package executor import ( "fmt" "io/ioutil" "log" "net" "os" "os/exec" "path/filepath" "runtime" "strconv" "strings" "sync" "syscall" "time" "github.com/hashicorp/go-multierror" "github.com/mitchellh/go-ps" "github.com/shirou/gopsutil/process" "github.com/hashicorp/nomad/client/allocdir" "github.com/hashicorp/nomad/client/driver/env" "github.com/hashicorp/nomad/client/driver/logging" "github.com/hashicorp/nomad/client/stats" "github.com/hashicorp/nomad/command/agent/consul" shelpers "github.com/hashicorp/nomad/helper/stats" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/nomad/nomad/structs/config" dstructs "github.com/hashicorp/nomad/client/driver/structs" cstructs "github.com/hashicorp/nomad/client/structs" ) const ( // pidScanInterval is the interval at which the executor scans the process // tree for finding out the pids that the executor and it's child processes // have forked pidScanInterval = 5 * time.Second ) var ( // The statistics the basic executor exposes ExecutorBasicMeasuredMemStats = []string{"RSS", "Swap"} ExecutorBasicMeasuredCpuStats = []string{"System Mode", "User Mode", "Percent"} ) // Executor is the interface which allows a driver to launch and supervise // a process type Executor interface { SetContext(ctx *ExecutorContext) error LaunchCmd(command *ExecCommand) (*ProcessState, error) LaunchSyslogServer() (*SyslogServerState, error) Wait() (*ProcessState, error) ShutDown() error Exit() error UpdateLogConfig(logConfig *structs.LogConfig) error UpdateTask(task *structs.Task) error SyncServices(ctx *ConsulContext) error DeregisterServices() error Version() (*ExecutorVersion, error) Stats() (*cstructs.TaskResourceUsage, error) Signal(s os.Signal) error } // ConsulContext holds context to configure the Consul client and run checks type ConsulContext struct { // ConsulConfig contains the configuration information for talking // with this Nomad Agent's Consul Agent. ConsulConfig *config.ConsulConfig // ContainerID is the ID of the container ContainerID string // TLSCert is the cert which docker client uses while interactng with the docker // daemon over TLS TLSCert string // TLSCa is the CA which the docker client uses while interacting with the docker // daeemon over TLS TLSCa string // TLSKey is the TLS key which the docker client uses while interacting with // the docker daemon TLSKey string // DockerEndpoint is the endpoint of the docker daemon DockerEndpoint string } // ExecutorContext holds context to configure the command user // wants to run and isolate it type ExecutorContext struct { // TaskEnv holds information about the environment of a Task TaskEnv *env.TaskEnvironment // AllocDir is the handle to do operations on the alloc dir of // the task AllocDir *allocdir.AllocDir // Task is the task whose executor is being launched Task *structs.Task // AllocID is the allocation id to which the task belongs AllocID string // A mapping of directories on the host OS to attempt to embed inside each // task's chroot. ChrootEnv map[string]string // Driver is the name of the driver that invoked the executor Driver string // PortUpperBound is the upper bound of the ports that we can use to start // the syslog server PortUpperBound uint // PortLowerBound is the lower bound of the ports that we can use to start // the syslog server PortLowerBound uint } // ExecCommand holds the user command, args, and other isolation related // settings. type ExecCommand struct { // Cmd is the command that the user wants to run. Cmd string // Args is the args of the command that the user wants to run. Args []string // FSIsolation determines whether the command would be run in a chroot. FSIsolation bool // User is the user which the executor uses to run the command. User string // ResourceLimits determines whether resource limits are enforced by the // executor. ResourceLimits bool } // ProcessState holds information about the state of a user process. type ProcessState struct { Pid int ExitCode int Signal int IsolationConfig *dstructs.IsolationConfig Time time.Time } // nomadPid holds a pid and it's