Minute, AutoRevert: false, Canary: 0, } ) // UpdateStrategy is used to modify how updates are done type UpdateStrategy struct { // Stagger is used to determine the rate at which allocations are migrated // due to down or draining nodes. Stagger time.Duration // MaxParallel is how many updates can be done in parallel MaxParallel int // HealthCheck specifies the mechanism in which allocations are marked // healthy or unhealthy as part of a deployment. HealthCheck string // MinHealthyTime is the minimum time an allocation must be in the healthy // state before it is marked as healthy, unblocking more allocations to be // rolled. MinHealthyTime time.Duration // HealthyDeadline is the time in which an allocation must be marked as // healthy before it is automatically transitioned to unhealthy. This time // period doesn't count against the MinHealthyTime. HealthyDeadline time.Duration // ProgressDeadline is the time in which an allocation as part of the // deployment must transition to healthy. If no allocation becomes healthy // after the deadline, the deployment is marked as failed. If the deadline // is zero, the first failure causes the deployment to fail. ProgressDeadline time.Duration // AutoRevert declares that if a deployment fails because of unhealthy // allocations, there should be an attempt to auto-revert the job to a // stable version. AutoRevert bool // Canary is the number of canaries to deploy when a change to the task // group is detected. Canary int } func (u *UpdateStrategy) Copy() *UpdateStrategy { if u == nil { return nil } copy := new(UpdateStrategy) *copy = *u return copy } func (u *UpdateStrategy) Validate() error { if u == nil { return nil } var mErr multierror.Error switch u.HealthCheck { case UpdateStrategyHealthCheck_Checks, UpdateStrategyHealthCheck_TaskStates, UpdateStrategyHealthCheck_Manual: default: multierror.Append(&mErr, fmt.Errorf("Invalid health check given: %q", u.HealthCheck)) } if u.MaxParallel < 1 { multierror.Append(&mErr, fmt.Errorf("Max parallel can not be less than one: %d < 1", u.MaxParallel)) } if u.Canary < 0 { multierror.Append(&mErr, fmt.Errorf("Canary count can not be less than zero: %d < 0", u.Canary)) } if u.MinHealthyTime < 0 { multierror.Append(&mErr, fmt.Errorf("Minimum healthy time may not be less than zero: %v", u.MinHealthyTime)) } if u.HealthyDeadline <= 0 { multierror.Append(&mErr, fmt.Errorf("Healthy deadline must be greater than zero: %v", u.HealthyDeadline)) } if u.ProgressDeadline < 0 { multierror.Append(&mErr, fmt.Errorf("Progress deadline must be zero or greater: %v", u.ProgressDeadline)) } if u.MinHealthyTime >= u.HealthyDeadline { multierror.Append(&mErr, fmt.Errorf("Minimum healthy time must be less than healthy deadline: %v > %v", u.MinHealthyTime, u.HealthyDeadline)) } if u.ProgressDeadline != 0 && u.HealthyDeadline >= u.ProgressDeadline { multierror.Append(&mErr, fmt.Errorf("Healthy deadline must be less than progress deadline: %v > %v", u.HealthyDeadline, u.ProgressDeadline)) } if u.Stagger <= 0 { multierror.Append(&mErr, fmt.Errorf("Stagger must be greater than zero: %v", u.Stagger)) } return mErr.ErrorOrNil() } // TODO(alexdadgar): Remove once no longer used by the scheduler. // Rolling returns if a rolling strategy should be used func (u *UpdateStrategy) Rolling() bool { return u.Stagger > 0 && u.MaxParallel > 0 } const ( // PeriodicSpecCron is used for a cron spec. PeriodicSpecCron = "cron" // PeriodicSpecTest is only used by unit tests. It is a sorted, comma // separated list of unix timestamps at which to launch. PeriodicSpecTest = "_internal_test" ) // Periodic defines the interval a job should be run at. type PeriodicConfig struct { // Enabled determines if the job should be run periodically. Enabled bool // Spec specifies the interval the job should be run as. It is parsed based // on the SpecType. Spec string // SpecType defines the format of the spec. SpecType string // ProhibitOverlap enforces that spawned jobs do not run in parallel. ProhibitOverlap bool // TimeZone is the user specified string that determines the time zone to // launch against. The time zones must be specified from IANA Time Zone // database, such as "America/New_York". // Reference: https://en.wikipedia.org/wiki/List_of_tz_database_time_zones // Reference: https://www.iana.org/time-zones TimeZone string // location is the time zone to evaluate the launch time against location *time.Location } func (p *PeriodicConfig) Copy() *PeriodicConfig { if p == nil { return nil } np := new(PeriodicConfig) *np = *p return np } func (p *PeriodicConfig) Validate() error { if !p.Enabled { return nil } var mErr multierror.Error if p.Spec == "" { multierror.Append(&mErr, fmt.Errorf("Must specify a spec")) } // Check if we got a valid time zone if p.TimeZone != "" { if _, err := time.LoadLocation(p.TimeZone); err != nil { multierror.Append(&mErr, fmt.Errorf("Invalid time zone %q: %v", p.TimeZone, err)) } } switch p.SpecType { case PeriodicSpecCron: // Validate the cron spec if _, err := cronexpr.Parse(p.Spec); err != nil { multierror.Append(&mErr, fmt.Errorf("Invalid cron spec %q: %v", p.Spec, err)) } case PeriodicSpecTest: // No-op default: multierror.Append(&mErr, fmt.Errorf("Unknown periodic specification type %q", p.SpecType)) } return mErr.ErrorOrNil() } func (p *PeriodicConfig) Canonicalize() { // Load the location l, err := time.LoadLocation(p.TimeZone) if err != nil { p.location = time.UTC } p.location = l } // CronParseNext is a helper that parses the next time for the given expression // but captures any panic that may occur in the underlying library. func CronParseNext(e *cronexpr.Expression, fromTime time.Time, spec string) (t time.Time, err error) { defer func() { if recover() != nil { t = time.Time{} err = fmt.Errorf("failed parsing cron expression: %q", spec) } }() return e.Next(fromTime), nil } // Next returns the closest time instant matching the spec that is after the // passed time. If no matching instance exists, the zero value of time.Time is // returned. The `time.Location` of the returned value matches that of the // passed time. func (p *PeriodicConfig) Next(fromTime time.Time) (time.Time, error) { switch p.SpecType { case PeriodicSpecCron: if e, err := cronexpr.Parse(p.Spec); err == nil { return CronParseNext(e, fromTime, p.Spec) } case PeriodicSpecTest: split := strings.Split(p.Spec, ",") if len(split) == 1 && split[0] == "" { return time.Time{}, nil } // Parse the times times := make([]time.Time, len(split)) for i, s := range split { unix, err := strconv.Atoi(s) if err != nil { return time.Time{}, nil } times[i] = time.Unix(int64(unix), 0) } // Find the next match for _, next := range times { if fromTime.Before(next) { return next, nil } } } return time.Time{}, nil } // GetLocation returns the location to use for determining the time zone to run // the periodic job against. func (p *PeriodicConfig) GetLocation() *time.Location { // Jobs pre 0.5.5 will not have this if p.location != nil { return p.location } return time.UTC } const ( // PeriodicLaunchSuffix is the string appended to the periodic jobs ID // when launching derived instances of it. PeriodicLaunchSuffix = "/periodic-" ) // PeriodicLaunch tracks the last launch time of a periodic job. type PeriodicLaunch struct { ID string // ID of the periodic job. Namespace string // Namespace of the periodic job Launch time.Time // The last launch time. // Raft Indexes CreateIndex uint64 ModifyIndex uint64 } const ( DispatchPayloadForbidden = "forbidden" DispatchPayloadOptional = "optional" DispatchPayloadRequired = "required" // DispatchLaunchSuffix is the string appended to the parameterized job's ID // when dispatching instances of it. DispatchLaunchSuffix = "/dispatch-" ) // ParameterizedJobConfig is used to configure the parameterized job type ParameterizedJobConfig struct { // Payload configure the payload requirements Payload string // MetaRequired is metadata keys that must be specified by the dispatcher MetaRequired []string // MetaOptional is metadata keys that may be specified by the dispatcher MetaOptional []string } func (d *ParameterizedJobConfig) Validate() error { var mErr multierror.Error switch d.Payload { case DispatchPayloadOptional, DispatchPayloadRequired, DispatchPayloadForbidden: default: multierror.Append(&mErr, fmt.Errorf("Unknown payload requirement: %q", d.Payload)) } // Check that the meta configurations are disjoint sets disjoint, offending := helper.SliceSetDisjoint(d.MetaRequired, d.MetaOptional) if !disjoint { multierror.Append(&mErr, fmt.Errorf("Required and optional meta keys should be disjoint. Following keys exist in both: %v", offending)) } return mErr.ErrorOrNil() } func (d *ParameterizedJobConfig) Canonicalize() { if d.Payload == "" { d.Payload = DispatchPayloadOptional } } func (d *ParameterizedJobConfig) Copy() *ParameterizedJobConfig { if d == nil { return nil } nd := new(ParameterizedJobConfig) *nd = *d nd.MetaOptional = helper.CopySliceString(nd.MetaOptional) nd.MetaRequired = helper.CopySliceString(nd.MetaRequired) return nd } // DispatchedID returns an ID appropriate for a job dispatched against a // particular parameterized job func DispatchedID(templateID string, t time.Time) string { u := uuid.Generate()[:8] return fmt.Sprintf("%s%s%d-%s", templateID, DispatchLaunchSuffix, t.Unix(), u) } // DispatchPayloadConfig configures how a task gets its input from a job dispatch type DispatchPayloadConfig struct { // File specifies a relative path to where the input data should be written File string } func (d *DispatchPayloadConfig) Copy() *DispatchPayloadConfig { if d == nil { return nil } nd := new(DispatchPayloadConfig) *nd = *d return nd } func (d *DispatchPayloadConfig) Validate() error { // Verify the destination doesn't escape escaped, err := PathEscapesAllocDir("task/local/", d.File) if err != nil { return fmt.Errorf("invalid destination path: %v", err) } else if escaped { return fmt.Errorf("destination escapes allocation directory") } return nil } var ( DefaultServiceJobRestartPolicy = RestartPolicy{ Delay: 15 * time.Second, Attempts: 2, Interval: 30 * time.Minute, Mode: RestartPolicyModeFail, } DefaultBatchJobRestartPolicy = RestartPolicy{ Delay: 15 * time.Second, Attempts: 3, Interval: 24 * time.Hour, Mode: RestartPolicyModeFail, } ) var ( DefaultServiceJobReschedulePolicy = ReschedulePolicy{ Delay: 30 * time.Second, DelayFunction: "exponential", MaxDelay: 1 * time.Hour, Unlimited: true, } DefaultBatchJobReschedulePolicy = ReschedulePolicy{ Attempts: 1, Interval: 24 * time.Hour, Delay: 5 * time.Second, DelayFunction: "constant", } ) const ( // RestartPolicyModeDelay causes an artificial delay till the next interval is // reached when the specified attempts have been reached in the interval. RestartPolicyModeDelay = "delay" // RestartPolicyModeFail causes a job to fail if the specified number of // attempts are reached within an interval. RestartPolicyModeFail = "fail" // RestartPolicyMinInterval is the minimum interval that is accepted for a // restart policy. RestartPolicyMinInterval = 5 * time.Second // ReasonWithinPolicy describes restart events that are within policy ReasonWithinPolicy = "Restart within policy" ) // RestartPolicy configures how Tasks are restarted when they crash or fail. type RestartPolicy struct { // Attempts is the number of restart that will occur in an interval. Attempts int // Interval is a duration in which we can limit the number of restarts // within. Interval time.Duration // Delay is the time between a failure and a restart. Delay time.Duration // Mode controls what happens when the task restarts more than attempt times // in an interval. Mode string } func (r *RestartPolicy) Copy() *RestartPolicy { if r == nil { return nil } nrp := new(RestartPolicy) *nrp = *r return nrp } func (r *RestartPolicy) Validate() error { var mErr multierror.Error switch r.Mode { case RestartPolicyModeDelay, RestartPolicyModeFail: default: multierror.Append(&mErr, fmt.Errorf("Unsupported restart mode: %q", r.Mode)) } // Check for ambiguous/confusing settings if r.Attempts == 0 && r.Mode != RestartPolicyModeFail { multierror.Append(&mErr, fmt.Errorf("Restart policy %q with %d attempts is ambiguous", r.Mode, r.Attempts)) } if r.Interval.Nanoseconds() < RestartPolicyMinInterval.Nanoseconds() { multierror.Append(&mErr, fmt.Errorf("Interval can not be less than %v (got %v)", RestartPolicyMinInterval, r.Interval)) } if time.Duration(r.Attempts)*r.Delay > r.Interval { multierror.Append(&mErr, fmt.Errorf("Nomad can't restart the TaskGroup %v times in an interval of %v with a delay of %v", r.Attempts, r.Interval, r.Delay)) } return mErr.ErrorOrNil() } func NewRestartPolicy(jobType string) *RestartPolicy { switch jobType { case JobTypeService, JobTypeSystem: rp := DefaultServiceJobRestartPolicy return &rp case JobTypeBatch: rp := DefaultBatchJobRestartPolicy return &rp } return nil } const ReschedulePolicyMinInterval = 15 * time.Second const ReschedulePolicyMinDelay = 5 * time.Second var RescheduleDelayFunctions = [...]string{"constant", "exponential", "fibonacci"} // ReschedulePolicy configures how Tasks are rescheduled when they crash or fail. type ReschedulePolicy struct { // Attempts limits the number of rescheduling attempts that can occur in an interval. Attempts int // Interval is a duration in which we can limit the number of reschedule attempts. Interval time.Duration // Delay is a minimum duration to wait between reschedule attempts. // The delay function determines how much subsequent reschedule attempts are delayed by. Delay time.Duration // DelayFunction determines how the delay progressively changes on subsequent reschedule // attempts. Valid values are "exponential", "constant", and "fibonacci". DelayFunction string // MaxDelay is an upper bound on the delay. MaxDelay time.Duration // Unlimited allows infinite rescheduling attempts. Only allowed when delay is set // between reschedule attempts. Unlimited bool } func (r *ReschedulePolicy) Copy() *ReschedulePolicy { if r == nil { return nil } nrp := new(ReschedulePolicy) *nrp = *r return nrp } func (r *ReschedulePolicy) Enabled() bool { enabled := r != nil && (r.Attempts > 0 || r.Unlimited) return enabled } // Validate uses different criteria to validate the reschedule policy // Delay must be a minimum of 5 seconds // Delay Ceiling is ignored if Delay Function is "constant" // Number of possible attempts is validated, given the interval, delay and delay function func (r *ReschedulePolicy) Validate() error { if !r.Enabled() { return nil } var mErr multierror.Error // Check for ambiguous/confusing settings if r.Attempts > 0 { if r.Interval <= 0 { multierror.Append(&mErr, fmt.Errorf("Interval must be a non zero value if Attempts > 0")) } if r.Unlimited { multierror.Append(&mErr, fmt.Errorf("Reschedule Policy with Attempts = %v, Interval = %v, "+ "and Unlimited = %v is ambiguous", r.Attempts, r.Interval, r.Unlimited)) multierror.Append(&mErr, errors.New("If Attempts >0, Unlimited cannot also be set to true")) } } delayPreCheck := true // Delay should be bigger than the default if r.Delay.Nanoseconds() < ReschedulePolicyMinDelay.Nanoseconds() { multierror.Append(&mErr, fmt.Errorf("Delay cannot be less than %v (got %v)", ReschedulePolicyMinDelay, r.Delay)) delayPreCheck = false } // Must use a valid delay function if !isValidDelayFunction(r.DelayFunction) { multierror.Append(&mErr, fmt.Errorf("Invalid delay function %q, must be one of %q", r.DelayFunction, RescheduleDelayFunctions)) delayPreCheck = false } // Validate MaxDelay if not using linear delay progression if r.DelayFunction != "constant" { if r.MaxDelay.Nanoseconds() < ReschedulePolicyMinDelay.Nanoseconds() { multierror.Append(&mErr, fmt.Errorf("Max Delay cannot be less than %v (got %v)", ReschedulePolicyMinDelay, r.Delay)) delayPreCheck = false } if r.MaxDelay < r.Delay { multierror.Append(&mErr, fmt.Errorf("Max Delay cannot be less than Delay %v (got %v)", r.Delay, r.MaxDelay)) delayPreCheck = false } } // Validate Interval and other delay parameters if attempts are limited if !r.Unlimited { if r.Interval.Nanoseconds() < ReschedulePolicyMinInterval.Nanoseconds() { multierror.Append(&mErr, fmt.Errorf("Interval cannot be less than %v (got %v)", ReschedulePolicyMinInterval, r.Interval)) } if !delayPreCheck { // We can't cross validate the rest of the delay params if delayPreCheck fails, so return early return mErr.ErrorOrNil() } crossValidationErr := r.validateDelayParams() if crossValidationErr != nil { multierror.Append(&mErr, crossValidationErr) } } return mErr.ErrorOrNil() } func isValidDelayFunction(delayFunc string) bool { for _, value := range RescheduleDelayFunctions { if value == delayFunc { return true } } return false } func (r *ReschedulePolicy) validateDelayParams() error { ok, possibleAttempts, recommendedInterval := r.viableAttempts() if ok { return nil } var mErr multierror.Error if r.DelayFunction == "constant" { multierror.Append(&mErr, fmt.Errorf("Nomad can only make %v attempts in %v with initial delay %v and "+ "delay function %q", possibleAttempts, r.Interval, r.Delay, r.DelayFunction)) } else { multierror.Append(&mErr, fmt.Errorf("Nomad can only make %v attempts in %v with initial delay %v, "+ "delay function %q, and delay ceiling %v", possibleAttempts, r.Interval, r.Delay, r.DelayFunction, r.MaxDelay)) } multierror.Append(&mErr, fmt.Errorf("Set the interval to at least %v to accommodate %v attempts", recommendedInterval.Round(time.Second), r.Attempts)) return mErr.ErrorOrNil() } func (r *ReschedulePolicy) viableAttempts() (bool, int, time.Duration) { var possibleAttempts int var recommendedInterval time.Duration valid := true switch r.DelayFunction { case "constant": recommendedInterval = time.Duration(r.Attempts) * r.Delay if r.Interval < recommendedInterval { possibleAttempts = int(r.Interval / r.Delay) valid = false } case "exponential": for i := 0; i < r.Attempts; i++ { nextDelay := time.Duration(math.Pow(2, float64(i))) * r.Delay if nextDelay > r.MaxDelay { nextDelay = r.MaxDelay recommendedInterval += nextDelay } else { recommendedInterval = nextDelay } if recommendedInterval < r.Interval { possibleAttempts++ } } if possibleAttempts < r.Attempts { valid = false } case "fibonacci": var slots []time.Duration slots = append(slots, r.Delay) slots = append(slots, r.Delay) reachedCeiling := false for i := 2; i < r.Attempts; i++ { var nextDelay time.Duration if reachedCeiling { //switch to linear nextDelay = slots[i-1] + r.MaxDelay } else { nextDelay = slots[i-1] + slots[i-2] if nextDelay > r.MaxDelay { nextDelay = r.MaxDelay reachedCeiling = true } } slots = append(slots, nextDelay) } recommendedInterval = slots[len(slots)-1] if r.Interval < recommendedInterval { valid = false // calculate possible attempts for i := 0; i < len(slots); i++ { if slots[i] > r.Interval { possibleAttempts = i break } } } default: return false, 0, 0 } if possibleAttempts < 0 { // can happen if delay is bigger than interval possibleAttempts = 0 } return valid, possibleAttempts, recommendedInterval } func NewReschedulePolicy(jobType string) *ReschedulePolicy { switch jobType { case JobTypeService: rp := DefaultServiceJobReschedulePolicy return &rp case JobTypeBatch: rp := DefaultBatchJobReschedulePolicy return &rp } return nil } const ( MigrateStrategyHealthChecks = "checks" MigrateStrategyHealthStates = "task_states" ) type MigrateStrategy struct { MaxParallel int HealthCheck string MinHealthyTime time.Duration HealthyDeadline time.Duration } // DefaultMigrateStrategy is used for backwards compat with pre-0.8 Allocations // that lack an update strategy. // // This function should match its counterpart in api/tasks.go func DefaultMigrateStrategy() *MigrateStrategy { return &MigrateStrategy{ MaxParallel: 1, HealthCheck: MigrateStrategyHealthChecks, MinHealthyTime: 10 * time.Second, HealthyDeadline: 5 * time.Minute, } } func (m *MigrateStrategy) Validate() error { var mErr multierror.Error if m.MaxParallel < 0 { multierror.Append(&mErr, fmt.Errorf("MaxParallel must be >= 0 but found %d", m.MaxParallel)) } switch m.HealthCheck { case MigrateStrategyHealthChecks, MigrateStrategyHealthStates: // ok case "": if m.MaxParallel > 0 { multierror.Append(&mErr, fmt.Errorf("Missing HealthCheck")) } default: multierror.Append(&mErr, fmt.Errorf("Invalid HealthCheck: %q", m.HealthCheck)) } if m.MinHealthyTime < 0 { multierror.Append(&mErr, fmt.Errorf("MinHealthyTime is %s and must be >= 0", m.MinHealthyTime)) } if m.HealthyDeadline < 0 { multierror.Append(&mErr, fmt.Errorf("HealthyDeadline is %s and must be >= 0", m.HealthyDeadline)) } if m.MinHealthyTime > m.HealthyDeadline { multierror.Append(&mErr, fmt.Errorf("MinHealthyTime must be less than HealthyDeadline")) } return mErr.ErrorOrNil() } // TaskGroup is an atomic unit of placement. Each task group belongs to // a job and may contain any number of tasks. A task group support running // in many replicas using the same configuration.. type TaskGroup struct { // Name of the task group Name string // Count is the number of replicas of this task group that should // be scheduled. Count int // Update is used to control the update strategy for this task group Update *UpdateStrategy // Migrate is used to control the migration strategy for this task group Migrate *MigrateStrategy // Constraints can be specified at a task group level and apply to // all the tasks contained. Constraints []*Constraint //RestartPolicy of a TaskGroup RestartPolicy *RestartPolicy // Tasks are the collection of tasks that this task group needs to run Tasks []*Task // EphemeralDisk is the disk resources that the task group requests EphemeralDisk *EphemeralDisk // Meta is used to associate arbitrary metadata with this // task group. This is opaque to Nomad. Meta map[string]string // ReschedulePolicy is used to configure how the scheduler should // retry failed allocations. ReschedulePolicy *ReschedulePolicy // Affinities can be specified at the task group level to express // scheduling preferences. Affinities []*Affinity // Spread can be specified at the task group level to express spreading // allocations across a desired attribute, such as datacenter Spreads []*Spread } func (tg *TaskGroup) Copy() *TaskGroup { if tg == nil { return nil } ntg := new(TaskGroup) *ntg = *tg ntg.Update = ntg.Update.Copy() ntg.Constraints = CopySliceConstraints(ntg.Constraints) ntg.RestartPolicy = ntg.RestartPolicy.Copy() ntg.ReschedulePolicy = ntg.ReschedulePolicy.Copy() ntg.Affinities = CopySliceAffinities(ntg.Affinities) ntg.Spreads = CopySliceSpreads(ntg.Spreads) if tg.Tasks != nil { tasks := make([]*Task, len(ntg.Tasks)) for i, t := range ntg.Tasks { tasks[i] = t.Copy() } ntg.Tasks = tasks } ntg.Meta = helper.CopyMapStringString(ntg.Meta) if tg.EphemeralDisk != nil { ntg.EphemeralDisk = tg.EphemeralDisk.Copy() } return ntg } // Canonicalize is used to canonicalize fields in the TaskGroup. func (tg *TaskGroup) Canonicalize(job *Job) { // Ensure that an empty and nil map are treated the same to avoid scheduling // problems since we use reflect DeepEquals. if len(tg.Meta) == 0 { tg.Meta = nil } // Set the default restart policy. if tg.RestartPolicy == nil { tg.RestartPolicy = NewRestartPolicy(job.Type) } if tg.ReschedulePolicy == nil { tg.ReschedulePolicy = NewReschedulePolicy(job.Type) } // Canonicalize Migrate for service jobs if job.Type == JobTypeService && tg.Migrate == nil { tg.Migrate = DefaultMigrateStrategy() } // Set a default ephemeral disk object if the user has not requested for one if tg.EphemeralDisk == nil { tg.EphemeralDisk = DefaultEphemeralDisk() } for _, task := range tg.Tasks { task.Canonicalize(job, tg) } } // Validate is used to sanity check a task group func (tg *TaskGroup) Validate(j *Job) error { var mErr multierror.Error if tg.Name == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing task group name")) } if tg.Count < 0 { mErr.Errors = append(mErr.Errors, errors.New("Task group count can't be negative")) } if len(tg.Tasks) == 0 { mErr.Errors = append(mErr.Errors, errors.New("Missing tasks for task group")) } for idx, constr := range tg.Constraints { if err := constr.Validate(); err != nil { outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } if j.Type == JobTypeSystem { if tg.Affinities != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("System jobs may not have an affinity stanza")) } } else { for idx, affinity := range tg.Affinities { if err := affinity.Validate(); err != nil { outer := fmt.Errorf("Affinity %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } } if tg.RestartPolicy != nil { if err := tg.RestartPolicy.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } else { mErr.Errors = append(mErr.Errors, fmt.Errorf("Task Group %v should have a restart policy", tg.Name)) } if j.Type == JobTypeSystem { if tg.Spreads != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("System jobs may not have a spread stanza")) } } else { for idx, spread := range tg.Spreads { if err := spread.Validate(); err != nil { outer := fmt.Errorf("Spread %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } } if j.Type == JobTypeSystem { if tg.ReschedulePolicy != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("System jobs should not have a reschedule policy")) } } else { if tg.ReschedulePolicy != nil { if err := tg.ReschedulePolicy.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } else { mErr.Errors = append(mErr.Errors, fmt.Errorf("Task Group %v should have a reschedule policy", tg.Name)) } } if tg.EphemeralDisk != nil { if err := tg.EphemeralDisk.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } else { mErr.Errors = append(mErr.Errors, fmt.Errorf("Task Group %v should have an ephemeral disk object", tg.Name)) } // Validate the update strategy if u := tg.Update; u != nil { switch j.Type { case JobTypeService, JobTypeSystem: default: mErr.Errors = append(mErr.Errors, fmt.Errorf("Job type %q does not allow update block", j.Type)) } if err := u.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } // Validate the migration strategy switch j.Type { case JobTypeService: if tg.Migrate != nil { if err := tg.Migrate.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } default: if tg.Migrate != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Job type %q does not allow migrate block", j.Type)) } } // Check for duplicate tasks, that there is only leader task if any, // and no duplicated static ports tasks := make(map[string]int) staticPorts := make(map[int]string) leaderTasks := 0 for idx, task := range tg.Tasks { if task.Name == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("Task %d missing name", idx+1)) } else if existing, ok := tasks[task.Name]; ok { mErr.Errors = append(mErr.Errors, fmt.Errorf("Task %d redefines '%s' from task %d", idx+1, task.Name, existing+1)) } else { tasks[task.Name] = idx } if task.Leader { leaderTasks++ } if task.Resources == nil { continue } for _, net := range task.Resources.Networks { for _, port := range net.ReservedPorts { if other, ok := staticPorts[port.Value]; ok { err := fmt.Errorf("Static port %d already reserved by %s", port.Value, other) mErr.Errors = append(mErr.Errors, err) } else { staticPorts[port.Value] = fmt.Sprintf("%s:%s", task.Name, port.Label) } } } } if leaderTasks > 1 { mErr.Errors = append(mErr.Errors, fmt.Errorf("Only one task may be marked as leader")) } // Validate the tasks for _, task := range tg.Tasks { if err := task.Validate(tg.EphemeralDisk, j.Type); err != nil { outer := fmt.Errorf("Task %s validation failed: %v", task.Name, err) mErr.Errors = append(mErr.Errors, outer) } } return mErr.ErrorOrNil() } // Warnings returns a list of warnings that may be from dubious settings or // deprecation warnings. func (tg *TaskGroup) Warnings(j *Job) error { var mErr multierror.Error // Validate the update strategy if u := tg.Update; u != nil { // Check the counts are appropriate if u.MaxParallel > tg.Count { mErr.Errors = append(mErr.Errors, fmt.Errorf("Update max parallel count is greater than task group count (%d > %d). "+ "A destructive change would result in the simultaneous replacement of all allocations.", u.MaxParallel, tg.Count)) } } return mErr.ErrorOrNil() } // LookupTask finds a task by name func (tg *TaskGroup) LookupTask(name string) *Task { for _, t := range tg.Tasks { if t.Name == name { return t } } return nil } func (tg *TaskGroup) GoString() string { return fmt.Sprintf("*%#v", *tg) } // CheckRestart describes if and when a task should be restarted based on // failing health checks. type CheckRestart struct { Limit int // Restart task after this many unhealthy intervals Grace time.Duration // Grace time to give tasks after starting to get healthy IgnoreWarnings bool // If true treat checks in `warning` as passing } func (c *CheckRestart) Copy() *CheckRestart { if c == nil { return nil } nc := new(CheckRestart) *nc = *c return nc } func (c *CheckRestart) Validate() error { if c == nil { return nil } var mErr multierror.Error if c.Limit < 0 { mErr.Errors = append(mErr.Errors, fmt.Errorf("limit must be greater than or equal to 0 but found %d", c.Limit)) } if c.Grace < 0 { mErr.Errors = append(mErr.Errors, fmt.Errorf("grace period must be greater than or equal to 0 but found %d", c.Grace)) } return mErr.ErrorOrNil() } const ( ServiceCheckHTTP = "http" ServiceCheckTCP = "tcp" ServiceCheckScript = "script" ServiceCheckGRPC = "grpc" // minCheckInterval is the minimum check interval permitted. Consul // currently has its MinInterval set to 1s. Mirror that here for // consistency. minCheckInterval = 1 * time.Second // minCheckTimeout is the minimum check timeout permitted for Consul // script TTL checks. minCheckTimeout = 1 * time.Second ) // The ServiceCheck data model represents the consul health check that // Nomad registers for a Task type ServiceCheck struct { Name string // Name of the check, defaults to id Type string // Type of the check - tcp, http, docker and script Command string // Command is the command to run for script checks Args []string // Args is a list of arguments for script checks Path string // path of the health check url for http type check Protocol string // Protocol to use if check is http, defaults to http PortLabel string // The port to use for tcp/http checks AddressMode string // 'host' to use host ip:port or 'driver' to use driver's Interval time.Duration // Interval of the check Timeout time.Duration // Timeout of the response from the check before consul fails the check InitialStatus string // Initial status of the check TLSSkipVerify bool // Skip TLS verification when Protocol=https Method string // HTTP Method to use (GET by default) Header map[string][]string // HTTP Headers for Consul to set when making HTTP checks CheckRestart *CheckRestart // If and when a task should be restarted based on checks GRPCService string // Service for GRPC checks GRPCUseTLS bool // Whether or not to use TLS for GRPC checks } func (sc *ServiceCheck) Copy() *ServiceCheck { if sc == nil { return nil } nsc := new(ServiceCheck) *nsc = *sc nsc.Args = helper.CopySliceString(sc.Args) nsc.Header = helper.CopyMapStringSliceString(sc.Header) nsc.CheckRestart = sc.CheckRestart.Copy() return nsc } func (sc *ServiceCheck) Canonicalize(serviceName string) { // Ensure empty maps/slices are treated as null to avoid scheduling // issues when using DeepEquals. if len(sc.Args) == 0 { sc.Args = nil } if len(sc.Header) == 0 { sc.Header = nil } else { for k, v := range sc.Header { if len(v) == 0 { sc.Header[k] = nil } } } if sc.Name == "" { sc.Name = fmt.Sprintf("service: %q check", serviceName) } } // validate a Service's ServiceCheck func (sc *ServiceCheck) validate() error { // Validate Type switch strings.ToLower(sc.Type) { case ServiceCheckGRPC: case ServiceCheckTCP: case ServiceCheckHTTP: if sc.Path == "" { return fmt.Errorf("http type must have a valid http path") } url, err := url.Parse(sc.Path) if err != nil { return fmt.Errorf("http type must have a valid http path") } if url.IsAbs() { return fmt.Errorf("http type must have a relative http path") } case ServiceCheckScript: if sc.Command == "" { return fmt.Errorf("script type must have a valid script path") } default: return fmt.Errorf(`invalid type (%+q), must be one of "http", "tcp", or "script" type`, sc.Type) } // Validate interval and timeout if sc.Interval == 0 { return fmt.Errorf("missing required value interval. Interval cannot be less than %v", minCheckInterval) } else if sc.Interval < minCheckInterval { return fmt.Errorf("interval (%v) cannot be lower than %v", sc.Interval, minCheckInterval) } if sc.Timeout == 0 { return fmt.Errorf("missing required value timeout. Timeout cannot be less than %v", minCheckInterval) } else if sc.Timeout < minCheckTimeout { return fmt.Errorf("timeout (%v) is lower than required minimum timeout %v", sc.Timeout, minCheckInterval) } // Validate InitialStatus switch sc.InitialStatus { case "": case api.HealthPassing: case api.HealthWarning: case api.HealthCritical: default: return fmt.Errorf(`invalid initial check state (%s), must be one of %q, %q, %q or empty`, sc.InitialStatus, api.HealthPassing, api.HealthWarning, api.HealthCritical) } // Validate AddressMode switch sc.AddressMode { case "", AddressModeHost, AddressModeDriver: // Ok case AddressModeAuto: return fmt.Errorf("invalid address_mode %q - %s only valid for services", sc.AddressMode, AddressModeAuto) default: return fmt.Errorf("invalid address_mode %q", sc.AddressMode) } return sc.CheckRestart.Validate() } // RequiresPort returns whether the service check requires the task has a port. func (sc *ServiceCheck) RequiresPort() bool { switch sc.Type { case ServiceCheckGRPC, ServiceCheckHTTP, ServiceCheckTCP: return true default: return false } } // TriggersRestarts returns true if this check should be watched and trigger a restart // on failure. func (sc *ServiceCheck) TriggersRestarts() bool { return sc.CheckRestart != nil && sc.CheckRestart.Limit > 0 } // Hash all ServiceCheck fields and the check's corresponding service ID to // create an identifier. The identifier is not guaranteed to be unique as if // the PortLabel is blank, the Service's PortLabel will be used after Hash is // called. func (sc *ServiceCheck) Hash(serviceID string) string { h := sha1.New() io.WriteString(h, serviceID) io.WriteString(h, sc.Name) io.WriteString(h, sc.Type) io.WriteString(h, sc.Command) io.WriteString(h, strings.Join(sc.Args, "")) io.WriteString(h, sc.Path) io.WriteString(h, sc.Protocol) io.WriteString(h, sc.PortLabel) io.WriteString(h, sc.Interval.String()) io.WriteString(h, sc.Timeout.String()) io.WriteString(h, sc.Method) // Only include TLSSkipVerify if set to maintain ID stability with Nomad <0.6 if sc.TLSSkipVerify { io.WriteString(h, "true") } // Since map iteration order isn't stable we need to write k/v pairs to // a slice and sort it before hashing. if len(sc.Header) > 0 { headers := make([]string, 0, len(sc.Header)) for k, v := range sc.Header { headers = append(headers, k+strings.Join(v, "")) } sort.Strings(headers) io.WriteString(h, strings.Join(headers, "")) } // Only include AddressMode if set to maintain ID stability with Nomad <0.7.1 if len(sc.AddressMode) > 0 { io.WriteString(h, sc.AddressMode) } // Only include GRPC if set to maintain ID stability with Nomad <0.8.4 if sc.GRPCService != "" { io.WriteString(h, sc.GRPCService) } if sc.GRPCUseTLS { io.WriteString(h, "true") } return fmt.Sprintf("%x", h.Sum(nil)) } const ( AddressModeAuto = "auto" AddressModeHost = "host" AddressModeDriver = "driver" ) // Service represents a Consul service definition in Nomad type Service struct { // Name of the service registered with Consul. Consul defaults the // Name to ServiceID if not specified. The Name if specified is used // as one of the seed values when generating a Consul ServiceID. Name string // PortLabel is either the numeric port number or the `host:port`. // To specify the port number using the host's Consul Advertise // address, specify an empty host in the PortLabel (e.g. `:port`). PortLabel string // AddressMode specifies whether or not to use the host ip:port for // this service. AddressMode