package nomad import ( "container/heap" "fmt" "log" "strconv" "strings" "sync" "time" "github.com/hashicorp/nomad/nomad/structs" ) // PeriodicDispatch is used to track and launch periodic jobs. It maintains the // set of periodic jobs and creates derived jobs and evaluations per // instantiation which is determined by the periodic spec. type PeriodicDispatch struct { dispatcher JobEvalDispatcher enabled bool running bool tracked map[string]*structs.Job heap *periodicHeap updateCh chan struct{} stopCh chan struct{} waitCh chan struct{} logger *log.Logger l sync.RWMutex } // JobEvalDispatcher is an interface to submit jobs and have evaluations created // for them. type JobEvalDispatcher interface { // DispatchJob takes a job a new, untracked job and creates an evaluation // for it and returns the eval. DispatchJob(job *structs.Job) (*structs.Evaluation, error) // RunningChildren returns whether the passed job has any running children. RunningChildren(job *structs.Job) (bool, error) } // DispatchJob creates an evaluation for the passed job and commits both the // evaluation and the job to the raft log. It returns the eval. func (s *Server) DispatchJob(job *structs.Job) (*structs.Evaluation, error) { // Commit this update via Raft req := structs.JobRegisterRequest{Job: job} _, index, err := s.raftApply(structs.JobRegisterRequestType, req) if err != nil { return nil, err } // Create a new evaluation eval := &structs.Evaluation{ ID: structs.GenerateUUID(), Priority: job.Priority, Type: job.Type, TriggeredBy: structs.EvalTriggerPeriodicJob, JobID: job.ID, JobModifyIndex: index, Status: structs.EvalStatusPending, } update := &structs.EvalUpdateRequest{ Evals: []*structs.Evaluation{eval}, } // Commit this evaluation via Raft // XXX: There is a risk of partial failure where the JobRegister succeeds // but that the EvalUpdate does not. _, evalIndex, err := s.raftApply(structs.EvalUpdateRequestType, update) if err != nil { return nil, err } // Update its indexes. eval.CreateIndex = evalIndex eval.ModifyIndex = evalIndex return eval, nil } // RunningChildren checks whether the passed job has any running children. func (s *Server) RunningChildren(job *structs.Job) (bool, error) { state := s.fsm.State() prefix := fmt.Sprintf("%s%s", job.ID, structs.PeriodicLaunchSuffix) iter, err := state.JobsByIDPrefix(prefix) if err != nil { return false, err } var child *structs.Job for i := iter.Next(); i != nil; i = iter.Next() { child = i.(*structs.Job) // Ensure the job is actually a child. if child.ParentID != job.ID { continue } // Get the childs evaluations. evals, err := state.EvalsByJob(child.ID) if err != nil { return false, err } // Check if any of the evals are active or have running allocations. for _, eval := range evals { if !eval.TerminalStatus() { return true, nil } allocs, err := state.AllocsByEval(eval.ID) if err != nil { return false, err } for _, alloc := range allocs { if !alloc.TerminalStatus() { return true, nil } } } } // There are no evals or allocations that aren't terminal. return false, nil } // NewPeriodicDispatch returns a periodic dispatcher that is used to track and // launch periodic jobs. func NewPeriodicDispatch(logger *log.Logger, dispatcher JobEvalDispatcher) *PeriodicDispatch { return &PeriodicDispatch{ dispatcher: dispatcher, tracked: make(map[string]*structs.Job), heap: NewPeriodicHeap(), updateCh: make(chan struct{}, 1), stopCh: make(chan struct{}), waitCh: make(chan struct{}), logger: logger, } } // SetEnabled is used to control if the periodic dispatcher is enabled. It // should only be enabled on the active leader. Disabling an active dispatcher // will stop any launched go routine and flush the dispatcher. func (p *PeriodicDispatch) SetEnabled(enabled bool) { p.l.Lock() p.enabled = enabled p.l.Unlock() if !enabled { if p.running { close(p.stopCh) <-p.waitCh p.running = false } p.Flush() } } // Start begins the goroutine that creates derived jobs and evals. func (p *PeriodicDispatch) Start() { p.l.Lock() p.running = true p.l.Unlock() go p.run() } // Tracked returns the set of tracked job IDs. func (p *PeriodicDispatch) Tracked() []*structs.Job { p.l.RLock() defer p.l.RUnlock() tracked := make([]*structs.Job, len(p.tracked)) i := 0 for _, job := range p.tracked { tracked[i] = job i++ } return tracked } // Add begins tracking of a periodic job. If it is already tracked, it acts as // an update to the jobs periodic spec. func (p *PeriodicDispatch) Add(job *structs.Job) error { p.l.Lock() defer p.l.Unlock() // Do nothing if not enabled if !p.enabled { return nil } // If we were tracking a job and it has been disabled or made non-periodic remove it. disabled := !job.IsPeriodic() || !job.Periodic.Enabled _, tracked := p.tracked[job.ID] if disabled { if tracked { p.removeLocked(job.ID) } // If the job is disabled and we aren't tracking it, do nothing. return nil } // Add or update the job. p.tracked[job.ID] = job next := job.Periodic.Next(time.Now().UTC()) if tracked { if err := p.heap.Update(job, next); err != nil { return fmt.Errorf("failed to update job %v launch time: %v", job.ID, err) } p.logger.Printf("[DEBUG] nomad.periodic: updated periodic job %q", job.ID) } else { if err := p.heap.Push(job, next); err != nil { return fmt.Errorf("failed to add job %v: %v", job.ID, err) } p.logger.Printf("[DEBUG] nomad.periodic: registered periodic job %q", job.ID) } // Signal an update. if p.running { select { case p.updateCh <- struct{}{}: default: } } return nil } // Remove stops tracking the passed job. If the job is not tracked, it is a // no-op. func (p *PeriodicDispatch) Remove(jobID string) error { p.l.Lock() defer p.l.Unlock() return p.removeLocked(jobID) } // Remove stops tracking the passed job. If the job is not tracked, it is a // no-op. It assumes this is called while a lock is held. func (p *PeriodicDispatch) removeLocked(jobID string) error { // Do nothing if not enabled if !p.enabled { return nil } job, tracked := p.tracked[jobID] if !tracked { return nil } delete(p.tracked, jobID) if err := p.heap.Remove(job); err != nil { return fmt.Errorf("failed to remove tracked job %v: %v", jobID, err) } // Signal an update. if p.running { select { case p.updateCh <- struct{}{}: default: } } p.logger.Printf("[DEBUG] nomad.periodic: deregistered periodic job %q", jobID) return nil } // ForceRun causes the periodic job to be evaluated immediately and returns the // subsequent eval. func (p *PeriodicDispatch) ForceRun(jobID string) (*structs.Evaluation, error) { p.l.Lock() // Do nothing if not enabled if !p.enabled { return nil, fmt.Errorf("periodic dispatch disabled") } job, tracked := p.tracked[jobID] if !tracked { return nil, fmt.Errorf("can't force run non-tracked job %v", jobID) } p.l.Unlock() return p.createEval(job, time.Now().UTC()) } // shouldRun returns whether the long lived run function should run. func (p *PeriodicDispatch) shouldRun() bool { p.l.RLock() defer p.l.RUnlock() return p.enabled && p.running } // run is a long-lived function that waits till a job's periodic spec is met and // then creates an evaluation to run the job. func (p *PeriodicDispatch) run() { defer close(p.waitCh) var launchCh <-chan time.Time for p.shouldRun() { job, launch := p.nextLaunch() if launch.IsZero() { launchCh = nil } else { launchDur := launch.Sub(time.Now().UTC()) launchCh = time.After(launchDur) p.logger.Printf("[DEBUG] nomad.periodic: launching job %q in %s", job.ID, launchDur) } select { case <-p.stopCh: return case <-p.updateCh: continue case <-launchCh: p.dispatch(job, launch) } } } // dispatch creates an evaluation for the job and updates its next launchtime // based on the passed launch time. func (p *PeriodicDispatch) dispatch(job *structs.Job, launchTime time.Time) { p.l.Lock() nextLaunch := job.Periodic.Next(launchTime) if err := p.heap.Update(job, nextLaunch); err != nil { p.logger.Printf("[ERR] nomad.periodic: failed to update next launch of periodic job %q: %v", job.ID, err) } // If the job prohibits overlapping and there are running children, we skip // the launch. if job.Periodic.ProhibitOverlap { running, err := p.dispatcher.RunningChildren(job) if err != nil { msg := fmt.Sprintf("[ERR] nomad.periodic: failed to determine if"+ " periodic job %q has running children: %v", job.ID, err) p.logger.Println(msg) p.l.Unlock() return } if running { msg := fmt.Sprintf("[DEBUG] nomad.periodic: skipping launch of"+ " periodic job %q because job prohibits overlap", job.ID) p.logger.Println(msg) p.l.Unlock() return } } p.logger.Printf("[DEBUG] nomad.periodic: launching job %v at %v", job.ID, launchTime) p.l.Unlock() p.createEval(job, launchTime) } // nextLaunch returns the next job to launch and when it should be launched. If // the next job can't be determined, an error is returned. If the dispatcher is // stopped, a nil job will be returned. func (p *PeriodicDispatch) nextLaunch() (*structs.Job, time.Time) { // If there is nothing wait for an update. p.l.RLock() defer p.l.RUnlock() if p.heap.Length() == 0 { return nil, time.Time{} } nextJob := p.heap.Peek() if nextJob == nil { return nil, time.Time{} } return nextJob.job, nextJob.next } // createEval instantiates a job based on the passed periodic job and submits an // evaluation for it. This should not be called with the lock held. func (p *PeriodicDispatch) createEval(periodicJob *structs.Job, time time.Time) (*structs.Evaluation, error) { derived, err := p.deriveJob(periodicJob, time) if err != nil { return nil, err } eval, err := p.dispatcher.DispatchJob(derived) if err != nil { p.logger.Printf("[ERR] nomad.periodic: failed to dispatch job %q: %v", periodicJob.ID, err) return nil, err } return eval, nil } // deriveJob instantiates a new job based on the passed periodic job and the // launch time. func (p *PeriodicDispatch) deriveJob(periodicJob *structs.Job, time time.Time) ( derived *structs.Job, err error) { // Have to recover in case the job copy panics. defer func() { if r := recover(); r != nil { p.logger.Printf("[ERR] nomad.periodic: deriving job from"+ " periodic job %v failed; deregistering from periodic runner: %v", periodicJob.ID, r) p.Remove(periodicJob.ID) derived = nil err = fmt.Errorf("Failed to create a copy of the periodic job %v: %v", periodicJob.ID, r) } }() // Create a copy of the periodic job, give it a derived ID/Name and make it // non-periodic. derived = periodicJob.Copy() derived.ParentID = periodicJob.ID derived.ID = p.derivedJobID(periodicJob, time) derived.Name = derived.ID derived.Periodic = nil return } // deriveJobID returns a job ID based on the parent periodic job and the launch // time. func (p *PeriodicDispatch) derivedJobID(periodicJob *structs.Job, time time.Time) string { return fmt.Sprintf("%s%s%d", periodicJob.ID, structs.PeriodicLaunchSuffix, time.Unix()) } // LaunchTime returns the launch time of the job. This is only valid for // jobs created by PeriodicDispatch and will otherwise return an error. func (p *PeriodicDispatch) LaunchTime(jobID string) (time.Time, error) { index := strings.LastIndex(jobID, structs.PeriodicLaunchSuffix) if index == -1 { return time.Time{}, fmt.Errorf("couldn't parse launch time from eval: %v", jobID) } launch, err := strconv.Atoi(jobID[index+len(structs.PeriodicLaunchSuffix):]) if err != nil { return time.Time{}, fmt.Errorf("couldn't parse launch time from eval: %v", jobID) } return time.Unix(int64(launch), 0), nil } // Flush clears the state of the PeriodicDispatcher func (p *PeriodicDispatch) Flush() { p.l.Lock() defer p.l.Unlock() p.stopCh = make(chan struct{}) p.updateCh = make(chan struct{}, 1) p.waitCh = make(chan struct{}) p.tracked = make(map[string]*structs.Job) p.heap = NewPeriodicHeap() } // periodicHeap wraps a heap and gives operations other than Push/Pop. type periodicHeap struct { index map[string]*periodicJob heap periodicHeapImp } type periodicJob struct { job *structs.Job next time.Time index int } func NewPeriodicHeap() *periodicHeap { return &periodicHeap{ index: make(map[string]*periodicJob), heap: make(periodicHeapImp, 0), } } func (p *periodicHeap) Push(job *structs.Job, next time.Time) error { if _, ok := p.index[job.ID]; ok { return fmt.Errorf("job %v already exists", job.ID) } pJob := &periodicJob{job, next, 0} p.index[job.ID] = pJob heap.Push(&p.heap, pJob) return nil } func (p *periodicHeap) Pop() *periodicJob { if len(p.heap) == 0 { return nil } pJob := heap.Pop(&p.heap).(*periodicJob) delete(p.index, pJob.job.ID) return pJob } func (p *periodicHeap) Peek() *periodicJob { if len(p.heap) == 0 { return nil } return p.heap[0] } func (p *periodicHeap) Contains(job *structs.Job) bool { _, ok := p.index[job.ID] return ok } func (p *periodicHeap) Update(job *structs.Job, next time.Time) error { if pJob, ok := p.index[job.ID]; ok { // Need to update the job as well because its spec can change. pJob.job = job pJob.next = next heap.Fix(&p.heap, pJob.index) return nil } return fmt.Errorf("heap doesn't contain job %v", job.ID) } func (p *periodicHeap) Remove(job *structs.Job) error { if pJob, ok := p.index[job.ID]; ok { heap.Remove(&p.heap, pJob.index) delete(p.index, job.ID) return nil } return fmt.Errorf("heap doesn't contain job %v", job.ID) } func (p *periodicHeap) Length() int { return len(p.heap) } type periodicHeapImp []*periodicJob func (h periodicHeapImp) Len() int { return len(h) } func (h periodicHeapImp) Less(i, j int) bool { // Two zero times should return false. // Otherwise, zero is "greater" than any other time. // (To sort it at the end of the list.) // Sort such that zero times are at the end of the list. iZero, jZero := h[i].next.IsZero(), h[j].next.IsZero() if iZero && jZero { return false } else if iZero { return false } else if jZero { return true } return h[i].next.Before(h[j].next) } func (h periodicHeapImp) Swap(i, j int) { h[i], h[j] = h[j], h[i] h[i].index = i h[j].index = j } func (h *periodicHeapImp) Push(x interface{}) { n := len(*h) job := x.(*periodicJob) job.index = n *h = append(*h, job) } func (h *periodicHeapImp) Pop() interface{} { old := *h n := len(old) job := old[n-1] job.index = -1 // for safety *h = old[0 : n-1] return job }