cpu percentage calculator type nomadPid struct { pid int cpuStatsTotal *stats.CpuStats cpuStatsUser *stats.CpuStats cpuStatsSys *stats.CpuStats } // SyslogServerState holds the address and islation information of a launched // syslog server type SyslogServerState struct { IsolationConfig *dstructs.IsolationConfig Addr string } // ExecutorVersion is the version of the executor type ExecutorVersion struct { Version string } func (v *ExecutorVersion) GoString() string { return v.Version } // UniversalExecutor is an implementation of the Executor which launches and // supervises processes. In addition to process supervision it provides resource // and file system isolation type UniversalExecutor struct { cmd exec.Cmd ctx *ExecutorContext command *ExecCommand pids map[int]*nomadPid pidLock sync.RWMutex taskDir string exitState *ProcessState processExited chan interface{} fsIsolationEnforced bool lre *logging.FileRotator lro *logging.FileRotator rotatorLock sync.Mutex shutdownCh chan struct{} syslogServer *logging.SyslogServer syslogChan chan *logging.SyslogMessage resConCtx resourceContainerContext consulSyncer *consul.Syncer consulCtx *ConsulContext totalCpuStats *stats.CpuStats userCpuStats *stats.CpuStats systemCpuStats *stats.CpuStats logger *log.Logger } // NewExecutor returns an Executor func NewExecutor(logger *log.Logger) Executor { if err := shelpers.Init(); err != nil { logger.Printf("[FATAL] executor: unable to initialize stats: %v", err) return nil } exec := &UniversalExecutor{ logger: logger, processExited: make(chan interface{}), totalCpuStats: stats.NewCpuStats(), userCpuStats: stats.NewCpuStats(), systemCpuStats: stats.NewCpuStats(), pids: make(map[int]*nomadPid), } return exec } // Version returns the api version of the executor func (e *UniversalExecutor) Version() (*ExecutorVersion, error) { return &ExecutorVersion{Version: "1.0.0"}, nil } // SetContext is used to set the executors context and should be the first call // after launching the executor. func (e *UniversalExecutor) SetContext(ctx *ExecutorContext) error { e.ctx = ctx return nil } // LaunchCmd launches a process and returns it's state. It also configures an // applies isolation on certain platforms. func (e *UniversalExecutor) LaunchCmd(command *ExecCommand) (*ProcessState, error) { e.logger.Printf("[DEBUG] executor: launching command %v %v", command.Cmd, strings.Join(command.Args, " ")) // Ensure the context has been set first if e.ctx == nil { return nil, fmt.Errorf("SetContext must be called before launching a command") } e.command = command // setting the user of the process if command.User != "" { e.logger.Printf("[DEBUG] executor: running command as %s", command.User) if err := e.runAs(command.User); err != nil { return nil, err } } // configuring the task dir if err := e.configureTaskDir(); err != nil { return nil, err } e.ctx.TaskEnv.Build() // configuring the chroot, resource container, and start the plugin // process in the chroot. if err := e.configureIsolation(); err != nil { return nil, err } // Apply ourselves into the resource container. The executor MUST be in // the resource container before the user task is started, otherwise we // are subject to a fork attack in which a process escapes isolation by // immediately forking. if err := e.applyLimits(os.Getpid()); err != nil { return nil, err } // Setup the loggers if err := e.configureLoggers(); err != nil { return nil, err } e.cmd.Stdout = e.lro e.cmd.Stderr = e.lre // Look up the binary path and make it executable absPath, err := e.lookupBin(e.ctx.TaskEnv.ReplaceEnv(command.Cmd)) if err != nil { return nil, err } if err := e.makeExecutable(absPath); err != nil { return nil, err } path := absPath // Determine the path to run as it may have to be relative to the chroot. if e.fsIsolationEnforced { rel, err := filepath.Rel(e.taskDir, path) if err != nil { return nil, err } path = rel } // Set the commands arguments e.cmd.Path = path e.cmd.Args = append([]string{e.cmd.Path}, e.ctx.TaskEnv.ParseAndReplace(command.Args)...) e.cmd.Env = e.ctx.TaskEnv.EnvList() // Start