package scheduler import ( "fmt" "reflect" "sort" "testing" "time" memdb "github.com/hashicorp/go-memdb" "github.com/hashicorp/nomad/helper" "github.com/hashicorp/nomad/helper/uuid" "github.com/hashicorp/nomad/nomad/mock" "github.com/hashicorp/nomad/nomad/structs" "github.com/stretchr/testify/assert" "github.com/stretchr/testify/require" ) func TestServiceSched_JobRegister(t *testing.T) { h := NewHarness(t) // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan doesn't have annotations. if plan.Annotations != nil { t.Fatalf("expected no annotations") } // Ensure the eval has no spawned blocked eval if len(h.CreateEvals) != 0 { t.Fatalf("bad: %#v", h.CreateEvals) if h.Evals[0].BlockedEval != "" { t.Fatalf("bad: %#v", h.Evals[0]) } } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 10 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed if len(out) != 10 { t.Fatalf("bad: %#v", out) } // Ensure different ports were used. used := make(map[int]map[string]struct{}) for _, alloc := range out { for _, resource := range alloc.TaskResources { for _, port := range resource.Networks[0].DynamicPorts { nodeMap, ok := used[port.Value] if !ok { nodeMap = make(map[string]struct{}) used[port.Value] = nodeMap } if _, ok := nodeMap[alloc.NodeID]; ok { t.Fatalf("Port collision on node %q %v", alloc.NodeID, port.Value) } nodeMap[alloc.NodeID] = struct{}{} } } } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobRegister_StickyAllocs(t *testing.T) { h := NewHarness(t) // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job job := mock.Job() job.TaskGroups[0].EphemeralDisk.Sticky = true noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation if err := h.Process(NewServiceScheduler, eval); err != nil { t.Fatalf("err: %v", err) } // Ensure the plan allocated plan := h.Plans[0] planned := make(map[string]*structs.Allocation) for _, allocList := range plan.NodeAllocation { for _, alloc := range allocList { planned[alloc.ID] = alloc } } if len(planned) != 10 { t.Fatalf("bad: %#v", plan) } // Update the job to force a rolling upgrade updated := job.Copy() updated.TaskGroups[0].Tasks[0].Resources.CPU += 10 noErr(t, h.State.UpsertJob(h.NextIndex(), updated)) // Create a mock evaluation to handle the update eval = &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) h1 := NewHarnessWithState(t, h.State) if err := h1.Process(NewServiceScheduler, eval); err != nil { t.Fatalf("err: %v", err) } // Ensure we have created only one new allocation // Ensure a single plan if len(h1.Plans) != 1 { t.Fatalf("bad: %#v", h1.Plans) } plan = h1.Plans[0] var newPlanned []*structs.Allocation for _, allocList := range plan.NodeAllocation { newPlanned = append(newPlanned, allocList...) } if len(newPlanned) != 10 { t.Fatalf("bad plan: %#v", plan) } // Ensure that the new allocations were placed on the same node as the older // ones for _, new := range newPlanned { if new.PreviousAllocation == "" { t.Fatalf("new alloc %q doesn't have a previous allocation", new.ID) } old, ok := planned[new.PreviousAllocation] if !ok { t.Fatalf("new alloc %q previous allocation doesn't match any prior placed alloc (%q)", new.ID, new.PreviousAllocation) } if new.NodeID != old.NodeID { t.Fatalf("new alloc and old alloc node doesn't match; got %q; want %q", new.NodeID, old.NodeID) } } } func TestServiceSched_JobRegister_DiskConstraints(t *testing.T) { h := NewHarness(t) // Create a node node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a job with count 2 and disk as 60GB so that only one allocation // can fit job := mock.Job() job.TaskGroups[0].Count = 2 job.TaskGroups[0].EphemeralDisk.SizeMB = 88 * 1024 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan doesn't have annotations. if plan.Annotations != nil { t.Fatalf("expected no annotations") } // Ensure the eval has a blocked eval if len(h.CreateEvals) != 1 { t.Fatalf("bad: %#v", h.CreateEvals) } if h.CreateEvals[0].TriggeredBy != structs.EvalTriggerQueuedAllocs { t.Fatalf("bad: %#v", h.CreateEvals[0]) } // Ensure the plan allocated only one allocation var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 1 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure only one allocation was placed if len(out) != 1 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobRegister_DistinctHosts(t *testing.T) { h := NewHarness(t) // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job that uses distinct host and has count 1 higher than what is // possible. job := mock.Job() job.TaskGroups[0].Count = 11 job.Constraints = append(job.Constraints, &structs.Constraint{Operand: structs.ConstraintDistinctHosts}) noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the eval has spawned blocked eval if len(h.CreateEvals) != 1 { t.Fatalf("bad: %#v", h.CreateEvals) } // Ensure the plan failed to alloc outEval := h.Evals[0] if len(outEval.FailedTGAllocs) != 1 { t.Fatalf("bad: %+v", outEval) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 10 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed if len(out) != 10 { t.Fatalf("bad: %#v", out) } // Ensure different node was used per. used := make(map[string]struct{}) for _, alloc := range out { if _, ok := used[alloc.NodeID]; ok { t.Fatalf("Node collision %v", alloc.NodeID) } used[alloc.NodeID] = struct{}{} } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobRegister_DistinctProperty(t *testing.T) { h := NewHarness(t) // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() rack := "rack2" if i < 5 { rack = "rack1" } node.Meta["rack"] = rack noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job that uses distinct property and has count higher than what is // possible. job := mock.Job() job.TaskGroups[0].Count = 8 job.Constraints = append(job.Constraints, &structs.Constraint{ Operand: structs.ConstraintDistinctProperty, LTarget: "${meta.rack}", RTarget: "2", }) noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan doesn't have annotations. if plan.Annotations != nil { t.Fatalf("expected no annotations") } // Ensure the eval has spawned blocked eval if len(h.CreateEvals) != 1 { t.Fatalf("bad: %#v", h.CreateEvals) } // Ensure the plan failed to alloc outEval := h.Evals[0] if len(outEval.FailedTGAllocs) != 1 { t.Fatalf("bad: %+v", outEval) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 4 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed if len(out) != 4 { t.Fatalf("bad: %#v", out) } // Ensure each node was only used twice used := make(map[string]uint64) for _, alloc := range out { if count, _ := used[alloc.NodeID]; count > 2 { t.Fatalf("Node %v used too much: %d", alloc.NodeID, count) } used[alloc.NodeID]++ } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobRegister_DistinctProperty_TaskGroup(t *testing.T) { h := NewHarness(t) // Create some nodes for i := 0; i < 2; i++ { node := mock.Node() node.Meta["ssd"] = "true" noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job that uses distinct property only on one task group. job := mock.Job() job.TaskGroups = append(job.TaskGroups, job.TaskGroups[0].Copy()) job.TaskGroups[0].Count = 1 job.TaskGroups[0].Constraints = append(job.TaskGroups[0].Constraints, &structs.Constraint{ Operand: structs.ConstraintDistinctProperty, LTarget: "${meta.ssd}", }) job.TaskGroups[1].Name = "tg2" job.TaskGroups[1].Count = 2 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan doesn't have annotations. if plan.Annotations != nil { t.Fatalf("expected no annotations") } // Ensure the eval hasn't spawned blocked eval if len(h.CreateEvals) != 0 { t.Fatalf("bad: %#v", h.CreateEvals[0]) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 3 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed if len(out) != 3 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobRegister_DistinctProperty_TaskGroup_Incr(t *testing.T) { h := NewHarness(t) assert := assert.New(t) // Create a job that uses distinct property over the node-id job := mock.Job() job.TaskGroups[0].Count = 3 job.TaskGroups[0].Constraints = append(job.TaskGroups[0].Constraints, &structs.Constraint{ Operand: structs.ConstraintDistinctProperty, LTarget: "${node.unique.id}", }) assert.Nil(h.State.UpsertJob(h.NextIndex(), job), "UpsertJob") // Create some nodes var nodes []*structs.Node for i := 0; i < 6; i++ { node := mock.Node() nodes = append(nodes, node) assert.Nil(h.State.UpsertNode(h.NextIndex(), node), "UpsertNode") } // Create some allocations var allocs []*structs.Allocation for i := 0; i < 3; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } assert.Nil(h.State.UpsertAllocs(h.NextIndex(), allocs), "UpsertAllocs") // Update the count job2 := job.Copy() job2.TaskGroups[0].Count = 6 assert.Nil(h.State.UpsertJob(h.NextIndex(), job2), "UpsertJob") // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation assert.Nil(h.Process(NewServiceScheduler, eval), "Process") // Ensure a single plan assert.Len(h.Plans, 1, "Number of plans") plan := h.Plans[0] // Ensure the plan doesn't have annotations. assert.Nil(plan.Annotations, "Plan.Annotations") // Ensure the eval hasn't spawned blocked eval assert.Len(h.CreateEvals, 0, "Created Evals") // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } assert.Len(planned, 6, "Planned Allocations") // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) assert.Nil(err, "AllocsByJob") // Ensure all allocations placed assert.Len(out, 6, "Placed Allocations") h.AssertEvalStatus(t, structs.EvalStatusComplete) } // Test job registration with spread configured func TestServiceSched_Spread(t *testing.T) { assert := assert.New(t) start := uint8(100) step := uint8(10) for i := 0; i < 10; i++ { name := fmt.Sprintf("%d%% in dc1", start) t.Run(name, func(t *testing.T) { h := NewHarness(t) remaining := uint8(100 - start) // Create a job that uses spread over data center job := mock.Job() job.Datacenters = []string{"dc1", "dc2"} job.TaskGroups[0].Count = 10 