string Tags []string // List of tags for the service CanaryTags []string // List of tags for the service when it is a canary Checks []*ServiceCheck // List of checks associated with the service } func (s *Service) Copy() *Service { if s == nil { return nil } ns := new(Service) *ns = *s ns.Tags = helper.CopySliceString(ns.Tags) ns.CanaryTags = helper.CopySliceString(ns.CanaryTags) if s.Checks != nil { checks := make([]*ServiceCheck, len(ns.Checks)) for i, c := range ns.Checks { checks[i] = c.Copy() } ns.Checks = checks } return ns } // Canonicalize interpolates values of Job, Task Group and Task in the Service // Name. This also generates check names, service id and check ids. func (s *Service) Canonicalize(job string, taskGroup string, task string) { // Ensure empty lists are treated as null to avoid scheduler issues when // using DeepEquals if len(s.Tags) == 0 { s.Tags = nil } if len(s.CanaryTags) == 0 { s.CanaryTags = nil } if len(s.Checks) == 0 { s.Checks = nil } s.Name = args.ReplaceEnv(s.Name, map[string]string{ "JOB": job, "TASKGROUP": taskGroup, "TASK": task, "BASE": fmt.Sprintf("%s-%s-%s", job, taskGroup, task), }, ) for _, check := range s.Checks { check.Canonicalize(s.Name) } } // Validate checks if the Check definition is valid func (s *Service) Validate() error { var mErr multierror.Error // Ensure the service name is valid per the below RFCs but make an exception // for our interpolation syntax by first stripping any environment variables from the name serviceNameStripped := args.ReplaceEnvWithPlaceHolder(s.Name, "ENV-VAR") if err := s.ValidateName(serviceNameStripped); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("service name must be valid per RFC 1123 and can contain only alphanumeric characters or dashes: %q", s.Name)) } switch s.AddressMode { case "", AddressModeAuto, AddressModeHost, AddressModeDriver: // OK default: mErr.Errors = append(mErr.Errors, fmt.Errorf("service address_mode must be %q, %q, or %q; not %q", AddressModeAuto, AddressModeHost, AddressModeDriver, s.AddressMode)) } for _, c := range s.Checks { if s.PortLabel == "" && c.PortLabel == "" && c.RequiresPort() { mErr.Errors = append(mErr.Errors, fmt.Errorf("check %s invalid: check requires a port but neither check nor service %+q have a port", c.Name, s.Name)) continue } if err := c.validate(); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("check %s invalid: %v", c.Name, err)) } } return mErr.ErrorOrNil() } // ValidateName checks if the services Name is valid and should be called after // the name has been interpolated func (s *Service) ValidateName(name string) error { // Ensure the service name is valid per RFC-952 §1 // (https://tools.ietf.org/html/rfc952), RFC-1123 §2.1 // (https://tools.ietf.org/html/rfc1123), and RFC-2782 // (https://tools.ietf.org/html/rfc2782). re := regexp.MustCompile(`^(?i:[a-z0-9]|[a-z0-9][a-z0-9\-]{0,61}[a-z0-9])$`) if !re.MatchString(name) { return fmt.Errorf("service name must be valid per RFC 1123 and can contain only alphanumeric characters or dashes and must be no longer than 63 characters: %q", name) } return nil } // Hash returns a base32 encoded hash of a Service's contents excluding checks // as they're hashed independently. func (s *Service) Hash(allocID, taskName string, canary bool) string { h := sha1.New() io.WriteString(h, allocID) io.WriteString(h, taskName) io.WriteString(h, s.Name) io.WriteString(h, s.PortLabel) io.WriteString(h, s.AddressMode) for _, tag := range s.Tags { io.WriteString(h, tag) } for _, tag := range s.CanaryTags { io.WriteString(h, tag) } // Vary ID on whether or not CanaryTags will be used if canary { h.Write([]byte("Canary")) } // Base32 is used for encoding the hash as sha1 hashes can always be // encoded without padding, only 4 bytes larger than base64, and saves // 8 bytes vs hex. Since these hashes are used in Consul URLs it's nice // to have a reasonably compact URL-safe representation. return b32.EncodeToString(h.Sum(nil)) } const ( // DefaultKillTimeout is the default timeout between signaling a task it // will be killed and killing it. DefaultKillTimeout = 5 * time.Second ) // LogConfig provides configuration for log rotation type LogConfig struct { MaxFiles int MaxFileSizeMB int } // DefaultLogConfig returns the default LogConfig values. func DefaultLogConfig() *LogConfig { return &LogConfig{ MaxFiles: 10, MaxFileSizeMB: 10, } } // Validate returns an error if the log config specified are less than // the minimum allowed. func (l *LogConfig) Validate() error { var mErr multierror.Error if l.MaxFiles < 1 { mErr.Errors = append(mErr.Errors, fmt.Errorf("minimum number of files is 1; got %d", l.MaxFiles)) } if l.MaxFileSizeMB < 1 { mErr.Errors = append(mErr.Errors, fmt.Errorf("minimum file size is 1MB; got %d", l.MaxFileSizeMB)) } return mErr.ErrorOrNil() } // Task is a single process typically that is executed as part of a task group. type Task struct { // Name of the task Name string // Driver is used to control which driver is used Driver string // User is used to determine which user will run the task. It defaults to // the same user the Nomad client is being run as. User string // Config is provided to the driver to initialize Config map[string]interface{} // Map of environment variables to be used by the driver Env map[string]string // List of service definitions exposed by the Task Services []*Service // Vault is used to define the set of Vault policies that this task should // have access to. Vault *Vault // Templates are the set of templates to be rendered for the task. Templates []*Template // Constraints can be specified at a task level and apply only to // the particular task. Constraints []*Constraint // Affinities can be specified at the task level to express // scheduling preferences Affinities []*Affinity // Resources is the resources needed by this task Resources *Resources // DispatchPayload configures how the task retrieves its input from a dispatch DispatchPayload *DispatchPayloadConfig // Meta is used to associate arbitrary metadata with this // task. This is opaque to Nomad. Meta map[string]string // KillTimeout is the time between signaling a task that it will be // killed and killing it. KillTimeout time.Duration // LogConfig provides configuration for log rotation LogConfig *LogConfig // Artifacts is a list of artifacts to download and extract before running // the task. Artifacts []*TaskArtifact // Leader marks the task as the leader within the group. When the leader // task exits, other tasks will be gracefully terminated. Leader bool // ShutdownDelay is the duration of the delay between deregistering a // task from Consul and sending it a signal to shutdown. See #2441 ShutdownDelay time.Duration // The kill signal to use for the task. This is an optional specification, // KillSignal is the kill signal to use for the task. This is an optional // specification and defaults to SIGINT KillSignal string } func (t *Task) Copy() *Task { if t == nil { return nil } nt := new(Task) *nt = *t nt.Env = helper.CopyMapStringString(nt.Env) if t.Services != nil { services := make([]*Service, len(nt.Services)) for i, s := range nt.Services { services[i] = s.Copy() } nt.Services = services } nt.Constraints = CopySliceConstraints(nt.Constraints) nt.Affinities = CopySliceAffinities(nt.Affinities) nt.Vault = nt.Vault.Copy() nt.Resources = nt.Resources.Copy() nt.Meta = helper.CopyMapStringString(nt.Meta) nt.DispatchPayload = nt.DispatchPayload.Copy() if t.Artifacts != nil { artifacts := make([]*TaskArtifact, 0, len(t.Artifacts)) for _, a := range nt.Artifacts { artifacts = append(artifacts, a.Copy()) } nt.Artifacts = artifacts } if i, err := copystructure.Copy(nt.Config); err != nil { panic(err.Error()) } else { nt.Config = i.(map[string]interface{}) } if t.Templates != nil { templates := make([]*Template, len(t.Templates)) for i, tmpl := range nt.Templates { templates[i] = tmpl.Copy() } nt.Templates = templates } return nt } // Canonicalize canonicalizes fields in the task. func (t *Task) Canonicalize(job *Job, tg *TaskGroup) { // Ensure that an empty and nil map are treated the same to avoid scheduling // problems since we use reflect DeepEquals. if len(t.Meta) == 0 { t.Meta = nil } if len(t.Config) == 0 { t.Config = nil } if len(t.Env) == 0 { t.Env = nil } for _, service := range t.Services { service.Canonicalize(job.Name, tg.Name, t.Name) } // If Resources are nil initialize them to defaults, otherwise canonicalize if t.Resources == nil { t.Resources = DefaultResources() } else { t.Resources.Canonicalize() } // Set the default timeout if it is not specified. if t.KillTimeout == 0 { t.KillTimeout = DefaultKillTimeout } if t.Vault != nil { t.Vault.Canonicalize() } for _, template := range t.Templates { template.Canonicalize() } } func (t *Task) GoString() string { return fmt.Sprintf("*%#v", *t) } // Validate is used to sanity check a task func (t *Task) Validate(ephemeralDisk *EphemeralDisk, jobType string) error { var mErr multierror.Error if t.Name == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing task name")) } if strings.ContainsAny(t.Name, `/\`) { // We enforce this so that when creating the directory on disk it will // not have any slashes. mErr.Errors = append(mErr.Errors, errors.New("Task name cannot include slashes")) } if t.Driver == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing task driver")) } if t.KillTimeout < 0 { mErr.Errors = append(mErr.Errors, errors.New("KillTimeout must be a positive value")) } if t.ShutdownDelay < 0 { mErr.Errors = append(mErr.Errors, errors.New("ShutdownDelay must be a positive value")) } // Validate the resources. if t.Resources == nil { mErr.Errors = append(mErr.Errors, errors.New("Missing task resources")) } else if err := t.Resources.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } // Validate the log config if t.LogConfig == nil { mErr.Errors = append(mErr.Errors, errors.New("Missing Log Config")) } else if err := t.LogConfig.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } for idx, constr := range t.Constraints { if err := constr.Validate(); err != nil { outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } switch constr.Operand { case ConstraintDistinctHosts, ConstraintDistinctProperty: outer := fmt.Errorf("Constraint %d has disallowed Operand at task level: %s", idx+1, constr.Operand) mErr.Errors = append(mErr.Errors, outer) } } if jobType == JobTypeSystem { if t.Affinities != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("System jobs may not have an affinity stanza")) } } else { for idx, affinity := range t.Affinities { if err := affinity.Validate(); err != nil { outer := fmt.Errorf("Affinity %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } } // Validate Services if err := validateServices(t); err != nil { mErr.Errors = append(mErr.Errors, err) } if t.LogConfig != nil && ephemeralDisk != nil { logUsage := (t.LogConfig.MaxFiles * t.LogConfig.MaxFileSizeMB) if ephemeralDisk.SizeMB <= logUsage { mErr.Errors = append(mErr.Errors, fmt.Errorf("log storage (%d MB) must be less than requested disk capacity (%d MB)", logUsage, ephemeralDisk.SizeMB)) } } for idx, artifact := range t.Artifacts { if err := artifact.Validate(); err != nil { outer := fmt.Errorf("Artifact %d validation failed: %v", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } if t.Vault != nil { if err := t.Vault.Validate(); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Vault validation failed: %v", err)) } } destinations := make(map[string]int, len(t.Templates)) for idx, tmpl := range t.Templates { if err := tmpl.Validate(); err != nil { outer := fmt.Errorf("Template %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } if other, ok := destinations[tmpl.DestPath]; ok { outer := fmt.Errorf("Template %d has same destination as %d", idx+1, other) mErr.Errors = append(mErr.Errors, outer) } else { destinations[tmpl.DestPath] = idx + 1 } } // Validate the dispatch payload block if there if t.DispatchPayload != nil { if err := t.DispatchPayload.Validate(); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Dispatch Payload validation failed: %v", err)) } } return mErr.ErrorOrNil() } // validateServices takes a task and validates the services within it are valid // and reference ports that exist. func validateServices(t *Task) error { var mErr multierror.Error // Ensure that services don't ask for nonexistent ports and their names are // unique. servicePorts := make(map[string]map[string]struct{}) addServicePort := func(label, service string) { if _, ok := servicePorts[label]; !ok { servicePorts[label] = map[string]struct{}{} } servicePorts[label][service] = struct{}{} } knownServices := make(map[string]struct{}) for i, service := range t.Services { if err := service.Validate(); err != nil { outer := fmt.Errorf("service[%d] %+q validation failed: %s", i, service.Name, err) mErr.Errors = append(mErr.Errors, outer) } // Ensure that services with the same name are not being registered for // the same port if _, ok := knownServices[service.Name+service.PortLabel]; ok { mErr.Errors = append(mErr.Errors, fmt.Errorf("service %q is duplicate", service.Name)) } knownServices[service.Name+service.PortLabel] = struct{}{} if service.PortLabel != "" { if service.AddressMode == "driver" { // Numeric port labels are valid for address_mode=driver _, err := strconv.Atoi(service.PortLabel) if err != nil { // Not a numeric port label, add it to list to check addServicePort(service.PortLabel, service.Name) } } else { addServicePort(service.PortLabel, service.Name) } } // Ensure that check names are unique and have valid ports knownChecks := make(map[string]struct{}) for _, check := range service.Checks { if _, ok := knownChecks[check.Name]; ok { mErr.Errors = append(mErr.Errors, fmt.Errorf("check %q is duplicate", check.Name)) } knownChecks[check.Name] = struct{}{} if !check.RequiresPort() { // No need to continue validating check if it doesn't need a port continue } effectivePort := check.PortLabel if effectivePort == "" { // Inherits from service effectivePort = service.PortLabel } if effectivePort == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("check %q is missing a port", check.Name)) continue } isNumeric := false portNumber, err := strconv.Atoi(effectivePort) if err == nil { isNumeric = true } // Numeric ports are fine for address_mode = "driver" if check.AddressMode == "driver" && isNumeric { if portNumber <= 0 { mErr.Errors = append(mErr.Errors, fmt.Errorf("check %q has invalid numeric port %d", check.Name, portNumber)) } continue } if isNumeric { mErr.Errors = append(mErr.Errors, fmt.Errorf(`check %q cannot use a numeric port %d without setting address_mode="driver"`, check.Name, portNumber)) continue } // PortLabel must exist, report errors by its parent service addServicePort(effectivePort, service.Name) } } // Get the set of port labels. portLabels := make(map[string]struct{}) if t.Resources != nil { for _, network := range t.Resources.Networks { ports := network.PortLabels() for portLabel := range ports { portLabels[portLabel] = struct{}{} } } } // Iterate over a sorted list of keys to make error listings stable keys := make([]string, 0, len(servicePorts)) for p := range servicePorts { keys = append(keys, p) } sort.Strings(keys) // Ensure all ports referenced in services exist. for _, servicePort := range keys { services := servicePorts[servicePort] _, ok := portLabels[servicePort] if !ok { names := make([]string, 0, len(services)) for name := range services { names = append(names, name) } // Keep order deterministic sort.Strings(names) joined := strings.Join(names, ", ") err := fmt.Errorf("port label %q referenced by services %v does not exist", servicePort, joined) mErr.Errors = append(mErr.Errors, err) } } // Ensure address mode is valid return mErr.ErrorOrNil() } const ( // TemplateChangeModeNoop marks that no action should be taken if the // template is re-rendered TemplateChangeModeNoop = "noop" // TemplateChangeModeSignal marks that the task should be signaled if the // template is re-rendered TemplateChangeModeSignal = "signal" // TemplateChangeModeRestart marks that the task should be restarted if the // template is re-rendered TemplateChangeModeRestart = "restart" ) var ( // TemplateChangeModeInvalidError is the error for when an invalid change // mode is given TemplateChangeModeInvalidError = errors.New("Invalid change mode. Must be one of the following: noop, signal, restart") ) // Template represents a template configuration to be rendered for a given task type Template struct { // SourcePath is the path to the template to be rendered SourcePath string // DestPath is the path to where the template should be rendered DestPath string // EmbeddedTmpl store the raw template. This is useful for smaller templates // where they are embedded in the job file rather than sent as an artifact EmbeddedTmpl string // ChangeMode indicates what should be done if the template is re-rendered ChangeMode string // ChangeSignal is the signal that should be sent if the change mode // requires it. ChangeSignal string // Splay is used to avoid coordinated restarts of processes by applying a // random wait between 0 and the given splay value before signalling the // application of a change Splay time.Duration // Perms is the permission the file should be written out with. Perms string // LeftDelim and RightDelim are optional configurations to control what // delimiter is utilized when parsing the template. LeftDelim string RightDelim string // Envvars enables exposing the template as environment variables // instead of as a file. The template must be of the form: // // VAR_NAME_1={{ key service/my-key }} // VAR_NAME_2=raw string and {{ env "attr.kernel.name" }} // // Lines will be split on the initial "=" with the first part being the // key name and the second part the value. // Empty lines and lines starting with # will be ignored, but to avoid // escaping issues #s within lines will not be treated as comments. Envvars bool // VaultGrace is the grace duration between lease renewal and