the process if err := e.cmd.Start(); err != nil { return nil, err } go e.collectPids() go e.wait() ic := e.resConCtx.getIsolationConfig() return &ProcessState{Pid: e.cmd.Process.Pid, ExitCode: -1, IsolationConfig: ic, Time: time.Now()}, nil } // configureLoggers sets up the standard out/error file rotators func (e *UniversalExecutor) configureLoggers() error { e.rotatorLock.Lock() defer e.rotatorLock.Unlock() logFileSize := int64(e.ctx.Task.LogConfig.MaxFileSizeMB * 1024 * 1024) if e.lro == nil { lro, err := logging.NewFileRotator(e.ctx.AllocDir.LogDir(), fmt.Sprintf("%v.stdout", e.ctx.Task.Name), e.ctx.Task.LogConfig.MaxFiles, logFileSize, e.logger) if err != nil { return err } e.lro = lro } if e.lre == nil { lre, err := logging.NewFileRotator(e.ctx.AllocDir.LogDir(), fmt.Sprintf("%v.stderr", e.ctx.Task.Name), e.ctx.Task.LogConfig.MaxFiles, logFileSize, e.logger) if err != nil { return err } e.lre = lre } return nil } // Wait waits until a process has exited and returns it's exitcode and errors func (e *UniversalExecutor) Wait() (*ProcessState, error) { <-e.processExited return e.exitState, nil } // COMPAT: prior to Nomad 0.3.2, UpdateTask didn't exist. // UpdateLogConfig updates the log configuration func (e *UniversalExecutor) UpdateLogConfig(logConfig *structs.LogConfig) error { e.ctx.Task.LogConfig = logConfig if e.lro == nil { return fmt.Errorf("log rotator for stdout doesn't exist") } e.lro.MaxFiles = logConfig.MaxFiles e.lro.FileSize = int64(logConfig.MaxFileSizeMB * 1024 * 1024) if e.lre == nil { return fmt.Errorf("log rotator for stderr doesn't exist") } e.lre.MaxFiles = logConfig.MaxFiles e.lre.FileSize = int64(logConfig.MaxFileSizeMB * 1024 * 1024) return nil } func (e *UniversalExecutor) UpdateTask(task *structs.Task) error { e.ctx.Task = task // Updating Log Config e.rotatorLock.Lock() if e.lro != nil && e.lre != nil { fileSize := int64(task.LogConfig.MaxFileSizeMB * 1024 * 1024) e.lro.MaxFiles = task.LogConfig.MaxFiles e.lro.FileSize = fileSize e.lre.MaxFiles = task.LogConfig.MaxFiles e.lre.FileSize = fileSize } e.rotatorLock.Unlock() // Re-syncing task with Consul agent if e.consulSyncer != nil { e.interpolateServices(e.ctx.Task) domain := consul.NewExecutorDomain(e.ctx.AllocID, task.Name) serviceMap := generateServiceKeys(e.ctx.AllocID, task.Services) e.consulSyncer.SetServices(domain, serviceMap) } return nil } // generateServiceKeys takes a list of interpolated Nomad Services and returns a map // of ServiceKeys to Nomad Services. func generateServiceKeys(allocID string, services []*structs.Service) map[consul.ServiceKey]*structs.Service { keys := make(map[consul.ServiceKey]*structs.Service, len(services)) for _, service := range services { key := consul.GenerateServiceKey(service) keys[key] = service } return keys } func (e *UniversalExecutor) wait() { defer close(e.processExited) err := e.cmd.Wait() ic := e.resConCtx.getIsolationConfig() if err == nil { e.exitState = &ProcessState{Pid: 0, ExitCode: 0, IsolationConfig: ic, Time: time.Now()} return } e.lre.Close() e.lro.Close() exitCode := 1 var signal int if exitErr, ok := err.(*exec.ExitError); ok { if status, ok := exitErr.Sys().(syscall.WaitStatus); ok { exitCode = status.ExitStatus() if status.Signaled() { // bash(1) uses the lower 7 bits of a uint8 // to indicate normal program failure (see // ). If a process terminates due // to a signal, encode the signal number to // indicate which signal caused the process // to terminate. Mirror this exit code // encoding scheme. const exitSignalBase = 128 signal = int(status.Signal()) exitCode = exitSignalBase + signal } } } else { e.logger.Printf("[DEBUG] executor: unexpected Wait() error type: %v", err) } e.exitState = &ProcessState{Pid: 0, ExitCode: exitCode, Signal: signal, IsolationConfig: ic, Time: time.Now()} } var ( // finishedErr is the error message received when trying to kill and already // exited process. finishedErr = "os: process already finished" ) // ClientCleanup is the cleanup routine that a Nomad Client uses to remove the // reminants of a child