job.TaskGroups[0].Spreads = append(job.TaskGroups[0].Spreads, &structs.Spread{ Attribute: "${node.datacenter}", Weight: 100, SpreadTarget: []*structs.SpreadTarget{ { Value: "dc1", Percent: start, }, { Value: "dc2", Percent: remaining, }, }, }) assert.Nil(h.State.UpsertJob(h.NextIndex(), job), "UpsertJob") // Create some nodes, half in dc2 var nodes []*structs.Node nodeMap := make(map[string]*structs.Node) for i := 0; i < 10; i++ { node := mock.Node() if i%2 == 0 { node.Datacenter = "dc2" } nodes = append(nodes, node) assert.Nil(h.State.UpsertNode(h.NextIndex(), node), "UpsertNode") nodeMap[node.ID] = node } // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation assert.Nil(h.Process(NewServiceScheduler, eval), "Process") // Ensure a single plan assert.Len(h.Plans, 1, "Number of plans") plan := h.Plans[0] // Ensure the plan doesn't have annotations. assert.Nil(plan.Annotations, "Plan.Annotations") // Ensure the eval hasn't spawned blocked eval assert.Len(h.CreateEvals, 0, "Created Evals") // Ensure the plan allocated var planned []*structs.Allocation dcAllocsMap := make(map[string]int) for nodeId, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) dc := nodeMap[nodeId].Datacenter c := dcAllocsMap[dc] c += len(allocList) dcAllocsMap[dc] = c } assert.Len(planned, 10, "Planned Allocations") expectedCounts := make(map[string]int) expectedCounts["dc1"] = 10 - i if i > 0 { expectedCounts["dc2"] = i } require.Equal(t, expectedCounts, dcAllocsMap) h.AssertEvalStatus(t, structs.EvalStatusComplete) }) start = start - step } } // Test job registration with even spread across dc func TestServiceSched_EvenSpread(t *testing.T) { assert := assert.New(t) h := NewHarness(t) // Create a job that uses even spread over data center job := mock.Job() job.Datacenters = []string{"dc1", "dc2"} job.TaskGroups[0].Count = 10 job.TaskGroups[0].Spreads = append(job.TaskGroups[0].Spreads, &structs.Spread{ Attribute: "${node.datacenter}", Weight: 100, }) assert.Nil(h.State.UpsertJob(h.NextIndex(), job), "UpsertJob") // Create some nodes, half in dc2 var nodes []*structs.Node nodeMap := make(map[string]*structs.Node) for i := 0; i < 10; i++ { node := mock.Node() if i%2 == 0 { node.Datacenter = "dc2" } nodes = append(nodes, node) assert.Nil(h.State.UpsertNode(h.NextIndex(), node), "UpsertNode") nodeMap[node.ID] = node } // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation assert.Nil(h.Process(NewServiceScheduler, eval), "Process") // Ensure a single plan assert.Len(h.Plans, 1, "Number of plans") plan := h.Plans[0] // Ensure the plan doesn't have annotations. assert.Nil(plan.Annotations, "Plan.Annotations") // Ensure the eval hasn't spawned blocked eval assert.Len(h.CreateEvals, 0, "Created Evals") // Ensure the plan allocated var planned []*structs.Allocation dcAllocsMap := make(map[string]int) for nodeId, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) dc := nodeMap[nodeId].Datacenter c := dcAllocsMap[dc] c += len(allocList) dcAllocsMap[dc] = c } assert.Len(planned, 10, "Planned Allocations") // Expect even split allocs across datacenter expectedCounts := make(map[string]int) expectedCounts["dc1"] = 5 expectedCounts["dc2"] = 5 require.Equal(t, expectedCounts, dcAllocsMap) h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobRegister_Annotate(t *testing.T) { h := NewHarness(t) // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, AnnotatePlan: true, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 10 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed if len(out) != 10 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) // Ensure the plan had annotations. if plan.Annotations == nil { t.Fatalf("expected annotations") } desiredTGs := plan.Annotations.DesiredTGUpdates if l := len(desiredTGs); l != 1 { t.Fatalf("incorrect number of task groups; got %v; want %v", l, 1) } desiredChanges, ok := desiredTGs["web"] if !ok { t.Fatalf("expected task group web to have desired changes") } expected := &structs.DesiredUpdates{Place: 10} if !reflect.DeepEqual(desiredChanges, expected) { t.Fatalf("Unexpected desired updates; got %#v; want %#v", desiredChanges, expected) } } func TestServiceSched_JobRegister_CountZero(t *testing.T) { h := NewHarness(t) // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job and set the task group count to zero. job := mock.Job() job.TaskGroups[0].Count = 0 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure there was no plan if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure no allocations placed if len(out) != 0 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobRegister_AllocFail(t *testing.T) { h := NewHarness(t) // Create NO nodes // Create a job job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure no plan if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans) } // Ensure there is a follow up eval. if len(h.CreateEvals) != 1 || h.CreateEvals[0].Status != structs.EvalStatusBlocked { t.Fatalf("bad: %#v", h.CreateEvals) } if len(h.Evals) != 1 { t.Fatalf("incorrect number of updated eval: %#v", h.Evals) } outEval := h.Evals[0] // Ensure the eval has its spawned blocked eval if outEval.BlockedEval != h.CreateEvals[0].ID { t.Fatalf("bad: %#v", outEval) } // Ensure the plan failed to alloc if outEval == nil || len(outEval.FailedTGAllocs) != 1 { t.Fatalf("bad: %#v", outEval) } metrics, ok := outEval.FailedTGAllocs[job.TaskGroups[0].Name] if !ok { t.Fatalf("no failed metrics: %#v", outEval.FailedTGAllocs) } // Check the coalesced failures if metrics.CoalescedFailures != 9 { t.Fatalf("bad: %#v", metrics) } // Check the available nodes if count, ok := metrics.NodesAvailable["dc1"]; !ok || count != 0 { t.Fatalf("bad: %#v", metrics) } // Check queued allocations queued := outEval.QueuedAllocations["web"] if queued != 10 { t.Fatalf("expected queued: %v, actual: %v", 10, queued) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobRegister_CreateBlockedEval(t *testing.T) { h := NewHarness(t) // Create a full node node := mock.Node() node.ReservedResources = &structs.NodeReservedResources{ Cpu: structs.NodeReservedCpuResources{ CpuShares: node.NodeResources.Cpu.CpuShares, }, } node.ComputeClass() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create an ineligible node node2 := mock.Node() node2.Attributes["kernel.name"] = "windows" node2.ComputeClass() noErr(t, h.State.UpsertNode(h.NextIndex(), node2)) // Create a jobs job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure no plan if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans) } // Ensure the plan has created a follow up eval. if len(h.CreateEvals) != 1 { t.Fatalf("bad: %#v", h.CreateEvals) } created := h.CreateEvals[0] if created.Status != structs.EvalStatusBlocked { t.Fatalf("bad: %#v", created) } classes := created.ClassEligibility if len(classes) != 2 || !classes[node.ComputedClass] || classes[node2.ComputedClass] { t.Fatalf("bad: %#v", classes) } if created.EscapedComputedClass { t.Fatalf("bad: %#v", created) } // Ensure there is a follow up eval. if len(h.CreateEvals) != 1 || h.CreateEvals[0].Status != structs.EvalStatusBlocked { t.Fatalf("bad: %#v", h.CreateEvals) } if len(h.Evals) != 1 { t.Fatalf("incorrect number of updated eval: %#v", h.Evals) } outEval := h.Evals[0] // Ensure the plan failed to alloc if outEval == nil || len(outEval.FailedTGAllocs) != 1 { t.Fatalf("bad: %#v", outEval) } metrics, ok := outEval.FailedTGAllocs[job.TaskGroups[0].Name] if !ok { t.Fatalf("no failed metrics: %#v", outEval.FailedTGAllocs) } // Check the coalesced failures if metrics.CoalescedFailures != 9 { t.Fatalf("bad: %#v", metrics) } // Check the available nodes if count, ok := metrics.NodesAvailable["dc1"]; !ok || count != 2 { t.Fatalf("bad: %#v", metrics) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobRegister_FeasibleAndInfeasibleTG(t *testing.T) { h := NewHarness(t) // Create one node node := mock.Node() node.NodeClass = "class_0" noErr(t, node.ComputeClass()) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a job that constrains on a node class job := mock.Job() job.TaskGroups[0].Count = 2 job.TaskGroups[0].Constraints = append(job.Constraints, &structs.Constraint{ LTarget: "${node.class}", RTarget: "class_0", Operand: "=", }, ) tg2 := job.TaskGroups[0].Copy() tg2.Name = "web2" tg2.Constraints[1].RTarget = "class_1" job.TaskGroups = append(job.TaskGroups, tg2) noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 2 { t.Fatalf("bad: %#v", plan) } // Ensure two allocations placed ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) if len(out) != 2 { t.Fatalf("bad: %#v", out) } if len(h.Evals) != 1 { t.Fatalf("incorrect number of updated eval: %#v", h.Evals) } outEval := h.Evals[0] // Ensure the eval has its spawned blocked eval if outEval.BlockedEval != h.CreateEvals[0].ID { t.Fatalf("bad: %#v", outEval) } // Ensure the plan failed to alloc one tg if outEval == nil || len(outEval.FailedTGAllocs) != 1 { t.Fatalf("bad: %#v", outEval) } metrics, ok := outEval.FailedTGAllocs[tg2.Name] if !ok { t.Fatalf("no failed metrics: %#v", outEval.FailedTGAllocs) } // Check the coalesced failures if metrics.CoalescedFailures != tg2.Count-1 { t.Fatalf("bad: %#v", metrics) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } // This test just ensures the scheduler handles the eval type to avoid // regressions. func TestServiceSched_EvaluateMaxPlanEval(t *testing.T) { h := NewHarness(t) // Create a job and set the task group count to zero. job := mock.Job() job.TaskGroups[0].Count = 0 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock blocked evaluation eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Status: structs.EvalStatusBlocked, Priority: job.Priority, TriggeredBy: structs.EvalTriggerMaxPlans, JobID: job.ID, } // Insert it into the state store noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure there was no plan