reacquiring a // secret. If the lease of a secret is less than the grace, a new secret is // acquired. VaultGrace time.Duration } // DefaultTemplate returns a default template. func DefaultTemplate() *Template { return &Template{ ChangeMode: TemplateChangeModeRestart, Splay: 5 * time.Second, Perms: "0644", } } func (t *Template) Copy() *Template { if t == nil { return nil } copy := new(Template) *copy = *t return copy } func (t *Template) Canonicalize() { if t.ChangeSignal != "" { t.ChangeSignal = strings.ToUpper(t.ChangeSignal) } } func (t *Template) Validate() error { var mErr multierror.Error // Verify we have something to render if t.SourcePath == "" && t.EmbeddedTmpl == "" { multierror.Append(&mErr, fmt.Errorf("Must specify a source path or have an embedded template")) } // Verify we can render somewhere if t.DestPath == "" { multierror.Append(&mErr, fmt.Errorf("Must specify a destination for the template")) } // Verify the destination doesn't escape escaped, err := PathEscapesAllocDir("task", t.DestPath) if err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("invalid destination path: %v", err)) } else if escaped { mErr.Errors = append(mErr.Errors, fmt.Errorf("destination escapes allocation directory")) } // Verify a proper change mode switch t.ChangeMode { case TemplateChangeModeNoop, TemplateChangeModeRestart: case TemplateChangeModeSignal: if t.ChangeSignal == "" { multierror.Append(&mErr, fmt.Errorf("Must specify signal value when change mode is signal")) } if t.Envvars { multierror.Append(&mErr, fmt.Errorf("cannot use signals with env var templates")) } default: multierror.Append(&mErr, TemplateChangeModeInvalidError) } // Verify the splay is positive if t.Splay < 0 { multierror.Append(&mErr, fmt.Errorf("Must specify positive splay value")) } // Verify the permissions if t.Perms != "" { if _, err := strconv.ParseUint(t.Perms, 8, 12); err != nil { multierror.Append(&mErr, fmt.Errorf("Failed to parse %q as octal: %v", t.Perms, err)) } } if t.VaultGrace.Nanoseconds() < 0 { multierror.Append(&mErr, fmt.Errorf("Vault grace must be greater than zero: %v < 0", t.VaultGrace)) } return mErr.ErrorOrNil() } // Set of possible states for a task. const ( TaskStatePending = "pending" // The task is waiting to be run. TaskStateRunning = "running" // The task is currently running. TaskStateDead = "dead" // Terminal state of task. ) // TaskState tracks the current state of a task and events that caused state // transitions. type TaskState struct { // The current state of the task. State string // Failed marks a task as having failed Failed bool // Restarts is the number of times the task has restarted Restarts uint64 // LastRestart is the time the task last restarted. It is updated each time the // task restarts LastRestart time.Time // StartedAt is the time the task is started. It is updated each time the // task starts StartedAt time.Time // FinishedAt is the time at which the task transitioned to dead and will // not be started again. FinishedAt time.Time // Series of task events that transition the state of the task. Events []*TaskEvent } // NewTaskState returns a TaskState initialized in the Pending state. func NewTaskState() *TaskState { return &TaskState{ State: TaskStatePending, } } // Canonicalize ensures the TaskState has a State set. It should default to // Pending. func (ts *TaskState) Canonicalize() { if ts.State == "" { ts.State = TaskStatePending } } func (ts *TaskState) Copy() *TaskState { if ts == nil { return nil } copy := new(TaskState) *copy = *ts if ts.Events != nil { copy.Events = make([]*TaskEvent, len(ts.Events)) for i, e := range ts.Events { copy.Events[i] = e.Copy() } } return copy } // Successful returns whether a task finished successfully. This doesn't really // have meaning on a non-batch allocation because a service and system // allocation should not finish. func (ts *TaskState) Successful() bool { l := len(ts.Events) if ts.State != TaskStateDead || l == 0 { return false } e := ts.Events[l-1] if e.Type != TaskTerminated { return false } return e.ExitCode == 0 } const ( // TaskSetupFailure indicates that the task could not be started due to a // a setup failure. TaskSetupFailure = "Setup Failure" // TaskDriveFailure indicates that the task could not be started due to a // failure in the driver. TaskDriverFailure = "Driver Failure" // TaskReceived signals that the task has been pulled by the client at the // given timestamp. TaskReceived = "Received" // TaskFailedValidation indicates the task was invalid and as such was not // run. TaskFailedValidation = "Failed Validation" // TaskStarted signals that the task was started and its timestamp can be // used to determine the running length of the task. TaskStarted = "Started" // TaskTerminated indicates that the task was started and exited. TaskTerminated = "Terminated" // TaskKilling indicates a kill signal has been sent to the task. TaskKilling = "Killing" // TaskKilled indicates a user has killed the task. TaskKilled = "Killed" // TaskRestarting indicates that task terminated and is being restarted. TaskRestarting = "Restarting" // TaskNotRestarting indicates that the task has failed and is not being // restarted because it has exceeded its restart policy. TaskNotRestarting = "Not Restarting" // TaskRestartSignal indicates that the task has been signalled to be // restarted TaskRestartSignal = "Restart Signaled" // TaskSignaling indicates that the task is being signalled. TaskSignaling = "Signaling" // TaskDownloadingArtifacts means the task is downloading the artifacts // specified in the task. TaskDownloadingArtifacts = "Downloading Artifacts" // TaskArtifactDownloadFailed indicates that downloading the artifacts // failed. TaskArtifactDownloadFailed = "Failed Artifact Download" // TaskBuildingTaskDir indicates that the task directory/chroot is being // built. TaskBuildingTaskDir = "Building Task Directory" // TaskSetup indicates the task runner is setting up the task environment TaskSetup = "Task Setup" // TaskDiskExceeded indicates that one of the tasks in a taskgroup has // exceeded the requested disk resources. TaskDiskExceeded = "Disk Resources Exceeded" // TaskSiblingFailed indicates that a sibling task in the task group has // failed. TaskSiblingFailed = "Sibling Task Failed" // TaskDriverMessage is an informational event message emitted by // drivers such as when they're performing a long running action like // downloading an image. TaskDriverMessage = "Driver" // TaskLeaderDead indicates that the leader task within the has finished. TaskLeaderDead = "Leader Task Dead" ) // TaskEvent is an event that effects the state of a task and contains meta-data // appropriate to the events type. type TaskEvent struct { Type string Time int64 // Unix Nanosecond timestamp Message string // A possible message explaining the termination of the task. // DisplayMessage is a human friendly message about the event DisplayMessage string // Details is a map with annotated info about the event Details map[string]string // DEPRECATION NOTICE: The following fields are deprecated and will be removed // in a future release. Field values are available in the Details map. // FailsTask marks whether this event fails the task. // Deprecated, use Details["fails_task"] to access this. FailsTask bool // Restart fields. // Deprecated, use Details["restart_reason"] to access this. RestartReason string // Setup Failure fields. // Deprecated, use Details["setup_error"] to access this. SetupError string // Driver Failure fields. // Deprecated, use Details["driver_error"] to access this. DriverError string // A driver error occurred while starting the task. // Task Terminated Fields. // Deprecated, use Details["exit_code"] to access this. ExitCode int // The exit code of the task. // Deprecated, use Details["signal"] to access this. Signal int // The signal that terminated the task. // Killing fields // Deprecated, use Details["kill_timeout"] to access this. KillTimeout time.Duration // Task Killed Fields. // Deprecated, use Details["kill_error"] to access this. KillError string // Error killing the task. // KillReason is the reason the task was killed // Deprecated, use Details["kill_reason"] to access this. KillReason string // TaskRestarting fields. // Deprecated, use Details["start_delay"] to access this. StartDelay int64 // The sleep period before restarting the task in unix nanoseconds. // Artifact Download fields // Deprecated, use Details["download_error"] to access this. DownloadError string // Error downloading artifacts // Validation fields // Deprecated, use Details["validation_error"] to access this. ValidationError string // Validation error // The maximum allowed task disk size. // Deprecated, use Details["disk_limit"] to access this. DiskLimit int64 // Name of the sibling task that caused termination of the task that // the TaskEvent refers to. // Deprecated, use Details["failed_sibling"] to access this. FailedSibling string // VaultError is the error from token renewal // Deprecated, use Details["vault_renewal_error"] to access this. VaultError string // TaskSignalReason indicates the reason the task is being signalled. // Deprecated, use Details["task_signal_reason"] to access this. TaskSignalReason string // TaskSignal is the signal that was sent to the task // Deprecated, use Details["task_signal"] to access this. TaskSignal string // DriverMessage indicates a driver action being taken. // Deprecated, use Details["driver_message"] to access this. DriverMessage string // GenericSource is the source of a message. // Deprecated, is redundant with event type. GenericSource string } func (event *TaskEvent) PopulateEventDisplayMessage() { // Build up the description based on the event type. if event == nil { //TODO(preetha) needs investigation alloc_runner's Run method sends a nil event when sigterming nomad. Why? return } if event.DisplayMessage != "" { return } var desc string switch event.Type { case TaskSetup: desc = event.Message case TaskStarted: desc = "Task started by client" case TaskReceived: desc = "Task received by client" case TaskFailedValidation: if event.ValidationError != "" { desc = event.ValidationError } else { desc = "Validation of task failed" } case TaskSetupFailure: if event.SetupError != "" { desc = event.SetupError } else { desc = "Task setup failed" } case TaskDriverFailure: if event.DriverError != "" { desc = event.DriverError } else { desc = "Failed to start task" } case TaskDownloadingArtifacts: desc = "Client is downloading artifacts" case TaskArtifactDownloadFailed: if event.DownloadError != "" { desc = event.DownloadError } else { desc = "Failed to download artifacts" } case TaskKilling: if event.KillReason != "" { desc = event.KillReason } else if event.KillTimeout != 0 { desc = fmt.Sprintf("Sent interrupt. Waiting %v before force killing", event.KillTimeout) } else { desc = "Sent interrupt" } case TaskKilled: if event.KillError != "" { desc = event.KillError } else { desc = "Task successfully killed" } case TaskTerminated: var parts []string parts = append(parts, fmt.Sprintf("Exit Code: %d", event.ExitCode)) if event.Signal != 0 { parts = append(parts, fmt.Sprintf("Signal: %d", event.Signal)) } if event.Message != "" { parts = append(parts, fmt.Sprintf("Exit Message: %q", event.Message)) } desc = strings.Join(parts, ", ") case TaskRestarting: in := fmt.Sprintf("Task restarting in %v", time.Duration(event.StartDelay)) if event.RestartReason != "" && event.RestartReason != ReasonWithinPolicy { desc = fmt.Sprintf("%s - %s", event.RestartReason, in) } else { desc = in } case TaskNotRestarting: if event.RestartReason != "" { desc = event.RestartReason } else { desc = "Task exceeded restart policy" } case TaskSiblingFailed: if event.FailedSibling != "" { desc = fmt.Sprintf("Task's sibling %q failed", event.FailedSibling) } else { desc = "Task's sibling failed" } case TaskSignaling: sig := event.TaskSignal reason := event.TaskSignalReason if sig == "" && reason == "" { desc = "Task being sent a signal" } else if sig == "" { desc = reason } else if reason == "" { desc = fmt.Sprintf("Task being sent signal %v", sig) } else { desc = fmt.Sprintf("Task being sent signal %v: %v", sig, reason) } case TaskRestartSignal: if event.RestartReason != "" { desc = event.RestartReason } else { desc = "Task signaled to restart" } case TaskDriverMessage: desc = event.DriverMessage case TaskLeaderDead: desc = "Leader Task in Group dead" default: desc = event.Message } event.DisplayMessage = desc } func (te *TaskEvent) GoString() string { return fmt.Sprintf("%v - %v", te.Time, te.Type) } // SetDisplayMessage sets the display message of TaskEvent func (te *TaskEvent) SetDisplayMessage(msg string) *TaskEvent { te.DisplayMessage = msg return te } // SetMessage sets the message of TaskEvent func (te *TaskEvent) SetMessage(msg string) *TaskEvent { te.Message = msg te.Details["message"] = msg return te } func (te *TaskEvent) Copy() *TaskEvent { if te == nil { return nil } copy := new(TaskEvent) *copy = *te return copy } func NewTaskEvent(event string) *TaskEvent { return &TaskEvent{ Type: event, Time: time.Now().UnixNano(), Details: make(map[string]string), } } // SetSetupError is used to store an error that occurred while setting up the // task func (e *TaskEvent) SetSetupError(err error) *TaskEvent { if err != nil { e.SetupError = err.Error() e.Details["setup_error"] = err.Error() } return e } func (e *TaskEvent) SetFailsTask() *TaskEvent { e.FailsTask = true e.Details["fails_task"] = "true" return e } func (e *TaskEvent) SetDriverError(err error) *TaskEvent { if err != nil { e.DriverError = err.Error() e.Details["driver_error"] = err.Error() } return e } func (e *TaskEvent) SetExitCode(c int) *TaskEvent { e.ExitCode = c e.Details["exit_code"] = fmt.Sprintf("%d", c) return e } func (e *TaskEvent) SetSignal(s int) *TaskEvent { e.Signal = s e.Details["signal"] = fmt.Sprintf("%d", s) return e } func (e *TaskEvent) SetExitMessage(err error) *TaskEvent { if err != nil { e.Message = err.Error() e.Details["exit_message"] = err.Error() } return e } func (e *TaskEvent) SetKillError(err error) *TaskEvent { if err != nil { e.KillError = err.Error() e.Details["kill_error"] = err.Error() } return e } func (e *TaskEvent) SetKillReason(r string) *TaskEvent { e.KillReason = r e.Details["kill_reason"] = r return e } func (e *TaskEvent) SetRestartDelay(delay time.Duration) *TaskEvent { e.StartDelay = int64(delay) e.Details["start_delay"] = fmt.Sprintf("%d", delay) return e } func (e *TaskEvent) SetRestartReason(reason string) *TaskEvent { e.RestartReason = reason e.Details["restart_reason"] = reason return e } func (e *TaskEvent) SetTaskSignalReason(r string) *TaskEvent { e.TaskSignalReason = r e.Details["task_signal_reason"] = r return e } func (e *TaskEvent) SetTaskSignal(s os.Signal) *TaskEvent { e.TaskSignal = s.String() e.Details["task_signal"] = s.String() return e } func (e *TaskEvent) SetDownloadError(err error) *TaskEvent { if err != nil { e.DownloadError = err.Error() e.Details["download_error"] = err.Error() } return e } func (e *TaskEvent) SetValidationError(err error) *TaskEvent { if err != nil { e.ValidationError = err.Error() e.Details["validation_error"] = err.Error() } return e } func (e *TaskEvent) SetKillTimeout(timeout time.Duration) *TaskEvent { e.KillTimeout = timeout e.Details["kill_timeout"] = timeout.String() return e } func (e *TaskEvent) SetDiskLimit(limit int64) *TaskEvent { e.DiskLimit = limit e.Details["disk_limit"] = fmt.Sprintf("%d", limit) return e } func (e *TaskEvent) SetFailedSibling(sibling string) *TaskEvent { e.FailedSibling = sibling e.Details["failed_sibling"] = sibling return e } func (e *TaskEvent) SetVaultRenewalError(err error) *TaskEvent { if err != nil { e.VaultError = err.Error() e.Details["vault_renewal_error"] = err.Error() } return e } func (e *TaskEvent) SetDriverMessage(m string) *TaskEvent { e.DriverMessage = m e.Details["driver_message"] = m return e } // TaskArtifact is an artifact to download before running the task. type TaskArtifact struct { // GetterSource is the source to download an artifact using go-getter GetterSource string // GetterOptions are options to use when downloading the artifact using // go-getter. GetterOptions map[string]string // GetterMode is the go-getter.ClientMode for fetching resources. // Defaults to "any" but can be set to "file" or "dir". GetterMode string // RelativeDest is the download destination given relative to the task's // directory. RelativeDest string } func (ta *TaskArtifact) Copy() *TaskArtifact { if ta == nil { return nil } nta := new(TaskArtifact) *nta = *ta nta.GetterOptions = helper.CopyMapStringString(ta.GetterOptions) return nta } func (ta *TaskArtifact) GoString() string { return fmt.Sprintf("%+v", ta) } // PathEscapesAllocDir returns if the given path escapes the allocation // directory. The prefix allows adding a prefix if the path will be joined, for // example a "task/local" prefix may be provided if the path will be joined // against that prefix. func PathEscapesAllocDir(prefix, path string) (bool, error) { // Verify the destination doesn't escape the tasks directory alloc, err := filepath.Abs(filepath.Join("/", "alloc-dir/", "alloc-id/")) if err != nil { return false, err } abs, err := filepath.Abs(filepath.Join(alloc, prefix, path)) if err != nil { return false, err } rel, err := filepath.Rel(alloc, abs) if err != nil { return false, err } return strings.HasPrefix(rel, ".."), nil } func (ta *TaskArtifact) Validate() error { // Verify the source var mErr multierror.Error if ta.GetterSource == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("source must be specified")) } switch ta.GetterMode { case "": // Default to any ta.GetterMode = GetterModeAny case GetterModeAny, GetterModeFile, GetterModeDir: // Ok default: mErr.Errors = append(mErr.Errors, fmt.Errorf("invalid artifact mode %q; must be one of: %s, %s, %s", ta.GetterMode, GetterModeAny, GetterModeFile, GetterModeDir)) } escaped, err := PathEscapesAllocDir("task", ta.RelativeDest) if err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("invalid destination path: %v", err)) } else if escaped { mErr.Errors = append(mErr.Errors, fmt.Errorf("destination escapes allocation directory")) } // Verify the checksum if err := ta.validateChecksum(); err != nil { mErr.Errors = append(mErr.Errors, err) } return mErr.ErrorOrNil() } func (ta *TaskArtifact) validateChecksum() error { check, ok := ta.GetterOptions["checksum"] if !ok { return nil } // job struct validation occurs before interpolation resolution can be effective // skip checking if checksum contain variable reference, and artifacts fetching will // eventually fail at pick up time if checksum is indeed invalid if args.ContainsEnv(check) { return nil } check = strings.TrimSpace(check) if check == "" { return fmt.Errorf("checksum value cannot be empty") } parts := strings.Split(check, ":") if l := len(parts); l != 2 { return fmt.Errorf(`checksum must be given as "type:value"; got %q`, check) } checksumVal := parts[1] checksumBytes, err := hex.DecodeString(checksumVal) if err != nil { return fmt.Errorf("invalid checksum: %v", err) } checksumType := parts[0] expectedLength := 0 switch checksumType { case "md5": expectedLength = md5.Size case "sha1": expectedLength = sha1.Size case "sha256": expectedLength = sha256.Size case "sha512": expectedLength = sha512.Size default: return fmt.Errorf("unsupported checksum type: %s", checksumType) } if len(checksumBytes) != expectedLength { return fmt.Errorf("invalid %s checksum: %v", checksumType, checksumVal) } return nil } const ( ConstraintDistinctProperty = "distinct_property" ConstraintDistinctHosts = "distinct_hosts" ConstraintRegex = "regexp" ConstraintVersion = "version" ConstraintSetContains = "set_contains" ConstraintSetContainsAll = "set_contains_all" ConstraintSetContainsAny = "set_contains_any" ) // Constraints are used to restrict placement options. type Constraint struct { LTarget string // Left-hand target RTarget string // Right-hand target Operand string // Constraint operand (<=, <, =, !