package nomad import ( "context" "fmt" "runtime" "time" metrics "github.com/armon/go-metrics" log "github.com/hashicorp/go-hclog" memdb "github.com/hashicorp/go-memdb" multierror "github.com/hashicorp/go-multierror" "github.com/hashicorp/nomad/helper/uuid" "github.com/hashicorp/nomad/nomad/state" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/raft" ) // planner is used to manage the submitted allocation plans that are waiting // to be accessed by the leader type planner struct { *Server log log.Logger // planQueue is used to manage the submitted allocation // plans that are waiting to be assessed by the leader planQueue *PlanQueue } // newPlanner returns a new planner to be used for managing allocation plans. func newPlanner(s *Server) (*planner, error) { // Create a plan queue planQueue, err := NewPlanQueue() if err != nil { return nil, err } return &planner{ Server: s, log: s.logger.Named("planner"), planQueue: planQueue, }, nil } // planApply is a long lived goroutine that reads plan allocations from // the plan queue, determines if they can be applied safely and applies // them via Raft. // // Naively, we could simply dequeue a plan, verify, apply and then respond. // However, the plan application is bounded by the Raft apply time and // subject to some latency. This creates a stall condition, where we are // not evaluating, but simply waiting for a transaction to apply. // // To avoid this, we overlap verification with apply. This means once // we've verified plan N we attempt to apply it. However, while waiting // for apply, we begin to verify plan N+1 under the assumption that plan // N has succeeded. // // In this sense, we track two parallel versions of the world. One is // the pessimistic one driven by the Raft log which is replicated. The // other is optimistic and assumes our transactions will succeed. In the // happy path, this lets us do productive work during the latency of // apply. // // In the unhappy path (Raft transaction fails), effectively we only // wasted work during a time we would have been waiting anyways. However, // in anticipation of this case we cannot respond to the plan until // the Raft log is updated. This means our schedulers will stall, // but there are many of those and only a single plan verifier. // func (p *planner) planApply() { // planIndexCh is used to track an outstanding application and receive // its committed index while snap holds an optimistic state which // includes that plan application. var planIndexCh chan uint64 var snap *state.StateSnapshot // prevPlanResultIndex is the index when the last PlanResult was // committed. Since only the last plan is optimistically applied to the // snapshot, it's possible the current snapshot's and plan's indexes // are less than the index the previous plan result was committed at. // prevPlanResultIndex also guards against the previous plan committing // during Dequeue, thus causing the snapshot containing the optimistic // commit to be discarded and potentially evaluating the current plan // against an index older than the previous plan was committed at. var prevPlanResultIndex uint64 // Setup a worker pool with half the cores, with at least 1 poolSize := runtime.NumCPU() / 2 if poolSize == 0 { poolSize = 1 } pool := NewEvaluatePool(poolSize, workerPoolBufferSize) defer pool.Shutdown() for { // Pull the next pending plan, exit if we are no longer leader pending, err := p.planQueue.Dequeue(0) if err != nil { return } // If last plan has completed get a new snapshot select { case idx := <-planIndexCh: // Previous plan committed. Discard snapshot and ensure // future snapshots include this plan. idx may be 0 if // plan failed to apply, so use max(prev, idx) prevPlanResultIndex = max(prevPlanResultIndex, idx) planIndexCh = nil snap = nil default: } if snap != nil { // If snapshot doesn't contain the previous plan // result's index and the current plan's snapshot it, // discard it and get a new one below. minIndex := max(prevPlanResultIndex, pending.plan.SnapshotIndex) if idx, err := snap.LatestIndex(); err != nil || idx < minIndex { snap = nil } } // Snapshot the state so that we have a consistent view of the world // if no snapshot is available. // - planIndexCh will be nil if the previous plan result applied // during Dequeue // - snap will be nil if its index < max(prevIndex, curIndex) if planIndexCh == nil || snap == nil { snap, err = p.snapshotMinIndex(prevPlanResultIndex, pending.plan.SnapshotIndex) if err != nil { p.logger.Error("failed to snapshot state", "error", err) pending.respond(nil, err) continue } } // Evaluate the plan result, err := evaluatePlan(pool, snap, pending.plan, p.logger) if