if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_Plan_Partial_Progress(t *testing.T) { h := NewHarness(t) // Create a node node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a job with a high resource ask so that all the allocations can't // be placed on a single node. job := mock.Job() job.TaskGroups[0].Count = 3 job.TaskGroups[0].Tasks[0].Resources.CPU = 3600 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan doesn't have annotations. if plan.Annotations != nil { t.Fatalf("expected no annotations") } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 1 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure only one allocations placed if len(out) != 1 { t.Fatalf("bad: %#v", out) } queued := h.Evals[0].QueuedAllocations["web"] if queued != 2 { t.Fatalf("expected: %v, actual: %v", 2, queued) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_EvaluateBlockedEval(t *testing.T) { h := NewHarness(t) // Create a job job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock blocked evaluation eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Status: structs.EvalStatusBlocked, Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, } // Insert it into the state store noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure there was no plan if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans) } // Ensure that the eval was reblocked if len(h.ReblockEvals) != 1 { t.Fatalf("bad: %#v", h.ReblockEvals) } if h.ReblockEvals[0].ID != eval.ID { t.Fatalf("expect same eval to be reblocked; got %q; want %q", h.ReblockEvals[0].ID, eval.ID) } // Ensure the eval status was not updated if len(h.Evals) != 0 { t.Fatalf("Existing eval should not have status set") } } func TestServiceSched_EvaluateBlockedEval_Finished(t *testing.T) { h := NewHarness(t) // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job and set the task group count to zero. job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock blocked evaluation eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Status: structs.EvalStatusBlocked, Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, } // Insert it into the state store noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan doesn't have annotations. if plan.Annotations != nil { t.Fatalf("expected no annotations") } // Ensure the eval has no spawned blocked eval if len(h.Evals) != 1 { t.Fatalf("bad: %#v", h.Evals) if h.Evals[0].BlockedEval != "" { t.Fatalf("bad: %#v", h.Evals[0]) } } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 10 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed if len(out) != 10 { t.Fatalf("bad: %#v", out) } // Ensure the eval was not reblocked if len(h.ReblockEvals) != 0 { t.Fatalf("Existing eval should not have been reblocked as it placed all allocations") } h.AssertEvalStatus(t, structs.EvalStatusComplete) // Ensure queued allocations is zero queued := h.Evals[0].QueuedAllocations["web"] if queued != 0 { t.Fatalf("expected queued: %v, actual: %v", 0, queued) } } func TestServiceSched_JobModify(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Add a few terminal status allocations, these should be ignored var terminal []*structs.Allocation for i := 0; i < 5; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) alloc.DesiredStatus = structs.AllocDesiredStatusStop terminal = append(terminal, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), terminal)) // Update the job job2 := mock.Job() job2.ID = job.ID // Update the task, such that it cannot be done in-place job2.TaskGroups[0].Tasks[0].Config["command"] = "/bin/other" noErr(t, h.State.UpsertJob(h.NextIndex(), job2)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted all allocs var update []*structs.Allocation for _, updateList := range plan.NodeUpdate { update = append(update, updateList...) } if len(update) != len(allocs) { t.Fatalf("bad: %#v", plan) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 10 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed out, _ = structs.FilterTerminalAllocs(out) if len(out) != 10 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } // Have a single node and submit a job. Increment the count such that all fit // on the node but the node doesn't have enough resources to fit the new count + // 1. This tests that we properly discount the resources of existing allocs. func TestServiceSched_JobModify_IncrCount_NodeLimit(t *testing.T) { h := NewHarness(t) // Create one node node := mock.Node() node.NodeResources.Cpu.CpuShares = 1000 noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Generate a fake job with one allocation job := mock.Job() job.TaskGroups[0].Tasks[0].Resources.CPU = 256 job2 := job.Copy() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[0]" alloc.AllocatedResources.Tasks["web"].Cpu.CpuShares = 256 allocs = append(allocs, alloc) noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Update the job to count 3 job2.TaskGroups[0].Count = 3 noErr(t, h.State.UpsertJob(h.NextIndex(), job2)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan didn't evicted the alloc var update []*structs.Allocation for _, updateList := range plan.NodeUpdate { update = append(update, updateList...) } if len(update) != 0 { t.Fatalf("bad: %#v", plan) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 3 { t.Fatalf("bad: %#v", plan) } // Ensure the plan had no failures if len(h.Evals) != 1 { t.Fatalf("incorrect number of updated eval: %#v", h.Evals) } outEval := h.Evals[0] if outEval == nil || len(outEval.FailedTGAllocs) != 0 { t.Fatalf("bad: %#v", outEval) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed out, _ = structs.FilterTerminalAllocs(out) if len(out) != 3 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobModify_CountZero(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = structs.AllocName(alloc.JobID, alloc.TaskGroup, uint(i)) allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Add a few terminal status allocations, these should be ignored var terminal []*structs.Allocation for i := 0; i < 5; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = structs.AllocName(alloc.JobID, alloc.TaskGroup, uint(i)) alloc.DesiredStatus = structs.AllocDesiredStatusStop terminal = append(terminal, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), terminal)) // Update the job to be count zero job2 := mock.Job() job2.ID = job.ID job2.TaskGroups[0].Count = 0 noErr(t, h.State.UpsertJob(h.NextIndex(), job2)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted all allocs var update []*structs.Allocation for _, updateList := range plan.NodeUpdate { update = append(update, updateList...) } if len(update) != len(allocs) { t.Fatalf("bad: %#v", plan) } // Ensure the plan didn't allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 0 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed out, _ = structs.FilterTerminalAllocs(out) if len(out) != 0 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobModify_Rolling(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Update the job job2 := mock.Job() job2.ID = job.ID desiredUpdates := 4 job2.TaskGroups[0].Update = &structs.UpdateStrategy{ MaxParallel: desiredUpdates, HealthCheck: structs.UpdateStrategyHealthCheck_Checks, MinHealthyTime: 10 * time.Second, HealthyDeadline: 10 * time.Minute, } // Update the task, such that it cannot be done in-place job2.TaskGroups[0].Tasks[0].Config["command"] = "/bin/other" noErr(t, h.State.UpsertJob(h.NextIndex(), job2)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted only MaxParallel var update []*structs.Allocation for _, updateList := range plan.NodeUpdate { update = append(update, updateList...) } if len(update) != desiredUpdates { t.Fatalf("bad: got %d; want %d: %#v", len(update), desiredUpdates, plan) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != desiredUpdates { t.Fatalf("bad: %#v", plan) } h.AssertEvalStatus(t, structs.EvalStatusComplete) // Check that the deployment id is attached to the eval if h.Evals[0].DeploymentID == "" { t.Fatalf("Eval not annotated with deployment id") } // Ensure a deployment was created if plan.Deployment == nil { t.Fatalf("bad: %#v", plan) } state, ok := plan.Deployment.TaskGroups[job.TaskGroups[0].Name] if !ok { t.Fatalf("bad: %#v", plan) } if state.DesiredTotal != 10 && state.DesiredCanaries != 0 { t.Fatalf("bad: %#v", state) } } // This tests that the old allocation is stopped before placing. // It is critical to test that the updated job attempts to place more // allocations as this allows us to assert that destructive changes are done // first. func TestServiceSched_JobModify_Rolling_FullNode(t *testing.T) { h := NewHarness(t) // Create a node and clear the reserved resources node := mock.Node() node.ReservedResources = nil noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a resource ask that is the same as the resources available on the // node cpu := node.NodeResources.Cpu.CpuShares mem := node.NodeResources.Memory.MemoryMB request := &structs.Resources{ CPU: int(cpu), MemoryMB: int(mem), } allocated := &structs.AllocatedResources{ Tasks: map[string]*structs.AllocatedTaskResources{ "web": { Cpu: structs.AllocatedCpuResources{ CpuShares: cpu, }, Memory: structs.AllocatedMemoryResources{ MemoryMB: mem, }, }, }, } // Generate a fake job with one alloc that consumes the whole node job := mock.Job() job.TaskGroups[0].Count = 1 job.TaskGroups[0].Tasks[0].Resources = request noErr(t, h.State.UpsertJob(h.NextIndex(), job)) alloc := mock.Alloc() alloc.AllocatedResources = allocated alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[0]" noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{alloc})) // Update the job to place more versions of the task group, drop the count // and force destructive updates job2 := job.Copy() job2.TaskGroups[0].Count = 5 job2.TaskGroups[0].Update = &structs.UpdateStrategy{ MaxParallel: 5, HealthCheck: structs.UpdateStrategyHealthCheck_Checks, MinHealthyTime: 10 * time.Second, HealthyDeadline: 10 * time.Minute, } job2.TaskGroups[0].Tasks[0].Resources = mock.Job().TaskGroups[0].Tasks[0].Resources // Update the task, such that it cannot be done in-place job2.TaskGroups[0].Tasks[0].Config["command"] = "/bin/other" noErr(t, h.State.UpsertJob(h.NextIndex(), job2)) eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted only MaxParallel var update []*structs.Allocation for _, updateList := range plan.NodeUpdate { update = append(update, updateList...) } if len(update) != 1 { t.Fatalf("bad: got %d; want %d: %#v", len(update), 1, plan) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 5 { t.Fatalf("bad: %#v", plan) } h.AssertEvalStatus(t, structs.EvalStatusComplete) // Check that the deployment id is attached to the eval if h.Evals[0].DeploymentID == "" { t.Fatalf("Eval not annotated with deployment id") } // Ensure a deployment was created if plan.Deployment == nil { t.Fatalf("bad: %#v", plan) } state, ok := plan.Deployment.TaskGroups[job.TaskGroups[0].Name] if !ok { t.Fatalf("bad: %#v", plan) } if state.DesiredTotal != 5 || state.DesiredCanaries != 0 { t.Fatalf("bad: %#v", state) } } func TestServiceSched_JobModify_Canaries(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Update the job job2 := mock.Job() job2.ID = job.ID desiredUpdates := 2 job2.TaskGroups[0].Update = &structs.UpdateStrategy{ MaxParallel: desiredUpdates, Canary: desiredUpdates, HealthCheck: structs.UpdateStrategyHealthCheck_Checks, MinHealthyTime: 10 * time.Second, HealthyDeadline: 10 * time.Minute, } // Update the task, such that it cannot be done in-place job2.TaskGroups[0].Tasks[0].Config["command"] = "/bin/other" noErr(t, h.State.UpsertJob(h.NextIndex(), job2)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted nothing var update []*structs.Allocation for _, updateList := range plan.NodeUpdate { update = append(update, updateList...) } if len(update) != 0 { t.Fatalf("bad: got %d; want %d: %#v", len(update), 0, plan) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != desiredUpdates { t.Fatalf("bad: %#v", plan) } for _, canary := range planned { if canary.DeploymentStatus == nil || !canary.DeploymentStatus.Canary { t.Fatalf("expected canary field to be set on canary alloc %q", canary.ID) } } h.AssertEvalStatus(t, structs.EvalStatusComplete) // Check that the deployment id is attached to the eval if h.Evals[0].DeploymentID == "" { t.Fatalf("Eval not annotated with deployment id") } // Ensure a deployment was created if plan.Deployment == nil { t.Fatalf("bad: %#v", plan) } state, ok := plan.Deployment.TaskGroups[job.TaskGroups[0].Name] if !ok { t.Fatalf("bad: %#v", plan) } if state.DesiredTotal != 10 && state.DesiredCanaries != desiredUpdates { t.Fatalf("bad: %#v", state) } // Assert the canaries were added to the placed list if len(state.PlacedCanaries) != desiredUpdates { t.Fatalf("bad: %#v", state) } } func TestServiceSched_JobModify_InPlace(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations and create an older deployment job := mock.Job() d := mock.Deployment() d.JobID = job.ID noErr(t, h.State.UpsertJob(h.NextIndex(), job)) noErr(t, h.State.UpsertDeployment(h.NextIndex(), d)) // Create allocs that are part of the old deployment var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) alloc.DeploymentID = d.ID alloc.DeploymentStatus = &structs.AllocDeploymentStatus{Healthy: helper.BoolToPtr(true)} allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Update the job job2 := mock.Job() job2.ID = job.ID desiredUpdates := 4 job2.TaskGroups[0].Update = &structs.UpdateStrategy{ MaxParallel: desiredUpdates, HealthCheck: structs.UpdateStrategyHealthCheck_Checks, MinHealthyTime: 10 * time.Second, HealthyDeadline: 10 * time.Minute, } noErr(t, h.State.UpsertJob(h.NextIndex(), job2)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan did not evict any allocs var update []*structs.Allocation for _, updateList := range plan.NodeUpdate { update = append(update, updateList...) } if len(update) != 0 { t.Fatalf("bad: %#v", plan) } // Ensure the plan updated the existing allocs var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 10 { t.Fatalf("bad: %#v", plan) } for _, p := range planned { if p.Job != job2 { t.Fatalf("should update job") } } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed if len(out) != 10 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) // Verify the network did not change rp := structs.Port{Label: "admin", Value: 5000} for _, alloc := range out { for _, resources := range alloc.TaskResources { if resources.Networks[0].ReservedPorts[0] != rp { t.Fatalf("bad: %#v", alloc) } } } // Verify the deployment id was changed and health cleared for _, alloc := range out { if alloc.DeploymentID == d.ID { t.Fatalf("bad: deployment id not cleared") } else if alloc.DeploymentStatus != nil { t.Fatalf("bad: deployment status not cleared") } } } func TestServiceSched_JobModify_DistinctProperty(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() node.Meta["rack"] = fmt.Sprintf("rack%d", i) nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job that uses distinct property and has count higher than what is // possible. job := mock.Job() job.TaskGroups[0].Count = 11 job.Constraints = append(job.Constraints, &structs.Constraint{ Operand: structs.ConstraintDistinctProperty, LTarget: "${meta.rack}", }) noErr(t, h.State.UpsertJob(h.NextIndex(), job)) oldJob := job.Copy() oldJob.JobModifyIndex -= 1 oldJob.TaskGroups[0].Count = 4 // Place 4 of 10 var allocs []*structs.Allocation for i := 0; i < 4; i++ { alloc := mock.Alloc() alloc.Job = oldJob alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan doesn't have annotations. if plan.Annotations != nil { t.Fatalf("expected no annotations") } // Ensure the eval hasn't spawned blocked eval if len(h.CreateEvals) != 1 { t.Fatalf("bad: %#v", h.CreateEvals) } // Ensure the plan failed to alloc outEval := h.Evals[0] if len(outEval.FailedTGAllocs) != 1 { t.Fatalf("bad: %+v", outEval) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 10 { t.Fatalf("bad: %#v", planned) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed if len(out) != 10 { t.Fatalf("bad: %#v", out) } // Ensure different node was used per. used := make(map[string]struct{}) for _, alloc := range out { if _, ok := used[alloc.NodeID]; ok { t.Fatalf("Node collision %v", alloc.NodeID) } used[alloc.NodeID] = struct{}{} } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobDeregister_Purged(t *testing.T) { h := NewHarness(t) // Generate a fake job with allocations job := mock.Job() var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID allocs = append(allocs, alloc) } for _, alloc := range allocs { h.State.UpsertJobSummary(h.NextIndex(), mock.JobSummary(alloc.JobID)) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation to deregister the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobDeregister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted all nodes if len(plan.NodeUpdate["12345678-abcd-efab-cdef-123456789abc"]) != len(allocs) { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure that the job field on the allocation is still populated for _, alloc := range out { if alloc.Job == nil { t.Fatalf("bad: %#v", alloc) } } // Ensure no remaining allocations out, _ = structs.FilterTerminalAllocs(out) if len(out) != 0 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_JobDeregister_Stopped(t *testing.T) { h := NewHarness(t) require := require.New(t) // Generate a fake job with allocations job := mock.Job() job.Stop = true require.NoError(h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID allocs = append(allocs, alloc) } require.NoError(h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a summary where the queued allocs are set as we want to assert // they get zeroed out. summary := mock.JobSummary(job.ID) web := summary.Summary["web"] web.Queued = 2 require.NoError(h.State.UpsertJobSummary(h.NextIndex(), summary)) // Create a mock evaluation to deregister the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobDeregister, JobID: job.ID, Status: structs.EvalStatusPending, } require.NoError(h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation require.NoError(h.Process(NewServiceScheduler, eval)) // Ensure a single plan require.Len(h.Plans, 1) plan := h.Plans[0] // Ensure the plan evicted all nodes require.Len(plan.NodeUpdate["12345678-abcd-efab-cdef-123456789abc"], len(allocs)) // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) require.NoError(err) // Ensure that the job field on the allocation is still populated for _, alloc := range out { require.NotNil(alloc.Job) } // Ensure no remaining allocations out, _ = structs.FilterTerminalAllocs(out) require.Empty(out) // Assert the job summary is cleared out sout, err := h.State.JobSummaryByID(ws, job.Namespace, job.ID) require.NoError(err) require.NotNil(sout) require.Contains(sout.Summary, "web") webOut := sout.Summary["web"] require.Zero(webOut.Queued) h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_NodeDown(t *testing.T) { h := NewHarness(t) // Register a node node := mock.Node() node.Status = structs.NodeStatusDown noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Generate a fake job with allocations and an update policy. job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } // Cover each terminal case and ensure it doesn't change to lost allocs[7].DesiredStatus = structs.AllocDesiredStatusRun allocs[7].ClientStatus = structs.AllocClientStatusLost allocs[8].DesiredStatus = structs.AllocDesiredStatusRun allocs[8].ClientStatus = structs.AllocClientStatusFailed allocs[9].DesiredStatus = structs.AllocDesiredStatusRun allocs[9].ClientStatus = structs.AllocClientStatusComplete // Mark some allocs as running for i := 0; i < 4; i++ { out := allocs[i] out.ClientStatus = structs.AllocClientStatusRunning } // Mark appropriate allocs for migration for i := 0; i < 7; i++ { out := allocs[i] out.DesiredTransition.Migrate = helper.BoolToPtr(true) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, NodeID: node.