=, >, >=), contains, near str string // Memoized string } // Equal checks if two constraints are equal func (c *Constraint) Equal(o *Constraint) bool { return c.LTarget == o.LTarget && c.RTarget == o.RTarget && c.Operand == o.Operand } func (c *Constraint) Copy() *Constraint { if c == nil { return nil } nc := new(Constraint) *nc = *c return nc } func (c *Constraint) String() string { if c.str != "" { return c.str } c.str = fmt.Sprintf("%s %s %s", c.LTarget, c.Operand, c.RTarget) return c.str } func (c *Constraint) Validate() error { var mErr multierror.Error if c.Operand == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing constraint operand")) } // requireLtarget specifies whether the constraint requires an LTarget to be // provided. requireLtarget := true // Perform additional validation based on operand switch c.Operand { case ConstraintDistinctHosts: requireLtarget = false case ConstraintSetContainsAll, ConstraintSetContainsAny, ConstraintSetContains: if c.RTarget == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("Set contains constraint requires an RTarget")) } case ConstraintRegex: if _, err := regexp.Compile(c.RTarget); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Regular expression failed to compile: %v", err)) } case ConstraintVersion: if _, err := version.NewConstraint(c.RTarget); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Version constraint is invalid: %v", err)) } case ConstraintDistinctProperty: // If a count is set, make sure it is convertible to a uint64 if c.RTarget != "" { count, err := strconv.ParseUint(c.RTarget, 10, 64) if err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Failed to convert RTarget %q to uint64: %v", c.RTarget, err)) } else if count < 1 { mErr.Errors = append(mErr.Errors, fmt.Errorf("Distinct Property must have an allowed count of 1 or greater: %d < 1", count)) } } case "=", "==", "is", "!=", "not", "<", "<=", ">", ">=": if c.RTarget == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("Operator %q requires an RTarget", c.Operand)) } default: mErr.Errors = append(mErr.Errors, fmt.Errorf("Unknown constraint type %q", c.Operand)) } // Ensure we have an LTarget for the constraints that need one if requireLtarget && c.LTarget == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("No LTarget provided but is required by constraint")) } return mErr.ErrorOrNil() } // Affinity is used to score placement options based on a weight type Affinity struct { LTarget string // Left-hand target RTarget string // Right-hand target Operand string // Affinity operand (<=, <, =, !=, >, >=), set_contains_all, set_contains_any Weight float64 // Weight applied to nodes that match the affinity. Can be negative str string // Memoized string } // Equal checks if two affinities are equal func (a *Affinity) Equal(o *Affinity) bool { return a.LTarget == o.LTarget && a.RTarget == o.RTarget && a.Operand == o.Operand && a.Weight == o.Weight } func (a *Affinity) Copy() *Affinity { if a == nil { return nil } na := new(Affinity) *na = *a return na } func (a *Affinity) String() string { if a.str != "" { return a.str } a.str = fmt.Sprintf("%s %s %s %v", a.LTarget, a.Operand, a.RTarget, a.Weight) return a.str } func (a *Affinity) Validate() error { var mErr multierror.Error if a.Operand == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing affinity operand")) } // Perform additional validation based on operand switch a.Operand { case ConstraintSetContainsAll, ConstraintSetContainsAny, ConstraintSetContains: if a.RTarget == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("Set contains operators require an RTarget")) } case ConstraintRegex: if _, err := regexp.Compile(a.RTarget); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Regular expression failed to compile: %v", err)) } case ConstraintVersion: if _, err := version.NewConstraint(a.RTarget); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Version affinity is invalid: %v", err)) } case "=", "==", "is", "!=", "not", "<", "<=", ">", ">=": if a.RTarget == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("Operator %q requires an RTarget", a.Operand)) } default: mErr.Errors = append(mErr.Errors, fmt.Errorf("Unknown affinity operator %q", a.Operand)) } // Ensure we have an LTarget if a.LTarget == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("No LTarget provided but is required")) } // Ensure that weight is between -100 and 100, and not zero if a.Weight == 0 { mErr.Errors = append(mErr.Errors, fmt.Errorf("Affinity weight cannot be zero")) } if a.Weight > 100 || a.Weight < -100 { mErr.Errors = append(mErr.Errors, fmt.Errorf("Affinity weight must be within the range [-100,100]")) } return mErr.ErrorOrNil() } // Spread is used to specify desired distribution of allocations according to weight type Spread struct { // Attribute is the node attribute used as the spread criteria Attribute string // Weight is the relative weight of this spread, useful when there are multiple // spread and affinities Weight int // SpreadTarget is used to describe desired percentages for each attribute value SpreadTarget []*SpreadTarget // Memoized string representation str string } func (s *Spread) Copy() *Spread { if s == nil { return nil } ns := new(Spread) *ns = *s ns.SpreadTarget = CopySliceSpreadTarget(s.SpreadTarget) return ns } func (s *Spread) String() string { if s.str != "" { return s.str } s.str = fmt.Sprintf("%s %s %v", s.Attribute, s.SpreadTarget, s.Weight) return s.str } func (s *Spread) Validate() error { var mErr multierror.Error if s.Attribute == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing spread attribute")) } if s.Weight <= 0 || s.Weight > 100 { mErr.Errors = append(mErr.Errors, errors.New("Spread stanza must have a positive weight from 0 to 100")) } seen := make(map[string]struct{}) sumPercent := uint32(0) for _, target := range s.SpreadTarget { // Make sure there are no duplicates _, ok := seen[target.Value] if !ok { seen[target.Value] = struct{}{} } else { mErr.Errors = append(mErr.Errors, errors.New(fmt.Sprintf("Spread target value %q already defined", target.Value))) } if target.Percent < 0 || target.Percent > 100 { mErr.Errors = append(mErr.Errors, errors.New(fmt.Sprintf("Spread target percentage for value %q must be between 0 and 100", target.Value))) } sumPercent += target.Percent } if sumPercent > 100 { mErr.Errors = append(mErr.Errors, errors.New(fmt.Sprintf("Sum of spread target percentages must not be greater than 100%%; got %d%%", sumPercent))) } return mErr.ErrorOrNil() } // SpreadTarget is used to specify desired percentages for each attribute value type SpreadTarget struct { // Value is a single attribute value, like "dc1" Value string // Percent is the desired percentage of allocs Percent uint32 // Memoized string representation str string } func (s *SpreadTarget) Copy() *SpreadTarget { if s == nil { return nil } ns := new(SpreadTarget) *ns = *s return ns } func (s *SpreadTarget) String() string { if s.str != "" { return s.str } s.str = fmt.Sprintf("%q %v%%", s.Value, s.Percent) return s.str } // EphemeralDisk is an ephemeral disk object type EphemeralDisk struct { // Sticky indicates whether the allocation is sticky to a node Sticky bool // SizeMB is the size of the local disk SizeMB int // Migrate determines if Nomad client should migrate the allocation dir for // sticky allocations Migrate bool } // DefaultEphemeralDisk returns a EphemeralDisk with default configurations func DefaultEphemeralDisk() *EphemeralDisk { return &EphemeralDisk{ SizeMB: 300, } } // Validate validates EphemeralDisk func (d *EphemeralDisk) Validate() error { if d.SizeMB < 10 { return fmt.Errorf("minimum DiskMB value is 10; got %d", d.SizeMB) } return nil } // Copy copies the EphemeralDisk struct and returns a new one func (d *EphemeralDisk) Copy() *EphemeralDisk { ld := new(EphemeralDisk) *ld = *d return ld } var ( // VaultUnrecoverableError matches unrecoverable errors returned by a Vault // server VaultUnrecoverableError = regexp.MustCompile(`Code:\s+40(0|3|4)`) ) const ( // VaultChangeModeNoop takes no action when a new token is retrieved. VaultChangeModeNoop = "noop" // VaultChangeModeSignal signals the task when a new token is retrieved. VaultChangeModeSignal = "signal" // VaultChangeModeRestart restarts the task when a new token is retrieved. VaultChangeModeRestart = "restart" ) // Vault stores the set of permissions a task needs access to from Vault. type Vault struct { // Policies is the set of policies that the task needs access to Policies []string // Env marks whether the Vault Token should be exposed as an environment // variable Env bool // ChangeMode is used to configure the task's behavior when the Vault // token changes because the original token could not be renewed in time. ChangeMode string // ChangeSignal is the signal sent to the task when a new token is // retrieved. This is only valid when using the signal change mode. ChangeSignal string } func DefaultVaultBlock() *Vault { return &Vault{ Env: true, ChangeMode: VaultChangeModeRestart, } } // Copy returns a copy of this Vault block. func (v *Vault) Copy() *Vault { if v == nil { return nil } nv := new(Vault) *nv = *v return nv } func (v *Vault) Canonicalize() { if v.ChangeSignal != "" { v.ChangeSignal = strings.ToUpper(v.ChangeSignal) } } // Validate returns if the Vault block is valid. func (v *Vault) Validate() error { if v == nil { return nil } var mErr multierror.Error if len(v.Policies) == 0 { multierror.Append(&mErr, fmt.Errorf("Policy list cannot be empty")) } for _, p := range v.Policies { if p == "root" { multierror.Append(&mErr, fmt.Errorf("Can not specify \"root\" policy")) } } switch v.ChangeMode { case VaultChangeModeSignal: if v.ChangeSignal == "" { multierror.Append(&mErr, fmt.Errorf("Signal must be specified when using change mode %q", VaultChangeModeSignal)) } case VaultChangeModeNoop, VaultChangeModeRestart: default: multierror.Append(&mErr, fmt.Errorf("Unknown change mode %q", v.ChangeMode)) } return mErr.ErrorOrNil() } const ( // DeploymentStatuses are the various states a deployment can be be in DeploymentStatusRunning = "running" DeploymentStatusPaused = "paused" DeploymentStatusFailed = "failed" DeploymentStatusSuccessful = "successful" DeploymentStatusCancelled = "cancelled" // DeploymentStatusDescriptions are the various descriptions of the states a // deployment can be in. DeploymentStatusDescriptionRunning = "Deployment is running" DeploymentStatusDescriptionRunningNeedsPromotion = "Deployment is running but requires promotion" DeploymentStatusDescriptionPaused = "Deployment is paused" DeploymentStatusDescriptionSuccessful = "Deployment completed successfully" DeploymentStatusDescriptionStoppedJob = "Cancelled because job is stopped" DeploymentStatusDescriptionNewerJob = "Cancelled due to newer version of job" DeploymentStatusDescriptionFailedAllocations = "Failed due to unhealthy allocations" DeploymentStatusDescriptionProgressDeadline = "Failed due to progress deadline" DeploymentStatusDescriptionFailedByUser = "Deployment marked as failed" ) // DeploymentStatusDescriptionRollback is used to get the status description of // a deployment when rolling back to an older job. func DeploymentStatusDescriptionRollback(baseDescription string, jobVersion uint64) string { return fmt.Sprintf("%s - rolling back to job version %d", baseDescription, jobVersion) } // DeploymentStatusDescriptionRollbackNoop is used to get the status description of // a deployment when rolling back is not possible because it has the same specification func DeploymentStatusDescriptionRollbackNoop(baseDescription string, jobVersion uint64) string { return fmt.Sprintf("%s - not rolling back to stable job version %d as current job has same specification", baseDescription, jobVersion) } // DeploymentStatusDescriptionNoRollbackTarget is used to get the status description of // a deployment when there is no target to rollback to but autorevert is desired. func DeploymentStatusDescriptionNoRollbackTarget(baseDescription string) string { return fmt.Sprintf("%s - no stable job version to auto revert to", baseDescription) } // Deployment is the object that represents a job deployment which is used to // transition a job between versions. type Deployment struct { // ID is a generated UUID for the deployment ID string // Namespace is the namespace the deployment is created in Namespace string // JobID is the job the deployment is created for JobID string // JobVersion is the version of the job at which the deployment is tracking JobVersion uint64 // JobModifyIndex is the ModifyIndex of the job which the deployment is // tracking. JobModifyIndex uint64 // JobSpecModifyIndex is the JobModifyIndex of the job which the // deployment is tracking. JobSpecModifyIndex uint64 // JobCreateIndex is the create index of the job which the deployment is // tracking. It is needed so that if the job gets stopped and reran we can // present the correct list of deployments for the job and not old ones. JobCreateIndex uint64 // TaskGroups is the set of task groups effected by the deployment and their // current deployment status. TaskGroups map[string]*DeploymentState // The status of the deployment Status string // StatusDescription allows a human readable description of the deployment // status. StatusDescription string CreateIndex uint64 ModifyIndex uint64 } // NewDeployment creates a new deployment given the job. func NewDeployment(job *Job) *Deployment { return &Deployment{ ID: uuid.Generate(), Namespace: job.Namespace, JobID: job.ID, JobVersion: job.Version, JobModifyIndex: job.ModifyIndex, JobSpecModifyIndex: job.JobModifyIndex, JobCreateIndex: job.CreateIndex, Status: DeploymentStatusRunning, StatusDescription: DeploymentStatusDescriptionRunning, TaskGroups: make(map[string]*DeploymentState, len(job.TaskGroups)), } } func (d *Deployment) Copy() *Deployment { if d == nil { return nil } c := &Deployment{} *c = *d c.TaskGroups = nil if l := len(d.TaskGroups); d.TaskGroups != nil { c.TaskGroups = make(map[string]*DeploymentState, l) for tg, s := range d.TaskGroups { c.TaskGroups[tg] = s.Copy() } } return c } // Active returns whether the deployment is active or terminal. func (d *Deployment) Active() bool { switch d.Status { case DeploymentStatusRunning, DeploymentStatusPaused: return true default: return false } } // GetID is a helper for getting the ID when the object may be nil func (d *Deployment) GetID() string { if d == nil { return "" } return d.ID } // HasPlacedCanaries returns whether the deployment has placed canaries func (d *Deployment) HasPlacedCanaries() bool { if d == nil || len(d.TaskGroups) == 0 { return false } for _, group := range d.TaskGroups { if len(group.PlacedCanaries) != 0 { return true } } return false } // RequiresPromotion returns whether the deployment requires promotion to // continue func (d *Deployment) RequiresPromotion() bool { if d == nil || len(d.TaskGroups) == 0 || d.Status != DeploymentStatusRunning { return false } for _, group := range d.TaskGroups { if group.DesiredCanaries > 0 && !group.Promoted { return true } } return false } func (d *Deployment) GoString() string { base := fmt.Sprintf("Deployment ID %q for job %q has status %q (%v):", d.ID, d.JobID, d.Status, d.StatusDescription) for group, state := range d.TaskGroups { base += fmt.Sprintf("\nTask Group %q has state:\n%#v", group, state) } return base } // DeploymentState tracks the state of a deployment for a given task group. type DeploymentState struct { // AutoRevert marks whether the task group has indicated the job should be // reverted on failure AutoRevert bool // ProgressDeadline is the deadline by which an allocation must transition // to healthy before the deployment is considered failed. ProgressDeadline time.Duration // RequireProgressBy is the time by which an allocation must transition // to healthy before the deployment is considered failed. RequireProgressBy time.Time // Promoted marks whether the canaries have been promoted Promoted bool // PlacedCanaries