UniversalExecutor. func ClientCleanup(ic *dstructs.IsolationConfig, pid int) error { return clientCleanup(ic, pid) } // Exit cleans up the alloc directory, destroys resource container and kills the // user process func (e *UniversalExecutor) Exit() error { var merr multierror.Error if e.syslogServer != nil { e.syslogServer.Shutdown() } if e.lre != nil { e.lre.Close() } if e.lro != nil { e.lro.Close() } if e.consulSyncer != nil { e.consulSyncer.Shutdown() } // If the executor did not launch a process, return. if e.command == nil { return nil } // Prefer killing the process via the resource container. if e.cmd.Process != nil && !e.command.ResourceLimits { proc, err := os.FindProcess(e.cmd.Process.Pid) if err != nil { e.logger.Printf("[ERR] executor: can't find process with pid: %v, err: %v", e.cmd.Process.Pid, err) } else if err := proc.Kill(); err != nil && err.Error() != finishedErr { merr.Errors = append(merr.Errors, fmt.Errorf("can't kill process with pid: %v, err: %v", e.cmd.Process.Pid, err)) } } if e.command.ResourceLimits { if err := e.resConCtx.executorCleanup(); err != nil { merr.Errors = append(merr.Errors, err) } } if e.command.FSIsolation { if err := e.removeChrootMounts(); err != nil { merr.Errors = append(merr.Errors, err) } } return merr.ErrorOrNil() } // Shutdown sends an interrupt signal to the user process func (e *UniversalExecutor) ShutDown() error { if e.cmd.Process == nil { return fmt.Errorf("executor.shutdown error: no process found") } proc, err := os.FindProcess(e.cmd.Process.Pid) if err != nil { return fmt.Errorf("executor.shutdown failed to find process: %v", err) } if runtime.GOOS == "windows" { if err := proc.Kill(); err != nil && err.Error() != finishedErr { return err } return nil } if err = proc.Signal(os.Interrupt); err != nil && err.Error() != finishedErr { return fmt.Errorf("executor.shutdown error: %v", err) } return nil } // SyncServices syncs the services of the task that the executor is running with // Consul func (e *UniversalExecutor) SyncServices(ctx *ConsulContext) error { e.logger.Printf("[INFO] executor: registering services") e.consulCtx = ctx if e.consulSyncer == nil { cs, err := consul.NewSyncer(ctx.ConsulConfig, e.shutdownCh, e.logger) if err != nil { return err } e.consulSyncer = cs go e.consulSyncer.Run() } e.interpolateServices(e.ctx.Task) e.consulSyncer.SetDelegatedChecks(e.createCheckMap(), e.createCheck) e.consulSyncer.SetAddrFinder(e.ctx.Task.FindHostAndPortFor) domain := consul.NewExecutorDomain(e.ctx.AllocID, e.ctx.Task.Name) serviceMap := generateServiceKeys(e.ctx.AllocID, e.ctx.Task.Services) e.consulSyncer.SetServices(domain, serviceMap) return nil } // DeregisterServices removes the services of the task that the executor is // running from Consul func (e *UniversalExecutor) DeregisterServices() error { e.logger.Printf("[INFO] executor: de-registering services and shutting down consul service") if e.consulSyncer != nil { return e.consulSyncer.Shutdown() } return nil } // pidStats returns the resource usage stats per pid func (e *UniversalExecutor) pidStats() (map[string]*cstructs.ResourceUsage, error) { stats := make(map[string]*cstructs.ResourceUsage) e.pidLock.RLock() pids := make(map[int]*nomadPid, len(e.pids)) for k, v := range e.pids { pids[k] = v } e.pidLock.RUnlock() for pid, np := range pids { p, err := process.NewProcess(int32(pid)) if err != nil { e.logger.Printf("[DEBUG] executor: unable to create new process with pid: %v", pid) continue } ms := &cstructs.MemoryStats{} if memInfo, err := p.MemoryInfo(); err == nil { ms.RSS = memInfo.RSS ms.Swap = memInfo.Swap ms.Measured = ExecutorBasicMeasuredMemStats } cs := &cstructs.CpuStats{} if cpuStats, err := p.Times(); err == nil { cs.SystemMode = np.cpuStatsSys.Percent(cpuStats.System * float64(time.Second)) cs.UserMode = np.cpuStatsUser.Percent(cpuStats.User * float64(time.Second)) cs.Measured = ExecutorBasicMeasuredCpuStats // calculate cpu usage percent cs.Percent = np.cpuStatsTotal.Percent(cpuStats.Total() * float64(time.Second)) } stats[strconv.Itoa(pid)] = &cstructs.ResourceUsage{MemoryStats: ms, CpuStats: cs} } return stats, nil } // configureTaskDir sets the task dir in the executor func (e *UniversalExecutor) configureTaskDir() error { taskDir, ok := e.ctx.AllocDir.TaskDirs[e.ctx.Task.Name] e.taskDir = taskDir if !ok { return fmt.Errorf("couldn't find task directory for task %v", e.ctx.Task.Name) } e.cmd.Dir = taskDir return nil } // lookupBin looks for path to the binary to run by looking for the binary in // the following locations, in-order: task/local/, task/, based on host $PATH. // The return path is absolute. func (e *UniversalExecutor) lookupBin(bin string) (string, error) { // Check in the local directory local := filepath.Join(e.taskDir, allocdir.TaskLocal, bin) if _, err := os.Stat(local); err == nil { return local, nil } // Check at the root of the task's directory root := filepath.Join(e.taskDir, bin) if _, err := os.Stat(root); err == nil { return root, nil } // Check the $PATH if host, err := exec.LookPath(bin); err == nil { return host, nil } return "", fmt.Errorf("binary %q could not be found", bin) } // makeExecutable makes the given file executable for root,group,others. func (e *UniversalExecutor) makeExecutable(binPath string) error { if runtime.GOOS == "windows" { return nil } fi, err := os.Stat(binPath) if err != nil { if os.IsNotExist(err) { return fmt.Errorf("binary %q does not exist", binPath) } return fmt.Errorf("specified binary is invalid: %v", err) } // If it is not executable, make it so. perm := fi.Mode().Perm() req := os.FileMode(0555) if perm&req != req { if err := os.Chmod(binPath, perm|req); err != nil { return fmt.Errorf("error making %q executable: %s", binPath, err) } } return nil } // getFreePort returns a free port ready to be listened on between upper and // lower bounds func (e *UniversalExecutor) getListener(lowerBound uint, upperBound uint) (net.Listener, error) { if runtime.GOOS == "windows" { return e.listenerTCP(lowerBound, upperBound) } return e.listenerUnix() } // listenerTCP creates a TCP listener using an unused port between an upper and // lower bound func (e *UniversalExecutor) listenerTCP(lowerBound uint, upperBound uint) (net.Listener, error) { for i := lowerBound; i <= upperBound; i++ { addr, err := net.ResolveTCPAddr("tcp", fmt.Sprintf("localhost:%v", i)) if err != nil { return nil, err } l, err := net.ListenTCP("tcp", addr) if err != nil { continue } return l, nil } return nil, fmt.Errorf("No free port found") } // listenerUnix creates a Unix domain socket func (e *UniversalExecutor) listenerUnix() (net.Listener, error) { f, err := ioutil.TempFile("", "plugin") if err != nil { return nil, err } path := f.Name() if err := f.Close(); err != nil { return nil, err } if err := os.Remove(path); err != nil { return nil, err } return net.Listen("unix", path) } // createCheckMap creates a map of checks that the executor will handle on it's // own func (e *UniversalExecutor) createCheckMap() map[string]struct{} { checks := map[string]struct{}{ "script": struct{}{}, } return checks } // createCheck creates NomadCheck from a ServiceCheck func (e *UniversalExecutor) createCheck(check *structs.ServiceCheck, checkID string) (consul.Check, error) { if check.Type == structs.ServiceCheckScript && e.ctx.Driver == "docker" { return &DockerScriptCheck{ id: checkID, interval: check.Interval, timeout: check.Timeout, containerID: e.consulCtx.ContainerID, logger: e.logger, cmd: check.Command, args: check.Args, }, nil } if check.Type == structs.ServiceCheckScript && (e.ctx.Driver == "exec" || e.ctx.Driver == "raw_exec" || e.ctx.Driver == "java") { return &ExecScriptCheck{ id: checkID, interval: check.Interval, timeout: check.Timeout, cmd: check.Command, args: check.Args, taskDir: e.taskDir, FSIsolation: e.command.FSIsolation, }, nil } return nil, fmt.Errorf("couldn't create check for %v", check.Name) } // interpolateServices interpolates tags in a service and checks with values from the // task's environment. func (e *UniversalExecutor) interpolateServices(task *structs.Task) { e.ctx.TaskEnv.Build() for _, service := range task.Services { for _, check := range service.Checks { check.Name = e.ctx.TaskEnv.ReplaceEnv(check.Name) check.Type = e.ctx.TaskEnv.ReplaceEnv(check.Type) check.Command = e.ctx.TaskEnv.ReplaceEnv(check.Command) check.Args = e.ctx.TaskEnv.ParseAndReplace(check.Args) check.Path = e.ctx.TaskEnv.ReplaceEnv(check.Path) check.Protocol = e.ctx.TaskEnv.ReplaceEnv(check.Protocol) check.PortLabel = e.ctx.TaskEnv.ReplaceEnv(check.PortLabel) check.InitialStatus = e.ctx.TaskEnv.ReplaceEnv(check.InitialStatus) } service.Name = e.ctx.TaskEnv.ReplaceEnv(service.Name) service.PortLabel = e.ctx.TaskEnv.ReplaceEnv(service.PortLabel) service.Tags = e.ctx.TaskEnv.ParseAndReplace(service.Tags) } } // collectPids collects the pids of the child processes that the executor is // running every 5 seconds func (e *UniversalExecutor) collectPids() { // Fire the timer right away when the executor starts from there on the pids // are collected every scan interval timer := time.NewTimer(0) defer timer.Stop() for { select { case <-timer.C: pids, err := e.getAllPids() if err != nil { e.logger.Printf("[DEBUG] executor: error collecting pids: %v", err) } e.pidLock.Lock() // Adding pids which are not being tracked for pid, np := range pids { if _, ok := e.pids[pid]; !ok { e.pids[pid] = np } } // Removing pids which are no longer present for pid := range e.pids { if _, ok := pids[pid]; !ok { delete(e.pids, pid) } } e.pidLock.Unlock() timer.Reset(pidScanInterval) case <-e.processExited: return } } } // scanPids scans all the pids on the machine running the current executor and // returns the child processes of the executor. func (e *UniversalExecutor) scanPids(parentPid int, allPids []ps.Process) (map[int]*nomadPid, error) { processFamily := make(map[int]struct{}) processFamily[parentPid] = struct{}{} // A mapping of pids to their parent pids. It is used to build the process // tree of the executing task pidsRemaining := make(map[int]int, len(allPids)) for _, pid := range allPids { pidsRemaining[pid.Pid()] = pid.PPid() } for { // flag to indicate if we have found a match foundNewPid := false for pid, ppid := range pidsRemaining { _, childPid := processFamily[ppid] // checking if the pid is a child of any of the parents if childPid { processFamily[pid] = struct{}{} delete(pidsRemaining, pid) foundNewPid = true } } // not scanning anymore if we couldn't find a single match if !foundNewPid { break } } res := make(map[int]*nomadPid) for pid := range processFamily { np := nomadPid{ pid: pid, cpuStatsTotal: stats.NewCpuStats(), cpuStatsUser: stats.NewCpuStats(), cpuStatsSys: stats.NewCpuStats(), } res[pid] = &np } return res, nil } // aggregatedResourceUsage aggregates the resource usage of all the pids and // returns a TaskResourceUsage data point func (e *UniversalExecutor) aggregatedResourceUsage(pidStats map[string]*cstructs.ResourceUsage) *cstructs.TaskResourceUsage { ts := time.Now().UTC().UnixNano() var ( systemModeCPU, userModeCPU, percent float64 totalRSS, totalSwap uint64 ) for _, pidStat := range pidStats { systemModeCPU += pidStat.CpuStats.SystemMode userModeCPU += pidStat.CpuStats.UserMode percent += pidStat.CpuStats.Percent totalRSS += pidStat.MemoryStats.RSS totalSwap += pidStat.MemoryStats.Swap } totalCPU := &cstructs.CpuStats{ SystemMode: systemModeCPU, UserMode: userModeCPU, Percent: percent, Measured: ExecutorBasicMeasuredCpuStats, TotalTicks: e.systemCpuStats.TicksConsumed(percent), } totalMemory := &cstructs.MemoryStats{ RSS: totalRSS, Swap: totalSwap, Measured: ExecutorBasicMeasuredMemStats, } resourceUsage := cstructs.ResourceUsage{ MemoryStats: totalMemory, CpuStats: totalCPU, } return &cstructs.TaskResourceUsage{ ResourceUsage: &resourceUsage, Timestamp: ts, Pids: pidStats, } } // Signal sends the passed signal to the task func (e *UniversalExecutor) Signal(s os.Signal) error { if e.cmd.Process == nil { return fmt.Errorf("Task not yet run") } e.logger.Printf("[DEBUG] executor: sending signal %s", s) err := e.cmd.Process.Signal(s) if err != nil { e.logger.Printf("[ERR] executor: sending signal %s failed: %v", err) return err } return nil }