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Test the scheduler marked all non-terminal allocations as lost if len(plan.NodeUpdate[node.ID]) != 7 { t.Fatalf("bad: %#v", plan) } for _, out := range plan.NodeUpdate[node.ID] { if out.ClientStatus != structs.AllocClientStatusLost && out.DesiredStatus != structs.AllocDesiredStatusStop { t.Fatalf("bad alloc: %#v", out) } } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_NodeUpdate(t *testing.T) { h := NewHarness(t) // Register a node node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Generate a fake job with allocations and an update policy. job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Mark some allocs as running ws := memdb.NewWatchSet() for i := 0; i < 4; i++ { out, _ := h.State.AllocByID(ws, allocs[i].ID) out.ClientStatus = structs.AllocClientStatusRunning noErr(t, h.State.UpdateAllocsFromClient(h.NextIndex(), []*structs.Allocation{out})) } // Create a mock evaluation which won't trigger any new placements eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, NodeID: node.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } if val, ok := h.Evals[0].QueuedAllocations["web"]; !ok || val != 0 { t.Fatalf("bad queued allocations: %v", h.Evals[0].QueuedAllocations) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_NodeDrain(t *testing.T) { h := NewHarness(t) // Register a draining node node := mock.Node() node.Drain = true noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations and an update policy. job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) alloc.DesiredTransition.Migrate = helper.BoolToPtr(true) allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, NodeID: node.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted all allocs if len(plan.NodeUpdate[node.ID]) != len(allocs) { t.Fatalf("bad: %#v", plan) } // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 10 { t.Fatalf("bad: %#v", plan) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure all allocations placed out, _ = structs.FilterTerminalAllocs(out) if len(out) != 10 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_NodeDrain_Down(t *testing.T) { h := NewHarness(t) // Register a draining node node := mock.Node() node.Drain = true node.Status = structs.NodeStatusDown noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Generate a fake job with allocations job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Set the desired state of the allocs to stop var stop []*structs.Allocation for i := 0; i < 6; i++ { newAlloc := allocs[i].Copy() newAlloc.ClientStatus = structs.AllocDesiredStatusStop newAlloc.DesiredTransition.Migrate = helper.BoolToPtr(true) stop = append(stop, newAlloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), stop)) // Mark some of the allocations as running var running []*structs.Allocation for i := 4; i < 6; i++ { newAlloc := stop[i].Copy() newAlloc.ClientStatus = structs.AllocClientStatusRunning running = append(running, newAlloc) } noErr(t, h.State.UpdateAllocsFromClient(h.NextIndex(), running)) // Mark some of the allocations as complete var complete []*structs.Allocation for i := 6; i < 10; i++ { newAlloc := allocs[i].Copy() newAlloc.TaskStates = make(map[string]*structs.TaskState) newAlloc.TaskStates["web"] = &structs.TaskState{ State: structs.TaskStateDead, Events: []*structs.TaskEvent{ { Type: structs.TaskTerminated, ExitCode: 0, }, }, } newAlloc.ClientStatus = structs.AllocClientStatusComplete complete = append(complete, newAlloc) } noErr(t, h.State.UpdateAllocsFromClient(h.NextIndex(), complete)) // Create a mock evaluation to deal with the node update eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, NodeID: node.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted non terminal allocs if len(plan.NodeUpdate[node.ID]) != 6 { t.Fatalf("bad: %#v", plan) } // Ensure that all the allocations which were in running or pending state // has been marked as lost var lostAllocs []string for _, alloc := range plan.NodeUpdate[node.ID] { lostAllocs = append(lostAllocs, alloc.ID) } sort.Strings(lostAllocs) var expectedLostAllocs []string for i := 0; i < 6; i++ { expectedLostAllocs = append(expectedLostAllocs, allocs[i].ID) } sort.Strings(expectedLostAllocs) if !reflect.DeepEqual(expectedLostAllocs, lostAllocs) { t.Fatalf("expected: %v, actual: %v", expectedLostAllocs, lostAllocs) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestServiceSched_NodeDrain_Queued_Allocations(t *testing.T) { h := NewHarness(t) // Register a draining node node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Generate a fake job with allocations and an update policy. job := mock.Job() job.TaskGroups[0].Count = 2 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 2; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) alloc.DesiredTransition.Migrate = helper.BoolToPtr(true) allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) node.Drain = true noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, NodeID: node.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } queued := h.Evals[0].QueuedAllocations["web"] if queued != 2 { t.Fatalf("expected: %v, actual: %v", 2, queued) } } func TestServiceSched_RetryLimit(t *testing.T) { h := NewHarness(t) h.Planner = &RejectPlan{h} // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure multiple plans if len(h.Plans) == 0 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure no allocations placed if len(out) != 0 { t.Fatalf("bad: %#v", out) } // Should hit the retry limit h.AssertEvalStatus(t, structs.EvalStatusFailed) } func TestServiceSched_Reschedule_OnceNow(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations and an update policy. job := mock.Job() job.TaskGroups[0].Count = 2 job.TaskGroups[0].ReschedulePolicy = &structs.ReschedulePolicy{ Attempts: 1, Interval: 15 * time.Minute, Delay: 5 * time.Second, MaxDelay: 1 * time.Minute, DelayFunction: "constant", } tgName := job.TaskGroups[0].Name now := time.Now() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 2; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } // Mark one of the allocations as failed allocs[1].ClientStatus = structs.AllocClientStatusFailed allocs[1].TaskStates = map[string]*structs.TaskState{tgName: {State: "dead", StartedAt: now.Add(-1 * time.Hour), FinishedAt: now.Add(-10 * time.Second)}} failedAllocID := allocs[1].ID successAllocID := allocs[0].ID noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure multiple plans if len(h.Plans) == 0 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Verify that one new allocation got created with its restart tracker info assert := assert.New(t) assert.Equal(3, len(out)) var newAlloc *structs.Allocation for _, alloc := range out { if alloc.ID != successAllocID && alloc.ID != failedAllocID { newAlloc = alloc } } assert.Equal(failedAllocID, newAlloc.PreviousAllocation) assert.Equal(1, len(newAlloc.RescheduleTracker.Events)) assert.Equal(failedAllocID, newAlloc.RescheduleTracker.Events[0].PrevAllocID) // Mark this alloc as failed again, should not get rescheduled newAlloc.ClientStatus = structs.AllocClientStatusFailed noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{newAlloc})) // Create another mock evaluation eval = &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err = h.Process(NewServiceScheduler, eval) assert.Nil(err) // Verify no new allocs were created this time out, err = h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) assert.Equal(3, len(out)) } // Tests that alloc reschedulable at a future time creates a follow up eval func TestServiceSched_Reschedule_Later(t *testing.T) { h := NewHarness(t) require := require.New(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations and an update policy. job := mock.Job() job.TaskGroups[0].Count = 2 delayDuration := 15 * time.Second job.TaskGroups[0].ReschedulePolicy = &structs.ReschedulePolicy{ Attempts: 1, Interval: 15 * time.Minute, Delay: delayDuration, MaxDelay: 1 * time.Minute, DelayFunction: "constant", } tgName := job.TaskGroups[0].Name now := time.Now() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 2; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } // Mark one of the allocations as failed allocs[1].ClientStatus = structs.AllocClientStatusFailed allocs[1].TaskStates = map[string]*structs.TaskState{tgName: {State: "dead", StartedAt: now.Add(-1 * time.Hour), FinishedAt: now}} failedAllocID := allocs[1].ID noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure multiple plans if len(h.Plans) == 0 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Verify no new allocs were created require.Equal(2, len(out)) // Verify follow up eval was created for the failed alloc alloc, err := h.State.AllocByID(ws, failedAllocID) require.Nil(err) require.NotEmpty(alloc.FollowupEvalID) // Ensure there is a follow up eval. if len(h.CreateEvals) != 1 || h.CreateEvals[0].Status != structs.EvalStatusPending { t.Fatalf("bad: %#v", h.CreateEvals) } followupEval := h.CreateEvals[0] require.Equal(now.Add(delayDuration), followupEval.WaitUntil) } func TestServiceSched_Reschedule_MultipleNow(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } maxRestartAttempts := 3 // Generate a fake job with allocations and an update policy. job := mock.Job() job.TaskGroups[0].Count = 2 job.TaskGroups[0].ReschedulePolicy = &structs.ReschedulePolicy{ Attempts: maxRestartAttempts, Interval: 30 * time.Minute, Delay: 5 * time.Second, DelayFunction: "constant", } tgName := job.TaskGroups[0].Name now := time.Now() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 2; i++ { alloc := mock.Alloc() alloc.ClientStatus = structs.AllocClientStatusRunning alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } // Mark one of the allocations as failed allocs[1].ClientStatus = structs.AllocClientStatusFailed allocs[1].TaskStates = map[string]*structs.TaskState{tgName: {State: "dead", StartedAt: now.Add(-1 * time.Hour), FinishedAt: now.Add(-10 * time.Second)}} noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) expectedNumAllocs := 3 expectedNumReschedTrackers := 1 failedAllocId := allocs[1].ID failedNodeID := allocs[1].NodeID assert := assert.New(t) for i := 0; i < maxRestartAttempts; i++ { // Process the evaluation err := h.Process(NewServiceScheduler, eval) noErr(t, err) // Ensure multiple plans if len(h.Plans) == 0 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Verify that a new allocation got created with its restart tracker info assert.Equal(expectedNumAllocs, len(out)) // Find the new alloc with ClientStatusPending var pendingAllocs []*structs.Allocation var prevFailedAlloc *structs.Allocation for _, alloc := range out { if alloc.ClientStatus == structs.AllocClientStatusPending { pendingAllocs = append(pendingAllocs, alloc) } if alloc.ID == failedAllocId { prevFailedAlloc = alloc } } assert.Equal(1, len(pendingAllocs)) newAlloc := pendingAllocs[0] assert.Equal(expectedNumReschedTrackers, len(newAlloc.RescheduleTracker.Events)) // Verify the previous NodeID in the most recent reschedule event reschedEvents := newAlloc.RescheduleTracker.Events assert.Equal(failedAllocId, reschedEvents[len(reschedEvents)-1].PrevAllocID) assert.Equal(failedNodeID, reschedEvents[len(reschedEvents)-1].PrevNodeID) // Verify that the next alloc of the failed alloc is the newly rescheduled alloc assert.Equal(newAlloc.ID, prevFailedAlloc.NextAllocation) // Mark this alloc as failed again newAlloc.ClientStatus = structs.AllocClientStatusFailed newAlloc.TaskStates = map[string]*structs.TaskState{tgName: {State: "dead", StartedAt: now.Add(-12 * time.Second), FinishedAt: now.Add(-10 * time.Second)}} failedAllocId = newAlloc.ID failedNodeID = newAlloc.NodeID noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{newAlloc})) // Create another mock evaluation eval = &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) expectedNumAllocs += 1 expectedNumReschedTrackers += 1 } // Process last eval again, should not reschedule err := h.Process(NewServiceScheduler, eval) assert.Nil(err) // Verify no new allocs were created because restart attempts were exhausted ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) assert.Equal(5, len(out)) // 2 original, plus 3 reschedule attempts } // Tests that old reschedule attempts are pruned func TestServiceSched_Reschedule_PruneEvents(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations and an update policy. job := mock.Job() job.TaskGroups[0].Count = 2 job.TaskGroups[0].ReschedulePolicy = &structs.ReschedulePolicy{ DelayFunction: "exponential", MaxDelay: 1 * time.Hour, Delay: 5 * time.Second, Unlimited: true, } noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 2; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) allocs = append(allocs, alloc) } now := time.Now() // Mark allocations as failed with restart info allocs[1].TaskStates = map[string]*structs.TaskState{job.TaskGroups[0].Name: {State: "dead", StartedAt: now.Add(-1 * time.Hour), FinishedAt: now.Add(-15 * time.Minute)}} allocs[1].ClientStatus = structs.AllocClientStatusFailed allocs[1].RescheduleTracker = &structs.RescheduleTracker{ Events: []*structs.RescheduleEvent{ {RescheduleTime: now.Add(-1 * time.Hour).UTC().UnixNano(), PrevAllocID: uuid.Generate(), PrevNodeID: uuid.Generate(), Delay: 5 * time.Second, }, {RescheduleTime: now.Add(-40 * time.Minute).UTC().UnixNano(), PrevAllocID: allocs[0].ID, PrevNodeID: uuid.Generate(), Delay: 10 * time.Second, }, {RescheduleTime: now.Add(-30 * time.Minute).UTC().UnixNano(), PrevAllocID: allocs[0].ID, PrevNodeID: uuid.Generate(), Delay: 20 * time.Second, }, {RescheduleTime: now.Add(-20 * time.Minute).UTC().UnixNano(), PrevAllocID: allocs[0].ID, PrevNodeID: uuid.Generate(), Delay: 40 * time.Second, }, {RescheduleTime: now.Add(-10 * time.Minute).UTC().UnixNano(), PrevAllocID: allocs[0].ID, PrevNodeID: uuid.Generate(), Delay: 80 * time.Second, }, {RescheduleTime: now.Add(-3 * time.Minute).UTC().UnixNano(), PrevAllocID: allocs[0].ID, PrevNodeID: uuid.Generate(), Delay: 160 * time.Second, }, }, } expectedFirstRescheduleEvent := allocs[1].RescheduleTracker.Events[1] expectedDelay := 320 * time.Second failedAllocID := allocs[1].ID successAllocID := allocs[0].ID noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure multiple plans if len(h.Plans) == 0 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Verify that one new allocation got created with its restart tracker info assert := assert.New(t) assert.Equal(3, len(out)) var newAlloc *structs.Allocation for _, alloc := range out { if alloc.ID != successAllocID && alloc.ID != failedAllocID { newAlloc = alloc } } assert.Equal(failedAllocID, newAlloc.PreviousAllocation) // Verify that the new alloc copied the last 5 reschedule attempts assert.Equal(6, len(newAlloc.RescheduleTracker.Events)) assert.Equal(expectedFirstRescheduleEvent, newAlloc.RescheduleTracker.Events[0]) mostRecentRescheduleEvent := newAlloc.RescheduleTracker.Events[5] // Verify that the failed alloc ID is in the most recent reschedule event assert.Equal(failedAllocID, mostRecentRescheduleEvent.PrevAllocID) // Verify that the delay value was captured correctly assert.Equal(expectedDelay, mostRecentRescheduleEvent.Delay) } // Tests that deployments with failed allocs result in placements as long as the // deployment is running. func TestDeployment_FailedAllocs_Reschedule(t *testing.T) { for _, failedDeployment := range []bool{false, true} { t.Run(fmt.Sprintf("Failed Deployment: %v", failedDeployment), func(t *testing.T) { h := NewHarness(t) require := require.New(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations and a reschedule policy. job := mock.Job() job.TaskGroups[0].Count = 2 job.TaskGroups[0].ReschedulePolicy = &structs.ReschedulePolicy{ Attempts: 1, Interval: 15 * time.Minute, } jobIndex := h.NextIndex() require.Nil(h.State.UpsertJob(jobIndex, job)) deployment := mock.Deployment() deployment.JobID = job.ID deployment.JobCreateIndex = jobIndex deployment.JobVersion = job.Version if failedDeployment { deployment.Status = structs.DeploymentStatusFailed } require.Nil(h.State.UpsertDeployment(h.NextIndex(), deployment)) var allocs []*structs.Allocation for i := 0; i < 2; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) alloc.DeploymentID = deployment.ID allocs = append(allocs, alloc) } // Mark one of the allocations as failed in the past allocs[1].ClientStatus = structs.AllocClientStatusFailed allocs[1].TaskStates = map[string]*structs.TaskState{"web": {State: "start", StartedAt: time.Now().Add(-12 * time.Hour), FinishedAt: time.Now().Add(-10 * time.Hour)}} allocs[1].DesiredTransition.Reschedule = helper.BoolToPtr(true) require.Nil(h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: job.ID, Status: structs.EvalStatusPending, } require.Nil(h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation require.Nil(h.Process(NewServiceScheduler, eval)) if failedDeployment { // Verify no plan created require.Len(h.Plans, 0) } else { require.Len(h.Plans, 1) plan := h.Plans[0] // Ensure the plan allocated var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 1 { t.Fatalf("bad: %#v", plan) } } }) } } func TestBatchSched_Run_CompleteAlloc(t *testing.T) { h := NewHarness(t) // Create a node node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a job job := mock.Job() job.Type = structs.JobTypeBatch job.TaskGroups[0].Count = 1 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a complete alloc alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[0]" alloc.ClientStatus = structs.AllocClientStatusComplete noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{alloc})) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure no plan as it should be a no-op if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure no allocations placed if len(out) != 1 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestBatchSched_Run_FailedAlloc(t *testing.T) { h := NewHarness(t) // Create a node node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a job job := mock.Job() job.Type = structs.JobTypeBatch job.TaskGroups[0].Count = 1 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) tgName := job.TaskGroups[0].Name now := time.Now() // Create a failed alloc alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[0]" alloc.ClientStatus = structs.AllocClientStatusFailed alloc.TaskStates = map[string]*structs.TaskState{tgName: {State: "dead", StartedAt: now.Add(-1 * time.Hour), FinishedAt: now.Add(-10 * time.Second)}} noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{alloc})) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure a replacement alloc was placed. if len(out) != 2 { t.Fatalf("bad: %#v", out) } // Ensure that the scheduler is recording the correct number of queued // allocations queued := h.Evals[0].QueuedAllocations["web"] if queued != 0 { t.Fatalf("expected: %v, actual: %v", 1, queued) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestBatchSched_Run_LostAlloc(t *testing.T) { h := NewHarness(t) // Create a node node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a job job := mock.Job() job.ID = "my-job" job.Type = structs.JobTypeBatch job.TaskGroups[0].Count = 3 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Desired = 3 // Mark one as lost and then schedule // [(0, run, running), (1, run, running), (1, stop, lost)] // Create two running allocations var allocs []*structs.Allocation for i := 0; i <= 1; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) alloc.ClientStatus = structs.AllocClientStatusRunning allocs = append(allocs, alloc) } // Create a failed alloc alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[1]" alloc.DesiredStatus = structs.AllocDesiredStatusStop alloc.ClientStatus = structs.AllocClientStatusComplete allocs = append(allocs, alloc) noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure a replacement alloc was placed. if len(out) != 4 { t.Fatalf("bad: %#v", out) } // Assert that we have the correct number of each alloc name expected := map[string]int{ "my-job.web[0]": 1, "my-job.web[1]": 2, "my-job.web[2]": 1, } actual := make(map[string]int, 3) for _, alloc := range out { actual[alloc.Name] += 1 } require.Equal(t, actual, expected) h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestBatchSched_Run_FailedAllocQueuedAllocations(t *testing.T) { h := NewHarness(t) node := mock.Node() node.Drain = true noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a job job := mock.Job() job.Type = structs.JobTypeBatch job.TaskGroups[0].Count = 1 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) tgName := job.TaskGroups[0].Name now := time.Now() // Create a failed alloc alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[0]" alloc.ClientStatus = structs.AllocClientStatusFailed alloc.TaskStates = map[string]*structs.TaskState{tgName: {State: "dead", StartedAt: now.Add(-1 * time.Hour), FinishedAt: now.Add(-10 * time.Second)}} noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{alloc})) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure that the scheduler is recording the correct number of queued // allocations queued := h.Evals[0].QueuedAllocations["web"] if queued != 1 { t.Fatalf("expected: %v, actual: %v", 1, queued) } } func TestBatchSched_ReRun_SuccessfullyFinishedAlloc(t *testing.T) { h := NewHarness(t) // Create two nodes, one that is drained and has a successfully finished // alloc and a fresh undrained one node := mock.Node() node.Drain = true node2 := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) noErr(t, h.State.UpsertNode(h.NextIndex(), node2)) // Create a job job := mock.Job() job.Type = structs.JobTypeBatch job.TaskGroups[0].Count = 1 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a successful alloc alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[0]" alloc.ClientStatus = structs.AllocClientStatusComplete alloc.TaskStates = map[string]*structs.TaskState{ "web": { State: structs.TaskStateDead, Events: []*structs.TaskEvent{ { Type: structs.TaskTerminated, ExitCode: 0, }, }, }, } noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{alloc})) // Create a mock evaluation to rerun the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure no plan if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans) } // Lookup the allocations by JobID ws := memdb.NewWatchSet() out, err := h.State.AllocsByJob(ws, job.Namespace, job.ID, false) noErr(t, err) // Ensure no replacement alloc was placed. if len(out) != 1 { t.Fatalf("bad: %#v", out) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } // This test checks that terminal allocations that receive an in-place updated // are not added to the plan func TestBatchSched_JobModify_InPlace_Terminal(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations job := mock.Job() job.Type = structs.JobTypeBatch noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) alloc.ClientStatus = structs.AllocClientStatusComplete allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation to trigger the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure no plan if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans[0]) } } // This test ensures that terminal jobs from older versions are ignored. func TestBatchSched_JobModify_Destructive_Terminal(t *testing.T) { h := NewHarness(t) // Create some nodes var nodes []*structs.Node for i := 0; i < 10; i++ { node := mock.Node() nodes = append(nodes, node) noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Generate a fake job with allocations job := mock.Job() job.Type = structs.JobTypeBatch noErr(t, h.State.UpsertJob(h.NextIndex(), job)) var allocs []*structs.Allocation for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) alloc.ClientStatus = structs.AllocClientStatusComplete allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Update the job job2 := mock.Job() job2.ID = job.ID job2.Type = structs.JobTypeBatch job2.Version++ job2.TaskGroups[0].Tasks[0].Env = map[string]string{"foo": "bar"} noErr(t, h.State.UpsertJob(h.NextIndex(), job2)) allocs = nil for i := 0; i < 10; i++ { alloc := mock.Alloc() alloc.Job = job2 alloc.JobID = job2.ID alloc.NodeID = nodes[i].ID alloc.Name = fmt.Sprintf("my-job.web[%d]", i) alloc.ClientStatus = structs.AllocClientStatusComplete alloc.TaskStates = map[string]*structs.TaskState{ "web": { State: structs.TaskStateDead, Events: []*structs.TaskEvent{ { Type: structs.TaskTerminated, ExitCode: 0, }, }, }, } allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a plan if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans) } } // This test asserts that an allocation from an old job that is running on a // drained node is cleaned up. func TestBatchSched_NodeDrain_Running_OldJob(t *testing.T) { h := NewHarness(t) // Create two nodes, one that is drained and has a successfully finished // alloc and a fresh undrained one node := mock.Node() node.Drain = true node2 := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) noErr(t, h.State.UpsertNode(h.NextIndex(), node2)) // Create a job job := mock.Job() job.Type = structs.JobTypeBatch job.TaskGroups[0].Count = 1 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a running alloc alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[0]" alloc.ClientStatus = structs.AllocClientStatusRunning noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{alloc})) // Create an update job job2 := job.Copy() job2.TaskGroups[0].Tasks[0].Env = map[string]string{"foo": "bar"} job2.Version++ noErr(t, h.State.UpsertJob(h.NextIndex(), job2)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted 1 if len(plan.NodeUpdate[node.ID]) != 1 { t.Fatalf("bad: %#v", plan) } // Ensure the plan places 1 if len(plan.NodeAllocation[node2.ID]) != 1 { t.Fatalf("bad: %#v", plan) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } // This test asserts that an allocation from a job that is complete on a // drained node is ignored up. func TestBatchSched_NodeDrain_Complete(t *testing.T) { h := NewHarness(t) // Create two nodes, one that is drained and has a successfully finished // alloc and a fresh undrained one node := mock.Node() node.Drain = true node2 := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) noErr(t, h.State.UpsertNode(h.NextIndex(), node2)) // Create a job job := mock.Job() job.Type = structs.JobTypeBatch job.TaskGroups[0].Count = 1 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a complete alloc alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[0]" alloc.ClientStatus = structs.AllocClientStatusComplete alloc.TaskStates = make(map[string]*structs.TaskState) alloc.TaskStates["web"] = &structs.TaskState{ State: structs.TaskStateDead, Events: []*structs.TaskEvent{ { Type: structs.TaskTerminated, ExitCode: 0, }, }, } noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{alloc})) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure no plan if len(h.Plans) != 0 { t.Fatalf("bad: %#v", h.Plans) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } // This is a slightly odd test but it ensures that we handle a scale down of a // task group's count and that it works even if all the allocs have the same // name. func TestBatchSched_ScaleDown_SameName(t *testing.T) { h := NewHarness(t) // Create a node node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create a job job := mock.Job() job.Type = structs.JobTypeBatch job.TaskGroups[0].Count = 1 noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a few running alloc var allocs []*structs.Allocation for i := 0; i < 5; i++ { alloc := mock.Alloc() alloc.Job = job alloc.JobID = job.ID alloc.NodeID = node.ID alloc.Name = "my-job.web[0]" alloc.ClientStatus = structs.AllocClientStatusRunning allocs = append(allocs, alloc) } noErr(t, h.State.UpsertAllocs(h.NextIndex(), allocs)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewBatchScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted 4 of the 5 if len(plan.NodeUpdate[node.ID]) != 4 { t.Fatalf("bad: %#v", plan) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } func TestGenericSched_ChainedAlloc(t *testing.T) { h := NewHarness(t) // Create some nodes for i := 0; i < 10; i++ { node := mock.Node() noErr(t, h.State.UpsertNode(h.NextIndex(), node)) } // Create a job job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to register the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation if err := h.Process(NewServiceScheduler, eval); err != nil { t.Fatalf("err: %v", err) } var allocIDs []string for _, allocList := range h.Plans[0].NodeAllocation { for _, alloc := range allocList { allocIDs = append(allocIDs, alloc.ID) } } sort.Strings(allocIDs) // Create a new harness to invoke the scheduler again h1 := NewHarnessWithState(t, h.State) job1 := mock.Job() job1.ID = job.ID job1.TaskGroups[0].Tasks[0].Env["foo"] = "bar" job1.TaskGroups[0].Count = 12 noErr(t, h1.State.UpsertJob(h1.NextIndex(), job1)) // Create a mock evaluation to update the job eval1 := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: job1.Priority, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job1.