is the set of placed canary allocations PlacedCanaries []string // DesiredCanaries is the number of canaries that should be created. DesiredCanaries int // DesiredTotal is the total number of allocations that should be created as // part of the deployment. DesiredTotal int // PlacedAllocs is the number of allocations that have been placed PlacedAllocs int // HealthyAllocs is the number of allocations that have been marked healthy. HealthyAllocs int // UnhealthyAllocs are allocations that have been marked as unhealthy. UnhealthyAllocs int } func (d *DeploymentState) GoString() string { base := fmt.Sprintf("\tDesired Total: %d", d.DesiredTotal) base += fmt.Sprintf("\n\tDesired Canaries: %d", d.DesiredCanaries) base += fmt.Sprintf("\n\tPlaced Canaries: %#v", d.PlacedCanaries) base += fmt.Sprintf("\n\tPromoted: %v", d.Promoted) base += fmt.Sprintf("\n\tPlaced: %d", d.PlacedAllocs) base += fmt.Sprintf("\n\tHealthy: %d", d.HealthyAllocs) base += fmt.Sprintf("\n\tUnhealthy: %d", d.UnhealthyAllocs) base += fmt.Sprintf("\n\tAutoRevert: %v", d.AutoRevert) return base } func (d *DeploymentState) Copy() *DeploymentState { c := &DeploymentState{} *c = *d c.PlacedCanaries = helper.CopySliceString(d.PlacedCanaries) return c } // DeploymentStatusUpdate is used to update the status of a given deployment type DeploymentStatusUpdate struct { // DeploymentID is the ID of the deployment to update DeploymentID string // Status is the new status of the deployment. Status string // StatusDescription is the new status description of the deployment. StatusDescription string } // RescheduleTracker encapsulates previous reschedule events type RescheduleTracker struct { Events []*RescheduleEvent } func (rt *RescheduleTracker) Copy() *RescheduleTracker { if rt == nil { return nil } nt := &RescheduleTracker{} *nt = *rt rescheduleEvents := make([]*RescheduleEvent, 0, len(rt.Events)) for _, tracker := range rt.Events { rescheduleEvents = append(rescheduleEvents, tracker.Copy()) } nt.Events = rescheduleEvents return nt } // RescheduleEvent is used to keep track of previous attempts at rescheduling an allocation type RescheduleEvent struct { // RescheduleTime is the timestamp of a reschedule attempt RescheduleTime int64 // PrevAllocID is the ID of the previous allocation being restarted PrevAllocID string // PrevNodeID is the node ID of the previous allocation PrevNodeID string // Delay is the reschedule delay associated with the attempt Delay time.Duration } func NewRescheduleEvent(rescheduleTime int64, prevAllocID string, prevNodeID string, delay time.Duration) *RescheduleEvent { return &RescheduleEvent{RescheduleTime: rescheduleTime, PrevAllocID: prevAllocID, PrevNodeID: prevNodeID, Delay: delay} } func (re *RescheduleEvent) Copy() *RescheduleEvent { if re == nil { return nil } copy := new(RescheduleEvent) *copy = *re return copy } // DesiredTransition is used to mark an allocation as having a desired state // transition. This information can be used by the scheduler to make the // correct decision. type DesiredTransition struct { // Migrate is used to indicate that this allocation should be stopped and // migrated to another node. Migrate *bool // Reschedule is used to indicate that this allocation is eligible to be // rescheduled. Most allocations are automatically eligible for // rescheduling, so this field is only required when an allocation is not // automatically eligible. An example is an allocation that is part of a // deployment. Reschedule *bool // ForceReschedule is used to indicate that this allocation must be rescheduled. // This field is only used when operators want to force a placement even if // a failed allocation is not eligible to be rescheduled ForceReschedule *bool } // Merge merges the two desired transitions, preferring the values from the // passed in object. func (d *DesiredTransition) Merge(o *DesiredTransition) { if o.Migrate != nil { d.Migrate = o.Migrate } if o.Reschedule != nil { d.Reschedule = o.Reschedule } if o.ForceReschedule != nil { d.ForceReschedule = o.ForceReschedule } } // ShouldMigrate returns whether the transition object dictates a migration. func (d *DesiredTransition) ShouldMigrate() bool { return d.Migrate != nil && *d.Migrate } // ShouldReschedule returns whether the transition object dictates a // rescheduling. func (d *DesiredTransition) ShouldReschedule() bool { return d.Reschedule != nil && *d.Reschedule } // ShouldForceReschedule returns whether the transition object dictates a // forced rescheduling. func (d *DesiredTransition) ShouldForceReschedule() bool { if d == nil { return false } return d.ForceReschedule != nil && *d.ForceReschedule } const ( AllocDesiredStatusRun = "run" // Allocation should run AllocDesiredStatusStop = "stop" // Allocation should stop AllocDesiredStatusEvict = "evict" // Allocation should stop, and was evicted ) const ( AllocClientStatusPending = "pending" AllocClientStatusRunning = "running" AllocClientStatusComplete = "complete" AllocClientStatusFailed = "failed" AllocClientStatusLost = "lost" ) // Allocation is used to allocate the placement of a task group to a node. type Allocation struct { // ID of the allocation (UUID) ID string // Namespace is the namespace the allocation is created in Namespace string // ID of the evaluation that generated this allocation EvalID string // Name is a logical name of the allocation. Name string // NodeID is the node this is being placed on NodeID string // Job is the parent job of the task group being allocated. // This is copied at allocation time to avoid issues if the job // definition is updated. JobID string Job *Job // TaskGroup is the name of the task group that should be run TaskGroup string // COMPAT(0.11): Remove in 0.11 // Resources is the total set of resources allocated as part // of this allocation of the task group. Dynamic ports will be set by // the scheduler. Resources *Resources // COMPAT(0.11): Remove in 0.11 // SharedResources are the resources that are shared by all the tasks in an // allocation SharedResources *Resources // COMPAT(0.11): Remove in 0.11 // TaskResources is the set of resources allocated to each // task. These should sum to the total Resources. Dynamic ports will be // set by the scheduler. TaskResources map[string]*Resources // AllocatedResources is the total resources allocated for the task group. AllocatedResources *AllocatedResources // Metrics associated with this allocation Metrics *AllocMetric // Desired Status of the allocation on the client DesiredStatus string // DesiredStatusDescription is meant to provide more human useful information DesiredDescription string // DesiredTransition is used to indicate that a state transition // is desired for a given reason. DesiredTransition DesiredTransition // Status of the allocation on the client ClientStatus string // ClientStatusDescription is meant to provide more human useful information ClientDescription string // TaskStates stores the state of each task, TaskStates map[string]*TaskState // PreviousAllocation is the allocation that this allocation is replacing PreviousAllocation string // NextAllocation is the allocation that this allocation is being replaced by NextAllocation string // DeploymentID identifies an allocation as being created from a // particular deployment DeploymentID string // DeploymentStatus captures the status of the allocation as part of the // given deployment DeploymentStatus *AllocDeploymentStatus // RescheduleTrackers captures details of previous reschedule attempts of the allocation RescheduleTracker *RescheduleTracker // FollowupEvalID captures a follow up evaluation created to handle a failed allocation // that can be rescheduled in the future FollowupEvalID string // Raft Indexes CreateIndex uint64 ModifyIndex uint64 // AllocModifyIndex is not updated when the client updates allocations. This // lets the client pull only the allocs updated by the server. AllocModifyIndex uint64 // CreateTime is the time the allocation has finished scheduling and been // verified by the plan applier. CreateTime int64 // ModifyTime is the time the allocation was last updated. ModifyTime int64 } // Index returns the index of the allocation. If the allocation is from a task // group with count greater than 1, there will be multiple allocations for it. func (a *Allocation) Index() uint { l := len(a.Name) prefix := len(a.JobID) + len(a.TaskGroup) + 2 if l <= 3 || l <= prefix { return uint(0) } strNum := a.Name[prefix : len(a.Name)-1] num, _ := strconv.Atoi(strNum) return uint(num) } func (a *Allocation) Copy() *Allocation { return a.copyImpl(true) } // Copy provides a copy of the allocation but doesn't deep copy the job func (a *Allocation) CopySkipJob() *Allocation { return a.copyImpl(false) } func (a *Allocation) copyImpl(job bool) *Allocation { if a == nil { return nil } na := new(Allocation) *na = *a if job { na.Job = na.Job.Copy() } na.AllocatedResources = na.AllocatedResources.Copy() na.Resources = na.Resources.Copy() na.SharedResources = na.SharedResources.Copy() if a.TaskResources != nil { tr := make(map[string]*Resources, len(na.TaskResources)) for task, resource := range na.TaskResources { tr[task] = resource.Copy() } na.TaskResources = tr } na.Metrics = na.Metrics.Copy() na.DeploymentStatus = na.DeploymentStatus.Copy() if a.TaskStates != nil { ts := make(map[string]*TaskState, len(na.TaskStates)) for task, state := range na.TaskStates { ts[task] = state.Copy() } na.TaskStates = ts } na.RescheduleTracker = a.RescheduleTracker.Copy() return na } // TerminalStatus returns if the desired or actual status is terminal and // will no longer transition. func (a *Allocation) TerminalStatus() bool { // First check the desired state and if that isn't terminal, check client // state. switch a.DesiredStatus { case AllocDesiredStatusStop, AllocDesiredStatusEvict: return true default: } return a.ClientTerminalStatus() } // ClientTerminalStatus returns if the client status is terminal and will no longer transition func (a *Allocation) ClientTerminalStatus() bool { switch a.ClientStatus { case AllocClientStatusComplete, AllocClientStatusFailed, AllocClientStatusLost: return true default: return false } } // ShouldReschedule returns if the allocation is eligible to be rescheduled according // to its status and ReschedulePolicy given its failure time func (a *Allocation) ShouldReschedule(reschedulePolicy *ReschedulePolicy, failTime time.Time) bool { // First check the desired state switch a.DesiredStatus { case AllocDesiredStatusStop, AllocDesiredStatusEvict: return false default: } switch a.ClientStatus { case AllocClientStatusFailed: return a.RescheduleEligible(reschedulePolicy, failTime) default: return false } } // RescheduleEligible returns if the allocation is eligible to be rescheduled according // to its ReschedulePolicy and the current state of its reschedule trackers func (a *Allocation) RescheduleEligible(reschedulePolicy *ReschedulePolicy, failTime time.Time) bool { if reschedulePolicy == nil { return false } attempts := reschedulePolicy.Attempts interval := reschedulePolicy.Interval enabled := attempts > 0 || reschedulePolicy.Unlimited if !enabled { return false } if reschedulePolicy.Unlimited { return true } // Early return true if there are no attempts yet and the number of allowed attempts is > 0 if (a.RescheduleTracker == nil || len(a.RescheduleTracker.Events) == 0) && attempts > 0 { return true } attempted := 0 for j := len(a.RescheduleTracker.Events) - 1; j >= 0; j-- { lastAttempt := a.RescheduleTracker.Events[j].RescheduleTime timeDiff := failTime.UTC().UnixNano() - lastAttempt if timeDiff < interval.Nanoseconds() { attempted += 1 } } return attempted < attempts } // LastEventTime is the time of the last task event in the allocation. // It is used to determine allocation failure time. If the FinishedAt field // is not set, the alloc's modify time is used func (a *Allocation) LastEventTime() time.Time { var lastEventTime time.Time if a.TaskStates != nil { for _, s := range a.TaskStates { if lastEventTime.IsZero() || s.FinishedAt.After(lastEventTime) { lastEventTime = s.FinishedAt } } } if lastEventTime.IsZero() { return time.Unix(0, a.ModifyTime).UTC() } return lastEventTime } // ReschedulePolicy returns the reschedule policy based on the task group func (a *Allocation) ReschedulePolicy() *ReschedulePolicy { tg := a.Job.LookupTaskGroup(a.TaskGroup) if tg == nil { return nil } return tg.ReschedulePolicy } // NextRescheduleTime returns a time on or after which the allocation is eligible to be rescheduled, // and whether the next reschedule time is within policy's interval if the policy doesn't allow unlimited reschedules func (a *Allocation) NextRescheduleTime() (time.Time, bool) { failTime := a.LastEventTime() reschedulePolicy := a.ReschedulePolicy() if a.DesiredStatus == AllocDesiredStatusStop || a.ClientStatus != AllocClientStatusFailed || failTime.IsZero() || reschedulePolicy == nil { return time.Time{}, false } nextDelay := a.NextDelay() nextRescheduleTime := failTime.Add(nextDelay) rescheduleEligible := reschedulePolicy.Unlimited || (reschedulePolicy.Attempts > 0 && a.RescheduleTracker == nil) if reschedulePolicy.Attempts > 0 && a.RescheduleTracker != nil && a.RescheduleTracker.Events != nil { // Check for eligibility based on the interval if max attempts is set attempted := 0 for j := len(a.RescheduleTracker.Events) - 1; j >= 0; j-- { lastAttempt := a.RescheduleTracker.Events[j].RescheduleTime timeDiff := failTime.UTC().UnixNano() - lastAttempt if timeDiff < reschedulePolicy.Interval.Nanoseconds() { attempted += 1 } } rescheduleEligible = attempted < reschedulePolicy.Attempts && nextDelay < reschedulePolicy.Interval } return nextRescheduleTime, rescheduleEligible } // NextDelay returns a duration after which the allocation can be rescheduled. // It is calculated according to the delay function and previous reschedule attempts. func (a *Allocation) NextDelay() time.Duration { policy := a.ReschedulePolicy() // Can be nil if the task group was updated to remove its reschedule policy if policy == nil { return 0 } delayDur := policy.Delay if a.RescheduleTracker == nil || a.RescheduleTracker.Events == nil || len(a.RescheduleTracker.Events) == 0 { return delayDur } events := a.RescheduleTracker.Events switch policy.DelayFunction { case "exponential": delayDur = a.RescheduleTracker.Events[len(a.RescheduleTracker.Events)-1].Delay * 2 case "fibonacci": if len(events) >= 2 { fibN1Delay := events[len(events)-1].Delay fibN2Delay := events[len(events)-2].Delay // Handle reset of delay ceiling which should cause // a new series to start if fibN2Delay == policy.MaxDelay && fibN1Delay == policy.Delay { delayDur = fibN1Delay } else { delayDur = fibN1Delay + fibN2Delay } } default: return delayDur } if policy.MaxDelay > 0 && delayDur > policy.MaxDelay { delayDur = policy.MaxDelay // check if delay needs to be reset lastRescheduleEvent := a.RescheduleTracker.Events[len(a.RescheduleTracker.Events)-1] timeDiff := a.LastEventTime().UTC().UnixNano() - lastRescheduleEvent.RescheduleTime if timeDiff > delayDur.Nanoseconds() { delayDur = policy.Delay } } return delayDur } // Terminated returns if the allocation is in a terminal state on a client. func (a *Allocation) Terminated() bool { if a.ClientStatus == AllocClientStatusFailed || a.ClientStatus == AllocClientStatusComplete || a.ClientStatus == AllocClientStatusLost { return true } return false } // RanSuccessfully returns whether the client has ran the allocation and all // tasks finished successfully. Critically this function returns whether the // allocation has ran to completion and not just that the alloc has converged to // its desired state. That is to say that a batch allocation must have finished // with exit code 0 on all task groups. This doesn't really have meaning on a // non-batch allocation because a service and system allocation should not // finish. func (a *Allocation) RanSuccessfully() bool { // Handle the case the client hasn't started the allocation. if len(a.TaskStates) == 0 { return false } // Check to see if all the tasks finished successfully in the allocation allSuccess := true for _, state := range a.TaskStates { allSuccess = allSuccess && state.Successful() } return allSuccess } // ShouldMigrate returns if the allocation needs data migration func (a *Allocation) ShouldMigrate() bool { if a.PreviousAllocation == "" { return false } if a.DesiredStatus == AllocDesiredStatusStop || a.DesiredStatus == AllocDesiredStatusEvict { return false } tg := a.Job.LookupTaskGroup(a.TaskGroup) // if the task group is nil or the ephemeral disk block isn't present then // we won't migrate if tg == nil || tg.EphemeralDisk == nil { return false } // We won't migrate any data is the user hasn't enabled migration or the // disk is not marked as sticky if !tg.EphemeralDisk.Migrate || !tg.EphemeralDisk.Sticky { return false } return true } // SetEventDisplayMessage populates the display message if its not already set, // a temporary fix to handle old allocations that don't have it. // This method will be removed in a future release. func (a *Allocation) SetEventDisplayMessages() { setDisplayMsg(a.TaskStates) } // COMPAT(0.11): Remove in 0.11 // ComparableResources returns the resouces on the allocation // handling upgrade paths. After 0.11 calls to this should be replaced with: // alloc.AllocatedResources.Comparable() func (a *Allocation) ComparableResources() *ComparableResources { // ALloc already has 0.9+ behavior if a.AllocatedResources != nil { return a.AllocatedResources.Comparable() } var resources *Resources if a.Resources != nil { resources = a.Resources } else if a.TaskResources != nil { resources = new(Resources) resources.Add(a.SharedResources) for _, taskResource := range a.TaskResources { resources.Add(taskResource) } } // Upgrade path return &ComparableResources{ Flattened: AllocatedTaskResources{ Cpu: AllocatedCpuResources{ CpuShares: int64(resources.CPU), }, Memory: AllocatedMemoryResources{ MemoryMB: int64(resources.MemoryMB), }, }, Shared: AllocatedSharedResources{ DiskMB: int64(resources.DiskMB), }, } } // LookupTask by name from the Allocation. Returns nil if the Job is not set, the // TaskGroup does not exist, or the task name cannot be found. func (a *Allocation) LookupTask(name string) *Task { if a.Job == nil { return nil } tg := a.Job.LookupTaskGroup(a.TaskGroup) if tg == nil { return nil } return tg.LookupTask(name) } // Stub returns a list stub for the allocation func (a *Allocation) Stub() *AllocListStub { return &AllocListStub{ ID: a.ID, EvalID: a.EvalID, Name: a.Name, NodeID: a.NodeID, JobID: a.JobID, JobVersion: a.Job.Version, TaskGroup: a.TaskGroup, DesiredStatus: a.DesiredStatus, DesiredDescription: a.DesiredDescription, ClientStatus: a.ClientStatus, ClientDescription: a.ClientDescription, DesiredTransition: a.DesiredTransition, TaskStates: a.TaskStates, DeploymentStatus: a.DeploymentStatus, FollowupEvalID: a.FollowupEvalID, RescheduleTracker: a.RescheduleTracker, CreateIndex: a.CreateIndex, ModifyIndex: a.ModifyIndex, CreateTime: a.CreateTime, ModifyTime: a.ModifyTime, } } // AllocListStub is used to return a subset of alloc information type AllocListStub struct { ID string EvalID string Name string NodeID string JobID string JobVersion uint64 TaskGroup string DesiredStatus string DesiredDescription string ClientStatus string ClientDescription string DesiredTransition DesiredTransition TaskStates map[string]*TaskState DeploymentStatus *AllocDeploymentStatus FollowupEvalID string RescheduleTracker *RescheduleTracker CreateIndex uint64 ModifyIndex uint64 CreateTime int64 ModifyTime int64 } // SetEventDisplayMessage populates the display message if its not already set, // a temporary fix to handle old allocations that don't have it. // This method will be removed in a future release. func (a *AllocListStub) SetEventDisplayMessages() { setDisplayMsg(a.TaskStates) } func setDisplayMsg(taskStates map[string]*TaskState) { if taskStates != nil { for _, taskState := range taskStates { for _, event := range taskState.Events { event.PopulateEventDisplayMessage() } } } } // AllocMetric is used to track various metrics while attempting // to make an allocation. These are used to debug a job, or to better // understand the pressure within the system. type AllocMetric struct { // NodesEvaluated is the number of nodes that were evaluated NodesEvaluated int // NodesFiltered is the number of nodes filtered due to a constraint NodesFiltered int // NodesAvailable is the number of nodes available for evaluation per DC. NodesAvailable map[string]int // ClassFiltered is the number of nodes filtered by class ClassFiltered map[string]int // ConstraintFiltered is the number of failures caused by constraint ConstraintFiltered map[string]int // NodesExhausted is the number of nodes skipped due to being // exhausted of at least one resource NodesExhausted int // ClassExhausted is the number of nodes exhausted by class ClassExhausted map[string]int // DimensionExhausted provides the count by dimension or reason DimensionExhausted map[string]int // QuotaExhausted provides the exhausted dimensions QuotaExhausted []string // Scores is the scores of the final few nodes remaining // for placement. The top score is typically selected. // Deprecated: Replaced by ScoreMetaData in Nomad 0.9 Scores map[string]float64 // ScoreMetaData is a slice of top scoring nodes displayed in the CLI ScoreMetaData []*NodeScoreMeta // nodeScoreMeta is used to keep scores for a single node id. It is cleared out after // we receive normalized score during the last step of the scoring stack. nodeScoreMeta *NodeScoreMeta // topScores is used to maintain a heap of the top K nodes with // the highest normalized score topScores *kheap.ScoreHeap // AllocationTime is a measure of how long the allocation // attempt took. This can affect performance and SLAs. AllocationTime time.Duration // CoalescedFailures indicates the number of other // allocations that were coalesced into this failed allocation. // This is to prevent creating many failed allocations for a // single task group. CoalescedFailures int } func (a *AllocMetric) Copy() *AllocMetric { if a == nil { return nil } na := new(AllocMetric) *na = *a na.NodesAvailable = helper.CopyMapStringInt(na.NodesAvailable) na.ClassFiltered = helper.CopyMapStringInt(na.ClassFiltered) na.ConstraintFiltered = helper.CopyMapStringInt(na.ConstraintFiltered) na.ClassExhausted = helper.CopyMapStringInt(na.ClassExhausted) na.DimensionExhausted = helper.CopyMapStringInt(na.DimensionExhausted) na.QuotaExhausted = helper.CopySliceString(na.QuotaExhausted) na.Scores = helper.CopyMapStringFloat64(na.Scores) na.ScoreMetaData = CopySliceNodeScoreMeta(na.ScoreMetaData) return na } func (a *AllocMetric) EvaluateNode() { a.NodesEvaluated += 1 } func (a *AllocMetric) FilterNode(node *Node, constraint string) { a.NodesFiltered += 1 if node != nil && node.NodeClass != "" { if a.ClassFiltered == nil { a.ClassFiltered = make(map[string]int) } a.ClassFiltered[node.NodeClass] += 1 } if constraint != "" { if a.ConstraintFiltered == nil { a.ConstraintFiltered = make(map[string]int) } a.ConstraintFiltered[constraint] += 1 } } func (a *AllocMetric) ExhaustedNode(node *Node, dimension string) { a.NodesExhausted += 1 if node != nil && node.NodeClass != "" { if a.ClassExhausted == nil { a.ClassExhausted = make(map[string]int) } a.ClassExhausted[node.NodeClass] += 1 } if dimension != "" { if a.DimensionExhausted == nil { a.DimensionExhausted = make(map[string]int) } a.DimensionExhausted[dimension] += 1 } } func (a *AllocMetric) ExhaustQuota(dimensions []string) { if a.QuotaExhausted == nil { a.QuotaExhausted = make([]string, 0, len(dimensions)) } a.QuotaExhausted = append(a.QuotaExhausted, dimensions...) } // ScoreNode is used to gather top K scoring nodes in a heap func (a *AllocMetric) ScoreNode(node *Node, name string, score float64) { // Create nodeScoreMeta lazily if its the first time or if its a new node if a.nodeScoreMeta == nil || a.nodeScoreMeta.NodeID != node.ID { a.nodeScoreMeta = &NodeScoreMeta{ NodeID: node.ID, Scores: make(map[string]float64), } } if name == NormScorerName { a.nodeScoreMeta.NormScore = score // Once we have the normalized score we can push to the heap // that tracks top K by normalized score // Create the heap if its not there already if a.topScores == nil { a.topScores = kheap.NewScoreHeap(MaxRetainedNodeScores) } heap.Push(a.topScores, a.nodeScoreMeta) // Clear out this entry because its now in the heap a.nodeScoreMeta = nil } else { a.nodeScoreMeta.Scores[name] = score } } // PopulateScoreMetaData populates a map of scorer to scoring metadata // The map is populated by popping elements from a heap of top K scores // maintained per scorer func (a *AllocMetric) PopulateScoreMetaData() { if a.topScores == nil { return } if a.ScoreMetaData == nil { a.ScoreMetaData = make([]*NodeScoreMeta, a.topScores.Len()) } heapItems := a.topScores.GetItemsReverse() for i, item := range heapItems { a.ScoreMetaData[i] = item.(*NodeScoreMeta) } } // NodeScoreMeta captures scoring meta data derived from // different scoring factors. type NodeScoreMeta struct { NodeID string Scores map[string]float64 NormScore float64 } func (s *NodeScoreMeta) Copy() *NodeScoreMeta { if s == nil { return nil } ns := new(NodeScoreMeta) *ns = *s return ns } func (s *NodeScoreMeta) String() string { return fmt.Sprintf("%s %f %v", s.NodeID, s.NormScore, s.Scores) } func (s *NodeScoreMeta) Score() float64 { return s.NormScore } func (s *NodeScoreMeta) Data() interface{} { return s } // AllocDeploymentStatus captures the status of the allocation as part of the // deployment. This can include things like if the allocation has been marked as // healthy. type AllocDeploymentStatus struct { // Healthy marks whether the allocation has been marked healthy or unhealthy // as part of a deployment. It can be unset if it has neither been marked // healthy or unhealthy. Healthy *bool // Timestamp is the time at which the health status was set. Timestamp time.Time // Canary marks whether the allocation is a canary or not. A canary that has // been promoted will have this field set to false. Canary bool // ModifyIndex is the raft index in which the deployment status was last // changed. ModifyIndex uint64 } // HasHealth returns true if the allocation has its health set. func (a *AllocDeploymentStatus) HasHealth() bool { return a != nil && a.Healthy != nil } // IsHealthy returns if the allocation is marked as healthy as part of a // deployment func (a *AllocDeploymentStatus) IsHealthy() bool { if a == nil { return false } return a.Healthy != nil && *a.Healthy } // IsUnhealthy returns if the allocation is marked as unhealthy as part of a // deployment func (a *AllocDeploymentStatus) IsUnhealthy() bool { if a == nil { return false } return a.Healthy != nil && !*a.Healthy } // IsCanary returns if the allocation is marked as a canary func (a *AllocDeploymentStatus) IsCanary() bool { if a == nil { return false } return a.Canary } func (a *AllocDeploymentStatus) Copy() *AllocDeploymentStatus { if a == nil { return nil } c := new(AllocDeploymentStatus) *c = *a if a.Healthy != nil { c.Healthy = helper.BoolToPtr(*a.Healthy) } return c } const ( EvalStatusBlocked = "blocked" EvalStatusPending = "pending" EvalStatusComplete = "complete" EvalStatusFailed = "failed" EvalStatusCancelled = "canceled" ) const ( EvalTriggerJobRegister = "job-register" EvalTriggerJobDeregister = "job-deregister" EvalTriggerPeriodicJob = "periodic-job" EvalTriggerNodeDrain = "node-drain" EvalTriggerNodeUpdate = "node-update" EvalTriggerScheduled = "scheduled" EvalTriggerRollingUpdate = "rolling-update" EvalTriggerDeploymentWatcher = "deployment-watcher" EvalTriggerFailedFollowUp = "failed-follow-up" EvalTriggerMaxPlans = "max-plan-attempts" EvalTriggerRetryFailedAlloc = "alloc-failure" EvalTriggerQueuedAllocs = "queued-allocs" ) const ( // CoreJobEvalGC is used for the garbage collection of evaluations // and allocations. We periodically scan evaluations in a terminal state, // in which all the corresponding allocations are also terminal. We // delete these out of the system to bound the state. CoreJobEvalGC = "eval-gc" // CoreJobNodeGC is used for the garbage collection of failed nodes. // We periodically scan nodes in a terminal state, and if they have no // corresponding allocations we delete these out of the system. CoreJobNodeGC = "node-gc" // CoreJobJobGC is used for the garbage collection of eligible jobs. We // periodically scan garbage collectible jobs and check if both their // evaluations and allocations are terminal. If so, we delete these out of // the system. CoreJobJobGC = "job-gc" // CoreJobDeploymentGC is used for the garbage collection of eligible // deployments. We periodically scan garbage collectible deployments and // check if they are terminal. If so, we delete these out of the system. CoreJobDeploymentGC = "deployment-gc" // CoreJobForceGC is used to force garbage collection of all GCable objects. CoreJobForceGC = "force-gc" ) // Evaluation is used anytime we need to apply business logic as a result // of a change to our desired state (job specification) or the emergent state // (registered nodes). When the inputs change, we need to "evaluate" them, // potentially taking action (allocation of work) or doing nothing if the state // of the world does not require it. type Evaluation struct { // ID is a randomly generated UUID used for this evaluation. This // is assigned upon the creation of the evaluation. ID string // Namespace is the namespace the evaluation is created in Namespace string // Priority is used to control scheduling importance and if this job // can preempt other jobs. Priority int // Type is used to control which schedulers are available to handle // this evaluation. Type string // TriggeredBy is used to give some insight into why this Eval // was created. (Job change, node failure, alloc failure, etc). TriggeredBy string // JobID is the job this evaluation is scoped to. Evaluations cannot // be run in parallel for a given JobID, so we serialize on this. JobID string // JobModifyIndex is the modify index of the job at the time // the evaluation was created JobModifyIndex uint64 // NodeID is the node that was affected triggering the evaluation. NodeID string // NodeModifyIndex is the modify index of the node at the time // the evaluation was created NodeModifyIndex uint64 // DeploymentID is the ID of the deployment that triggered the evaluation. DeploymentID string // Status of the evaluation Status string // StatusDescription is meant to provide more human useful information StatusDescription string // Wait is a minimum wait time for running the eval. This is used to // support a rolling upgrade in versions prior to 0.7.0 // Deprecated Wait time.Duration // WaitUntil is the time when this eval should be run. This is used to // supported delayed rescheduling of failed allocations WaitUntil time.Time // NextEval is the evaluation ID for the eval created to do a followup. // This is used to support rolling upgrades, where we need a chain of evaluations. NextEval string // PreviousEval is the evaluation ID for the eval creating this one to do a followup. // This is used to support rolling upgrades, where we need a chain of evaluations. PreviousEval string // BlockedEval is the evaluation ID for a created blocked eval. A // blocked eval will be created if all allocations could not be placed due // to constraints or lacking resources. BlockedEval string // FailedTGAllocs are task groups which have allocations that could not be // made, but the metrics are persisted so that the user can use the feedback // to determine the cause. FailedTGAllocs map[string]*AllocMetric // ClassEligibility tracks computed node classes that have been explicitly // marked as eligible or ineligible. ClassEligibility map[string]bool // QuotaLimitReached marks whether a quota limit was reached for the // evaluation. QuotaLimitReached string // EscapedComputedClass marks whether the job has constraints that are not // captured by computed node classes. EscapedComputedClass bool // AnnotatePlan triggers the scheduler to provide additional annotations // during the evaluation. This should not be set during normal operations. AnnotatePlan bool // QueuedAllocations is the number of unplaced allocations at the time the // evaluation was processed. The map is keyed by Task Group names. QueuedAllocations map[string]int // LeaderACL provides the ACL token to when issuing RPCs back to the // leader. This will be a valid management token as long as the leader is // active. This should not ever be exposed via the API. LeaderACL string // SnapshotIndex is the Raft index of the snapshot used to process the // evaluation. The index will either be set when it has gone through the // scheduler or if a blocked evaluation is being created. The index is set // in this case so we can determine if an early unblocking is required since // capacity has changed since the evaluation was created. This can result in // the SnapshotIndex being less than the CreateIndex. SnapshotIndex uint64 // Raft Indexes CreateIndex uint64 ModifyIndex uint64 } // TerminalStatus returns if the current status is terminal and // will no longer transition. func (e *Evaluation) TerminalStatus() bool { switch e.Status { case EvalStatusComplete, EvalStatusFailed, EvalStatusCancelled: return true default: return false } } func (e *Evaluation) GoString() string { return fmt.Sprintf("", e.ID, e.JobID, e.Namespace) } func (e *Evaluation) Copy() *Evaluation { if e == nil { return nil } ne := new(Evaluation) *ne = *e // Copy ClassEligibility if e.ClassEligibility != nil { classes := make(map[string]bool, len(e.ClassEligibility)) for class, elig := range e.ClassEligibility { classes[class] = elig } ne.ClassEligibility = classes } // Copy FailedTGAllocs if e.FailedTGAllocs != nil { failedTGs := make(map[string]*AllocMetric, len(e.FailedTGAllocs)) for tg, metric := range e.FailedTGAllocs { failedTGs[tg] = metric.Copy() } ne.FailedTGAllocs = failedTGs } // Copy queued allocations if e.QueuedAllocations != nil { queuedAllocations := make(map[string]int, len(e.QueuedAllocations)) for tg, num := range e.QueuedAllocations { queuedAllocations[tg] = num } ne.QueuedAllocations = queuedAllocations } return ne } // ShouldEnqueue checks if a given evaluation should be enqueued into the // eval_broker func (e *Evaluation) ShouldEnqueue() bool { switch e.Status { case EvalStatusPending: return true case EvalStatusComplete, EvalStatusFailed, EvalStatusBlocked, EvalStatusCancelled: return false default: panic(fmt.Sprintf("unhandled evaluation (%s) status %s", e.ID, e.Status)) } } // ShouldBlock checks if a given evaluation should be entered into the blocked // eval tracker. func (e *Evaluation) ShouldBlock() bool { switch e.Status { case EvalStatusBlocked: return true case EvalStatusComplete, EvalStatusFailed, EvalStatusPending, EvalStatusCancelled: return false default: panic(fmt.Sprintf("unhandled evaluation (%s) status %s", e.ID, e.Status)) } } // MakePlan is used to make a plan from the given evaluation // for a given Job func (e *Evaluation) MakePlan(j *Job) *Plan { p := &Plan{ EvalID: e.ID, Priority: e.Priority, Job: j, NodeUpdate: make(map[string][]*Allocation), NodeAllocation: make(map[string][]*Allocation), } if j != nil { p.AllAtOnce = j.AllAtOnce } return p } // NextRollingEval creates an evaluation to followup this eval for rolling updates func (e *Evaluation) NextRollingEval(wait time.Duration) *Evaluation { return &Evaluation{ ID: uuid.Generate(), Namespace: e.Namespace, Priority: e.Priority, Type: e.Type, TriggeredBy: EvalTriggerRollingUpdate, JobID: e.JobID, JobModifyIndex: e.JobModifyIndex, Status: EvalStatusPending, Wait: wait, PreviousEval: e.ID, } } // CreateBlockedEval creates a blocked evaluation to followup this eval to place any // failed allocations. It takes the classes marked explicitly eligible or // ineligible, whether the job has escaped computed node classes and whether the // quota limit was reached. func (e *Evaluation) CreateBlockedEval(classEligibility map[string]bool, escaped bool, quotaReached string) *Evaluation { return &Evaluation{ ID: uuid.Generate(), Namespace: e.Namespace, Priority: e.Priority, Type: e.Type, TriggeredBy: EvalTriggerQueuedAllocs, JobID: e.JobID, JobModifyIndex: e.JobModifyIndex, Status: EvalStatusBlocked, PreviousEval: e.ID, ClassEligibility: classEligibility, EscapedComputedClass: escaped, QuotaLimitReached: quotaReached, } } // CreateFailedFollowUpEval creates a follow up evaluation when the current one // has been marked as failed because it has hit the delivery limit and will not // be retried by the eval_broker. func (e *Evaluation) CreateFailedFollowUpEval(wait time.Duration) *Evaluation { return &Evaluation{ ID: uuid.Generate(), Namespace: e.Namespace, Priority: e.Priority, Type: e.Type, TriggeredBy: EvalTriggerFailedFollowUp, JobID: e.JobID, JobModifyIndex: e.JobModifyIndex, Status: EvalStatusPending, Wait: wait, PreviousEval: e.ID, } } // Plan is used to submit a commit plan for task allocations. These // are submitted to the leader which verifies that resources have // not been overcommitted before admitting the plan. type Plan struct { // EvalID is the evaluation ID this plan is associated with EvalID string // EvalToken is used to prevent a split-brain processing of // an evaluation. There should only be a single scheduler running // an Eval at a time, but this could be violated after a leadership // transition. This unique token is used to reject plans that are // being submitted from a different leader. EvalToken string // Priority is the priority of the upstream job Priority int // AllAtOnce is used to control if incremental scheduling of task groups // is allowed or if we must do a gang scheduling of the entire job. // If this is false, a plan may be partially applied. Otherwise, the // entire plan must be able to make progress. AllAtOnce bool // Job is the parent job of all the allocations in the Plan. // Since a Plan only involves a single Job, we can reduce the size // of the plan by only including it once. Job *Job // NodeUpdate contains all the allocations for each node. For each node, // this is a list of the allocations to update to either stop or evict. NodeUpdate map[string][]*Allocation // NodeAllocation contains all the allocations for each node. // The evicts must be considered prior to the allocations. NodeAllocation map[string][]*Allocation // Annotations contains annotations by the scheduler to be used by operators // to understand the decisions made by the scheduler. Annotations *PlanAnnotations // Deployment is the deployment created or updated by the scheduler that // should be applied by the planner. Deployment *Deployment // DeploymentUpdates is a set of status updates to apply to the given // deployments. This allows the scheduler to cancel any unneeded deployment // because the job is stopped or the update block is removed. DeploymentUpdates []*DeploymentStatusUpdate } // AppendUpdate marks the allocation for eviction. The clientStatus of the // allocation may be optionally set by passing in a non-empty value. func (p *Plan) AppendUpdate(alloc *Allocation, desiredStatus, desiredDesc, clientStatus string) { newAlloc := new(Allocation) *newAlloc = *alloc // If the job is not set in the plan we are deregistering a job so we // extract the job from the allocation. if p.Job == nil && newAlloc.Job != nil { p.Job = newAlloc.Job } // Normalize the job newAlloc.Job = nil // Strip the resources as it can be rebuilt. newAlloc.Resources = nil newAlloc.DesiredStatus = desiredStatus newAlloc.DesiredDescription = desiredDesc if clientStatus != "" { newAlloc.ClientStatus = clientStatus } node := alloc.NodeID existing := p.NodeUpdate[node] p.NodeUpdate[node] = append(existing, newAlloc) } func (p *Plan) PopUpdate(alloc *Allocation) { existing := p.NodeUpdate[alloc.NodeID] n := len(existing) if n > 0 && existing[n-1].ID == alloc.ID { existing = existing[:n-1] if len(existing) > 0 { p.NodeUpdate[alloc.NodeID] = existing } else { delete(p.NodeUpdate, alloc.NodeID) } } } func (p *Plan) AppendAlloc(alloc *Allocation) { node := alloc.NodeID existing := p.NodeAllocation[node] // Normalize the job alloc.Job = nil p.NodeAllocation[node] = append(existing, alloc) } // IsNoOp checks if this plan would do nothing func (p *Plan) IsNoOp() bool { return len(p.NodeUpdate) == 0 && len(p.NodeAllocation) == 0 && p.Deployment == nil && len(p.DeploymentUpdates) == 0 } // PlanResult is the result of a plan submitted to the leader. type PlanResult struct { // NodeUpdate contains all the updates that were committed. NodeUpdate map[string][]*Allocation // NodeAllocation contains all the allocations that were committed. NodeAllocation map[string][]*Allocation // Deployment is the deployment that was committed. Deployment *Deployment // DeploymentUpdates is the set of deployment updates that were committed. DeploymentUpdates []*DeploymentStatusUpdate // RefreshIndex is the index the worker should refresh state up to. // This allows all evictions and allocations to be materialized. // If any allocations were rejected due to stale data (node state, // over committed) this can be used to force a worker refresh. RefreshIndex uint64 // AllocIndex is the Raft index in which the evictions and // allocations took place. This is used for the write index. AllocIndex uint64 } // IsNoOp checks if this plan result would do nothing func (p *PlanResult) IsNoOp() bool { return len(p.NodeUpdate) == 0 && len(p.NodeAllocation) == 0 && len(p.DeploymentUpdates) == 0 && p.Deployment == nil } // FullCommit is used to check if all the allocations in a plan // were committed as part of the result. Returns if there was // a match, and the number of expected and actual allocations. func (p *PlanResult) FullCommit(plan *Plan) (bool, int, int) { expected := 0 actual := 0 for name, allocList := range plan.NodeAllocation { didAlloc, _ := p.NodeAllocation[name] expected += len(allocList) actual += len(didAlloc) } return actual == expected, expected, actual } // PlanAnnotations holds annotations made by the scheduler to give further debug // information to operators. type PlanAnnotations struct { // DesiredTGUpdates is the set of desired updates per task group. DesiredTGUpdates map[string]*DesiredUpdates } // DesiredUpdates is the set of changes the scheduler would like to make given // sufficient resources and cluster capacity. type DesiredUpdates struct { Ignore uint64 Place uint64 Migrate uint64 Stop uint64 InPlaceUpdate uint64 DestructiveUpdate uint64 Canary uint64 } func (d *DesiredUpdates) GoString() string { return fmt.Sprintf("(place %d) (inplace %d) (destructive %d) (stop %d) (migrate %d) (ignore %d) (canary %d)", d.Place, d.InPlaceUpdate, d.DestructiveUpdate, d.Stop, d.Migrate, d.Ignore, d.Canary) } // msgpackHandle is a shared handle for encoding/decoding of structs var MsgpackHandle = func() *codec.MsgpackHandle { h := &codec.MsgpackHandle{RawToString: true} // Sets the default type for decoding a map into a nil interface{}. // This is necessary in particular because we store the driver configs as a // nil interface{}. h.MapType = reflect.TypeOf(map[string]interface{}(nil)) return h }() var ( // JsonHandle and JsonHandlePretty are the codec handles to JSON encode // structs. The pretty handle will add indents for easier human consumption. JsonHandle = &codec.JsonHandle{ HTMLCharsAsIs: true, } JsonHandlePretty = &codec.JsonHandle{ HTMLCharsAsIs: true, Indent: 4, } ) // TODO Figure out if we can remove this. This is our fork that is just way // behind. I feel like its original purpose was to pin at a stable version but // now we can accomplish this with vendoring. var HashiMsgpackHandle = func() *hcodec.MsgpackHandle { h := &hcodec.MsgpackHandle{RawToString: true} // Sets the default type for decoding a map into a nil interface{}. // This is necessary in particular because we store the driver configs as a // nil interface{}. h.MapType = reflect.TypeOf(map[string]interface{}(nil)) return h }() // Decode is used to decode a MsgPack encoded object func Decode(buf []byte, out interface{}) error { return codec.NewDecoder(bytes.NewReader(buf), MsgpackHandle).Decode(out) } // Encode is used to encode a MsgPack object with type prefix func Encode(t MessageType, msg interface{}) ([]byte, error) { var buf bytes.Buffer buf.WriteByte(uint8(t)) err := codec.NewEncoder(&buf, MsgpackHandle).Encode(msg) return buf.Bytes(), err } // KeyringResponse is a unified key response and can be used for install, // remove, use, as well as listing key queries. type KeyringResponse struct { Messages map[string]string Keys map[string]int NumNodes int } // KeyringRequest is request objects for serf key operations. type KeyringRequest struct { Key string } // RecoverableError wraps an error and marks whether it is recoverable and could // be retried or it is fatal. type RecoverableError struct { Err string Recoverable bool } // NewRecoverableError is used to wrap an error and mark it as recoverable or // not. func NewRecoverableError(e error, recoverable bool) error { if e == nil { return nil } return &RecoverableError{ Err: e.Error(), Recoverable: recoverable, } } // WrapRecoverable wraps an existing error in a new RecoverableError with a new // message. If the error was recoverable before the returned error is as well; // otherwise it is unrecoverable. func WrapRecoverable(msg string, err error) error { return &RecoverableError{Err: msg, Recoverable: IsRecoverable(err)} } func (r *RecoverableError) Error() string { return r.Err } func (r *RecoverableError) IsRecoverable() bool { return r.Recoverable } // Recoverable is an interface for errors to implement to indicate whether or // not they are fatal or recoverable. type Recoverable interface { error IsRecoverable() bool } // IsRecoverable returns true if error is a RecoverableError with // Recoverable=true. Otherwise false is returned. func IsRecoverable(e error) bool { if re, ok := e.(Recoverable); ok { return re.IsRecoverable() } return false } // WrappedServerError wraps an error and satisfies // both the Recoverable and the ServerSideError interfaces type WrappedServerError struct { Err error } // NewWrappedServerError is used to create a wrapped server side error func NewWrappedServerError(e error) error { return &WrappedServerError{ Err: e, } } func (r *WrappedServerError) IsRecoverable() bool { return IsRecoverable(r.Err) } func (r *WrappedServerError) Error() string { return r.Err.Error() } func (r *WrappedServerError) IsServerSide() bool { return true } // ServerSideError is an interface for errors to implement to indicate // errors occurring after the request makes it to a server type ServerSideError interface { error IsServerSide() bool } // IsServerSide returns true if error is a wrapped // server side error func IsServerSide(e error) bool { if se, ok := e.(ServerSideError); ok { return se.IsServerSide() } return false } // ACLPolicy is used to represent an ACL policy type ACLPolicy struct { Name string // Unique name Description string // Human readable Rules string // HCL or JSON format Hash []byte CreateIndex uint64 ModifyIndex uint64 } // SetHash is used to compute and set the hash of the ACL policy func (c *ACLPolicy) SetHash() []byte { // Initialize a 256bit Blake2 hash (32 bytes) hash, err := blake2b.New256(nil) if err != nil { panic(err) } // Write all the user set fields hash.Write([]byte(c.Name)) hash.Write([]byte(c.Description)) hash.Write([]byte(c.Rules)) // Finalize the hash hashVal := hash.Sum(nil) // Set and return the hash c.Hash = hashVal return hashVal } func (a *ACLPolicy) Stub() *ACLPolicyListStub { return &ACLPolicyListStub{ Name: a.Name, Description: a.Description, Hash: a.Hash, CreateIndex: a.CreateIndex, ModifyIndex: a.ModifyIndex, } } func (a *ACLPolicy) Validate() error { var mErr multierror.Error if !validPolicyName.MatchString(a.Name) { err := fmt.Errorf("invalid name '%s'", a.Name) mErr.Errors = append(mErr.Errors, err) } if _, err := acl.Parse(a.Rules); err != nil { err = fmt.Errorf("failed to parse rules: %v", err) mErr.Errors = append(mErr.Errors, err) } if len(a.Description) > maxPolicyDescriptionLength { err := fmt.Errorf("description longer than %d", maxPolicyDescriptionLength) mErr.Errors = append(mErr.Errors, err) } return mErr.ErrorOrNil() } // ACLPolicyListStub is used to for listing ACL policies type ACLPolicyListStub struct { Name string Description string Hash []byte CreateIndex uint64 ModifyIndex uint64 } // ACLPolicyListRequest is used to request a list of policies type ACLPolicyListRequest struct { QueryOptions } // ACLPolicySpecificRequest is used to query a specific policy type ACLPolicySpecificRequest struct { Name string QueryOptions } // ACLPolicySetRequest is used to query a set of policies type ACLPolicySetRequest struct { Names []string QueryOptions } // ACLPolicyListResponse is used for a list request type ACLPolicyListResponse struct { Policies []*ACLPolicyListStub QueryMeta } // SingleACLPolicyResponse is used to return a single policy type SingleACLPolicyResponse struct { Policy *ACLPolicy QueryMeta } // ACLPolicySetResponse is used to return a set of policies type ACLPolicySetResponse struct { Policies map[string]*ACLPolicy QueryMeta } // ACLPolicyDeleteRequest is used to delete a set of policies type ACLPolicyDeleteRequest struct { Names []string WriteRequest } // ACLPolicyUpsertRequest is used to upsert a set of policies type ACLPolicyUpsertRequest struct { Policies []*ACLPolicy WriteRequest } // ACLToken represents a client token which is used to Authenticate type ACLToken struct { AccessorID string // Public Accessor ID (UUID) SecretID string // Secret ID, private (UUID) Name string // Human friendly name Type string // Client or Management Policies []string // Policies this token ties to Global bool // Global or Region local Hash []byte CreateTime time.Time // Time of creation CreateIndex uint64 ModifyIndex uint64 } var ( // AnonymousACLToken is used no SecretID is provided, and the // request is made anonymously. AnonymousACLToken = &ACLToken{ AccessorID: "anonymous", Name: "Anonymous Token", Type: ACLClientToken, Policies: []string{"anonymous"}, Global: false, } ) type ACLTokenListStub struct { AccessorID string Name string Type string Policies []string Global bool Hash []byte CreateTime time.Time CreateIndex uint64 ModifyIndex uint64 } // SetHash is used to compute and set the hash of the ACL token func (a *ACLToken) SetHash() []byte { // Initialize a 256bit Blake2 hash (32 bytes) hash, err := blake2b.New256(nil) if err != nil { panic(err) } // Write all the user set fields hash.Write([]byte(a.Name)) hash.Write([]byte(a.Type)) for _, policyName := range a.Policies { hash.Write([]byte(policyName)) } if a.Global { hash.Write([]byte("global")) } else { hash.Write([]byte("local")) } // Finalize the hash hashVal := hash.Sum(nil) // Set and return the hash a.Hash = hashVal return hashVal } func (a *ACLToken) Stub() *ACLTokenListStub { return &ACLTokenListStub{ AccessorID: a.AccessorID, Name: a.Name, Type: a.Type, Policies: a.Policies, Global: a.Global, Hash: a.Hash, CreateTime: a.CreateTime, CreateIndex: a.CreateIndex, ModifyIndex: a.ModifyIndex, } } // Validate is used to sanity check a token func (a *ACLToken) Validate() error { var mErr multierror.Error if len(a.Name) > maxTokenNameLength { mErr.Errors = append(mErr.Errors, fmt.Errorf("token name too long")) } switch a.Type { case ACLClientToken: if len(a.Policies) == 0 { mErr.Errors = append(mErr.Errors, fmt.Errorf("client token missing policies")) } case ACLManagementToken: if len(a.Policies) != 0 { mErr.Errors = append(mErr.Errors, fmt.Errorf("management token cannot be associated with policies")) } default: mErr.Errors = append(mErr.Errors, fmt.Errorf("token type must be client or management")) } return mErr.ErrorOrNil() } // PolicySubset checks if a given set of policies is a subset of the token func (a *ACLToken) PolicySubset(policies []string) bool { // Hot-path the management tokens, superset of all policies. if a.Type == ACLManagementToken { return true } associatedPolicies := make(map[string]struct{}, len(a.Policies)) for _, policy := range a.Policies { associatedPolicies[policy] = struct{}{} } for _, policy := range policies { if _, ok := associatedPolicies[policy]; !ok { return false } } return true } // ACLTokenListRequest is used to request a list of tokens type ACLTokenListRequest struct { GlobalOnly bool QueryOptions } // ACLTokenSpecificRequest is used to query a specific token type ACLTokenSpecificRequest struct { AccessorID string QueryOptions } // ACLTokenSetRequest is used to query a set of tokens type ACLTokenSetRequest struct { AccessorIDS []string QueryOptions } // ACLTokenListResponse is used for a list request type ACLTokenListResponse struct { Tokens []*ACLTokenListStub QueryMeta } // SingleACLTokenResponse is used to return a single token type SingleACLTokenResponse struct { Token *ACLToken QueryMeta } // ACLTokenSetResponse is used to return a set of token type ACLTokenSetResponse struct { Tokens map[string]*ACLToken // Keyed by Accessor ID QueryMeta } // ResolveACLTokenRequest is used to resolve a specific token type ResolveACLTokenRequest struct { SecretID string QueryOptions } // ResolveACLTokenResponse is used to resolve a single token type ResolveACLTokenResponse struct { Token *ACLToken QueryMeta } // ACLTokenDeleteRequest is used to delete a set of tokens type ACLTokenDeleteRequest struct { AccessorIDs []string WriteRequest } // ACLTokenBootstrapRequest is used to bootstrap ACLs type ACLTokenBootstrapRequest struct { Token *ACLToken // Not client specifiable ResetIndex uint64 // Reset index is used to clear the bootstrap token WriteRequest } // ACLTokenUpsertRequest is used to upsert a set of tokens type ACLTokenUpsertRequest struct { Tokens []*ACLToken WriteRequest } // ACLTokenUpsertResponse is used to return from an ACLTokenUpsertRequest type ACLTokenUpsertResponse struct { Tokens []*ACLToken WriteMeta }