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval1})) // Process the evaluation if err := h1.Process(NewServiceScheduler, eval1); err != nil { t.Fatalf("err: %v", err) } plan := h1.Plans[0] // Collect all the chained allocation ids and the new allocations which // don't have any chained allocations var prevAllocs []string var newAllocs []string for _, allocList := range plan.NodeAllocation { for _, alloc := range allocList { if alloc.PreviousAllocation == "" { newAllocs = append(newAllocs, alloc.ID) continue } prevAllocs = append(prevAllocs, alloc.PreviousAllocation) } } sort.Strings(prevAllocs) // Ensure that the new allocations has their corresponding original // allocation ids if !reflect.DeepEqual(prevAllocs, allocIDs) { t.Fatalf("expected: %v, actual: %v", len(allocIDs), len(prevAllocs)) } // Ensuring two new allocations don't have any chained allocations if len(newAllocs) != 2 { t.Fatalf("expected: %v, actual: %v", 2, len(newAllocs)) } } func TestServiceSched_NodeDrain_Sticky(t *testing.T) { h := NewHarness(t) // Register a draining node node := mock.Node() node.Drain = true noErr(t, h.State.UpsertNode(h.NextIndex(), node)) // Create an alloc on the draining node alloc := mock.Alloc() alloc.Name = "my-job.web[0]" alloc.NodeID = node.ID alloc.Job.TaskGroups[0].Count = 1 alloc.Job.TaskGroups[0].EphemeralDisk.Sticky = true alloc.DesiredTransition.Migrate = helper.BoolToPtr(true) noErr(t, h.State.UpsertJob(h.NextIndex(), alloc.Job)) noErr(t, h.State.UpsertAllocs(h.NextIndex(), []*structs.Allocation{alloc})) // Create a mock evaluation to deal with drain eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerNodeUpdate, JobID: alloc.Job.ID, NodeID: node.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan evicted all allocs if len(plan.NodeUpdate[node.ID]) != 1 { t.Fatalf("bad: %#v", plan) } // Ensure the plan didn't create any new allocations var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 0 { t.Fatalf("bad: %#v", plan) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } // This test ensures that when a job is stopped, the scheduler properly cancels // an outstanding deployment. func TestServiceSched_CancelDeployment_Stopped(t *testing.T) { h := NewHarness(t) // Generate a fake job job := mock.Job() job.JobModifyIndex = job.CreateIndex + 1 job.ModifyIndex = job.CreateIndex + 1 job.Stop = true noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a deployment d := mock.Deployment() d.JobID = job.ID d.JobCreateIndex = job.CreateIndex d.JobModifyIndex = job.JobModifyIndex - 1 noErr(t, h.State.UpsertDeployment(h.NextIndex(), d)) // Create a mock evaluation to deregister the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobDeregister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan cancelled the existing deployment ws := memdb.NewWatchSet() out, err := h.State.LatestDeploymentByJobID(ws, job.Namespace, job.ID) noErr(t, err) if out == nil { t.Fatalf("No deployment for job") } if out.ID != d.ID { t.Fatalf("Latest deployment for job is different than original deployment") } if out.Status != structs.DeploymentStatusCancelled { t.Fatalf("Deployment status is %q, want %q", out.Status, structs.DeploymentStatusCancelled) } if out.StatusDescription != structs.DeploymentStatusDescriptionStoppedJob { t.Fatalf("Deployment status description is %q, want %q", out.StatusDescription, structs.DeploymentStatusDescriptionStoppedJob) } // Ensure the plan didn't allocate anything var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 0 { t.Fatalf("bad: %#v", plan) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } // This test ensures that when a job is updated and had an old deployment, the scheduler properly cancels // the deployment. func TestServiceSched_CancelDeployment_NewerJob(t *testing.T) { h := NewHarness(t) // Generate a fake job job := mock.Job() noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a deployment for an old version of the job d := mock.Deployment() d.JobID = job.ID noErr(t, h.State.UpsertDeployment(h.NextIndex(), d)) // Upsert again to bump job version noErr(t, h.State.UpsertJob(h.NextIndex(), job)) // Create a mock evaluation to kick the job eval := &structs.Evaluation{ Namespace: structs.DefaultNamespace, ID: uuid.Generate(), Priority: 50, TriggeredBy: structs.EvalTriggerJobRegister, JobID: job.ID, Status: structs.EvalStatusPending, } noErr(t, h.State.UpsertEvals(h.NextIndex(), []*structs.Evaluation{eval})) // Process the evaluation err := h.Process(NewServiceScheduler, eval) if err != nil { t.Fatalf("err: %v", err) } // Ensure a single plan if len(h.Plans) != 1 { t.Fatalf("bad: %#v", h.Plans) } plan := h.Plans[0] // Ensure the plan cancelled the existing deployment ws := memdb.NewWatchSet() out, err := h.State.LatestDeploymentByJobID(ws, job.Namespace, job.ID) noErr(t, err) if out == nil { t.Fatalf("No deployment for job") } if out.ID != d.ID { t.Fatalf("Latest deployment for job is different than original deployment") } if out.Status != structs.DeploymentStatusCancelled { t.Fatalf("Deployment status is %q, want %q", out.Status, structs.DeploymentStatusCancelled) } if out.StatusDescription != structs.DeploymentStatusDescriptionNewerJob { t.Fatalf("Deployment status description is %q, want %q", out.StatusDescription, structs.DeploymentStatusDescriptionNewerJob) } // Ensure the plan didn't allocate anything var planned []*structs.Allocation for _, allocList := range plan.NodeAllocation { planned = append(planned, allocList...) } if len(planned) != 0 { t.Fatalf("bad: %#v", plan) } h.AssertEvalStatus(t, structs.EvalStatusComplete) } // Various table driven tests for carry forward // of past reschedule events func Test_updateRescheduleTracker(t *testing.T) { t1 := time.Now().UTC() alloc := mock.Alloc() prevAlloc := mock.Alloc() type testCase struct { desc string prevAllocEvents []*structs.RescheduleEvent reschedPolicy *structs.ReschedulePolicy expectedRescheduleEvents []*structs.RescheduleEvent reschedTime time.Time } testCases := []testCase{ { desc: "No past events", prevAllocEvents: nil, reschedPolicy: &structs.ReschedulePolicy{Unlimited: false, Interval: 24 * time.Hour, Attempts: 2, Delay: 5 * time.Second}, reschedTime: t1, expectedRescheduleEvents: []*structs.RescheduleEvent{ { RescheduleTime: t1.UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second, }, }, }, { desc: "one past event, linear delay", prevAllocEvents: []*structs.RescheduleEvent{ {RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second}}, reschedPolicy: &structs.ReschedulePolicy{Unlimited: false, Interval: 24 * time.Hour, Attempts: 2, Delay: 5 * time.Second}, reschedTime: t1, expectedRescheduleEvents: []*structs.RescheduleEvent{ { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second, }, { RescheduleTime: t1.UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second, }, }, }, { desc: "one past event, fibonacci delay", prevAllocEvents: []*structs.RescheduleEvent{ {RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second}}, reschedPolicy: &structs.ReschedulePolicy{Unlimited: false, Interval: 24 * time.Hour, Attempts: 2, Delay: 5 * time.Second, DelayFunction: "fibonacci", MaxDelay: 60 * time.Second}, reschedTime: t1, expectedRescheduleEvents: []*structs.RescheduleEvent{ { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second, }, { RescheduleTime: t1.UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second, }, }, }, { desc: "eight past events, fibonacci delay, unlimited", prevAllocEvents: []*structs.RescheduleEvent{ { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 10 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 15 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 25 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 40 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 65 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 105 * time.Second, }, }, reschedPolicy: &structs.ReschedulePolicy{Unlimited: true, Delay: 5 * time.Second, DelayFunction: "fibonacci", MaxDelay: 240 * time.Second}, reschedTime: t1, expectedRescheduleEvents: []*structs.RescheduleEvent{ { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 15 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 25 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 40 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 65 * time.Second, }, { RescheduleTime: t1.Add(-1 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 105 * time.Second, }, { RescheduleTime: t1.UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 170 * time.Second, }, }, }, { desc: " old attempts past interval, exponential delay, limited", prevAllocEvents: []*structs.RescheduleEvent{ { RescheduleTime: t1.Add(-2 * time.Hour).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 5 * time.Second, }, { RescheduleTime: t1.Add(-70 * time.Minute).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 10 * time.Second, }, { RescheduleTime: t1.Add(-30 * time.Minute).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 20 * time.Second, }, { RescheduleTime: t1.Add(-10 * time.Minute).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 40 * time.Second, }, }, reschedPolicy: &structs.ReschedulePolicy{Unlimited: false, Interval: 1 * time.Hour, Attempts: 5, Delay: 5 * time.Second, DelayFunction: "exponential", MaxDelay: 240 * time.Second}, reschedTime: t1, expectedRescheduleEvents: []*structs.RescheduleEvent{ { RescheduleTime: t1.Add(-30 * time.Minute).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 20 * time.Second, }, { RescheduleTime: t1.Add(-10 * time.Minute).UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 40 * time.Second, }, { RescheduleTime: t1.UnixNano(), PrevAllocID: prevAlloc.ID, PrevNodeID: prevAlloc.NodeID, Delay: 80 * time.Second, }, }, }, } for _, tc := range testCases { t.Run(tc.desc, func(t *testing.T) { require := require.New(t) prevAlloc.RescheduleTracker = &structs.RescheduleTracker{Events: tc.prevAllocEvents} prevAlloc.Job.LookupTaskGroup(prevAlloc.TaskGroup).ReschedulePolicy = tc.reschedPolicy updateRescheduleTracker(alloc, prevAlloc, tc.reschedTime) require.Equal(tc.expectedRescheduleEvents, alloc.RescheduleTracker.Events) }) } }