err != nil { p.logger.Error("failed to evaluate plan", "error", err) pending.respond(nil, err) continue } // Fast-path the response if there is nothing to do if result.IsNoOp() { pending.respond(result, nil) continue } // Ensure any parallel apply is complete before starting the next one. // This also limits how out of date our snapshot can be. if planIndexCh != nil { idx := <-planIndexCh prevPlanResultIndex = max(prevPlanResultIndex, idx) snap, err = p.snapshotMinIndex(prevPlanResultIndex, pending.plan.SnapshotIndex) if err != nil { p.logger.Error("failed to update snapshot state", "error", err) pending.respond(nil, err) continue } } // Dispatch the Raft transaction for the plan future, err := p.applyPlan(pending.plan, result, snap) if err != nil { p.logger.Error("failed to submit plan", "error", err) pending.respond(nil, err) continue } // Respond to the plan in async; receive plan's committed index via chan planIndexCh = make(chan uint64, 1) go p.asyncPlanWait(planIndexCh, future, result, pending) } } // snapshotMinIndex wraps SnapshotAfter with a 5s timeout and converts timeout // errors to a more descriptive error message. The snapshot is guaranteed to // include both the previous plan and all objects referenced by the plan or // return an error. func (p *planner) snapshotMinIndex(prevPlanResultIndex, planSnapshotIndex uint64) (*state.StateSnapshot, error) { defer metrics.MeasureSince([]string{"nomad", "plan", "wait_for_index"}, time.Now()) // Minimum index the snapshot must include is the max of the previous // plan result's and current plan's snapshot index. minIndex := max(prevPlanResultIndex, planSnapshotIndex) const timeout = 5 * time.Second ctx, cancel := context.WithTimeout(context.Background(), timeout) snap, err := p.fsm.State().SnapshotMinIndex(ctx, minIndex) cancel() if err == context.DeadlineExceeded { return nil, fmt.Errorf("timed out after %s waiting for index=%d (previous plan result index=%d; plan snapshot index=%d)", timeout, minIndex, prevPlanResultIndex, planSnapshotIndex) } return snap, err } // applyPlan is used to apply the plan result and to return the alloc index func (p *planner) applyPlan(plan *structs.Plan, result *structs.PlanResult, snap *state.StateSnapshot) (raft.ApplyFuture, error) { // Setup the update request req := structs.ApplyPlanResultsRequest{ AllocUpdateRequest: structs.AllocUpdateRequest{ Job: plan.Job, }, Deployment: result.Deployment, DeploymentUpdates: result.DeploymentUpdates, EvalID: plan.EvalID, } preemptedJobIDs := make(map[structs.NamespacedID]struct{}) now := time.Now().UTC().UnixNano() if ServersMeetMinimumVersion(p.Members(), MinVersionPlanNormalization, true) { // Initialize the allocs request using the new optimized log entry format. // Determine the minimum number of updates, could be more if there // are multiple updates per node req.AllocsStopped = make([]*structs.AllocationDiff, 0, len(result.NodeUpdate)) req.AllocsUpdated = make([]*structs.Allocation, 0, len(result.NodeAllocation)) req.AllocsPreempted = make([]*structs.AllocationDiff, 0, len(result.NodePreemptions)) for _, updateList := range result.NodeUpdate { for _, stoppedAlloc := range updateList { req.AllocsStopped = append(req.AllocsStopped, normalizeStoppedAlloc(stoppedAlloc, now)) } } for _, allocList := range result.NodeAllocation { req.AllocsUpdated = append(req.AllocsUpdated, allocList...) } // Set the time the alloc was applied for the first time. This can be used // to approximate the scheduling time. updateAllocTimestamps(req.AllocsUpdated, now) for _, preemptions := range result.NodePreemptions { for _, preemptedAlloc := range preemptions { req.AllocsPreempted = append(req.AllocsPreempted, normalizePreemptedAlloc(preemptedAlloc, now)) // Gather jobids to create follow up evals appendNamespacedJobID(preemptedJobIDs, preemptedAlloc) } } } else { // COMPAT 0.11: This branch is deprecated and will only be used to support // application of older log entries. Expected to be removed in a future version. // Determine the minimum number of updates, could be more if there // are multiple updates per node minUpdates := len(result.NodeUpdate) minUpdates += len(result.NodeAllocation) // Initialize using the older log entry format for Alloc and NodePreemptions req.Alloc = make([]*structs.Allocation, 0, minUpdates) req.NodePreemptions = make([]*structs.Allocation, 0, len(result.NodePreemptions)) for _, updateList := range result.NodeUpdate { req.Alloc = append(req.Alloc, updateList...) } for _, allocList := range result.NodeAllocation { req.Alloc = append(req.Alloc, allocList...) } for _, preemptions := range result.NodePreemptions { req.NodePreemptions = append(req.NodePreemptions, preemptions...) } // Set the time the alloc was applied for the first time. This can be used // to approximate the scheduling time. updateAllocTimestamps(req.Alloc, now) // Set modify time for preempted allocs if any // Also gather jobids to create follow up evals for _, alloc := range req.NodePreemptions { alloc.ModifyTime = now appendNamespacedJobID(preemptedJobIDs, alloc) } } var evals []*structs.Evaluation for preemptedJobID := range preemptedJobIDs { job, _ := p.State().JobByID(nil, preemptedJobID.Namespace, preemptedJobID.ID) if job != nil { eval := &structs.Evaluation{ ID: uuid.Generate(), Namespace: job.Namespace, TriggeredBy: structs.EvalTriggerPreemption, JobID: job.ID, Type: job.Type, Priority: job.Priority, Status: structs.EvalStatusPending, CreateTime: now, ModifyTime: now, } evals = append(evals, eval) } } req.PreemptionEvals = evals // Dispatch the Raft transaction future, err := p.raftApplyFuture(structs.ApplyPlanResultsRequestType, &req) if err != nil { return nil, err } // Optimistically apply to our state view if snap != nil { nextIdx := p.raft.AppliedIndex() + 1 if err := snap.UpsertPlanResults(structs.ApplyPlanResultsRequestType, nextIdx, &req); err != nil { return future, err } } return future, nil } // normalizePreemptedAlloc removes redundant fields from a preempted allocation and // returns AllocationDiff. Since a preempted allocation is always an existing allocation, // the struct returned by this method contains only the differential, which can be // applied to an existing allocation, to yield the updated struct func normalizePreemptedAlloc(preemptedAlloc *structs.Allocation, now int64) *structs.AllocationDiff { return &structs.AllocationDiff{ ID: preemptedAlloc.ID, PreemptedByAllocation: preemptedAlloc.PreemptedByAllocation, ModifyTime: now, } } // normalizeStoppedAlloc removes redundant fields from a stopped allocation and // returns AllocationDiff. Since a stopped allocation is always an existing allocation, // the struct returned by this method contains only the differential, which can be // applied to an existing allocation, to yield the updated struct func normalizeStoppedAlloc(stoppedAlloc *structs.Allocation, now int64) *structs.AllocationDiff { return &structs.AllocationDiff{ ID: stoppedAlloc.ID, DesiredDescription: stoppedAlloc.DesiredDescription, ClientStatus: stoppedAlloc.ClientStatus, ModifyTime: now, FollowupEvalID: stoppedAlloc.FollowupEvalID, } } // appendNamespacedJobID appends the namespaced Job ID for the alloc to the jobIDs set func appendNamespacedJobID(jobIDs map[structs.NamespacedID]struct{}, alloc *structs.Allocation) { id := structs.NamespacedID{Namespace: alloc.Namespace, ID: alloc.JobID} if _, ok := jobIDs[id]; !ok { jobIDs[id] = struct{}{} } } // updateAllocTimestamps sets the CreateTime and ModifyTime for the allocations // to the timestamp provided func updateAllocTimestamps(allocations []*structs.Allocation, timestamp int64) { for _, alloc := range allocations { if alloc.CreateTime == 0 { alloc.CreateTime = timestamp } alloc.ModifyTime = timestamp } } // asyncPlanWait is used to apply and respond to a plan async. On successful // commit the plan's index will be sent on the chan. On error the chan will be // closed. func (p *planner) asyncPlanWait(indexCh chan<- uint64, future raft.ApplyFuture, result *structs.PlanResult, pending *pendingPlan) { defer metrics.MeasureSince([]string{"nomad", "plan", "apply"}, time.Now()) // Wait for the plan to apply if err := future.Error(); err != nil { p.logger.Error("failed to apply plan", "error", err) pending.respond(nil, err) // Close indexCh on error close(indexCh) return } // Respond to the plan index := future.Index() result.AllocIndex = index // If this is a partial plan application, we need to ensure the scheduler // at least has visibility into any placements it made to avoid double placement. // The RefreshIndex computed by evaluatePlan may be stale due to evaluation // against an optimistic copy of the state. if result.RefreshIndex != 0 { result.RefreshIndex = maxUint64(result.RefreshIndex, result.AllocIndex) } pending.respond(result, nil) indexCh <- index } // evaluatePlan is used to determine what portions of a plan // can be applied if any. Returns if there should be a plan application // which may be partial or if there was an error func evaluatePlan(pool *EvaluatePool, snap *state.StateSnapshot, plan *structs.Plan, logger log.Logger) (*structs.PlanResult, error) { defer metrics.MeasureSince([]string{"nomad", "plan", "evaluate"}, time.Now()) // Denormalize without the job err := snap.DenormalizeAllocationsMap(plan.NodeUpdate) if err != nil { return nil, err } // Denormalize without the job err = snap.DenormalizeAllocationsMap(plan.NodePreemptions) if err != nil { return nil, err } // Check if the plan exceeds quota overQuota, err := evaluatePlanQuota(snap, plan) if err != nil { return nil, err } // Reject the plan and force the scheduler to refresh if overQuota { index, err := refreshIndex(snap) if err != nil { return nil, err } logger.Debug("plan for evaluation exceeds quota limit. Forcing state refresh", "eval_id", plan.EvalID, "refresh_index", index) return &structs.PlanResult{RefreshIndex: index}, nil } return evaluatePlanPlacements(pool, snap, plan, logger) } // evaluatePlanPlacements is used to determine what portions of a plan can be // applied if any, looking for node over commitment. Returns if there should be // a plan application which may be partial or if there was an error func evaluatePlanPlacements(pool *EvaluatePool, snap *state.StateSnapshot, plan *structs.Plan, logger log.Logger) (*structs.PlanResult, error) { // Create a result holder for the plan result := &structs.PlanResult{ NodeUpdate: make(map[string][]*structs.Allocation), NodeAllocation: make(map[string][]*structs.Allocation), Deployment: plan.Deployment.Copy(), DeploymentUpdates: plan.DeploymentUpdates, NodePreemptions: make(map[string][]*structs.Allocation), } // Collect all the nodeIDs nodeIDs := make(map[string]struct{}) nodeIDList := make([]string, 0, len(plan.NodeUpdate)+len(plan.NodeAllocation)) for nodeID := range plan.NodeUpdate { if _, ok := nodeIDs[nodeID]; !ok { nodeIDs[nodeID] = struct{}{} nodeIDList = append(nodeIDList, nodeID) } } for nodeID := range plan.NodeAllocation { if _, ok := nodeIDs[nodeID]; !ok { nodeIDs[nodeID] = struct{}{} nodeIDList = append(nodeIDList, nodeID) } } // Setup a multierror to handle potentially getting many // errors since we are processing in parallel. var mErr multierror.Error partialCommit := false // handleResult is used to process the result of evaluateNodePlan handleResult := func(nodeID string, fit bool, reason string, err error) (cancel bool) { // Evaluate the plan for this node if err != nil { mErr.Errors = append(mErr.Errors, err) return true } if !fit { // Log the reason why the node's allocations could not be made if reason != "" { logger.Debug("plan for node rejected", "node_id", nodeID, "reason", reason, "eval_id", plan.EvalID) } // Set that this is a partial commit partialCommit = true // If we require all-at-once scheduling, there is no point // to continue the evaluation, as we've already failed. if plan.AllAtOnce { result.NodeUpdate = nil result.NodeAllocation = nil result.DeploymentUpdates = nil result.Deployment = nil result.NodePreemptions = nil return true } // Skip this node, since it cannot be used. return } // Add this to the plan result if nodeUpdate := plan.NodeUpdate[nodeID]; len(nodeUpdate) > 0 { result.NodeUpdate[nodeID] = nodeUpdate } if nodeAlloc := plan.NodeAllocation[nodeID]; len(nodeAlloc) > 0 { result.NodeAllocation[nodeID] = nodeAlloc } if nodePreemptions := plan.NodePreemptions[nodeID]; nodePreemptions != nil { // Do a pass over preempted allocs in the plan to check // whether the alloc is already in a terminal state var filteredNodePreemptions []*structs.Allocation for _, preemptedAlloc := range nodePreemptions { alloc, err := snap.AllocByID(nil, preemptedAlloc.ID) if err != nil { mErr.Errors = append(mErr.Errors, err) continue } if alloc != nil && !alloc.TerminalStatus() { filteredNodePreemptions = append(filteredNodePreemptions, preemptedAlloc) } } result.NodePreemptions[nodeID] = filteredNodePreemptions } return } // Get the pool channels req := pool.RequestCh() resp := pool.ResultCh() outstanding := 0 didCancel := false // Evaluate each node in the plan, handling results as they are ready to // avoid blocking. OUTER: for len(nodeIDList) > 0 { nodeID := nodeIDList[0] select { case req <- evaluateRequest{snap, plan, nodeID}: outstanding++ nodeIDList = nodeIDList[1:] case r := <-resp: outstanding-- // Handle a result that allows us to cancel evaluation, // which may save time processing additional entries. if cancel := handleResult(r.nodeID, r.fit, r.reason, r.err); cancel { didCancel = true break OUTER } } } // Drain the remaining results for outstanding > 0 { r := <-resp if !didCancel { if cancel := handleResult(r.nodeID, r.fit, r.reason, r.err); cancel { didCancel = true } } outstanding-- } // If the plan resulted in a partial commit, we need to determine // a minimum refresh index to force the scheduler to work on a more // up-to-date state to avoid the failures. if partialCommit { index, err := refreshIndex(snap) if err != nil { mErr.Errors = append(mErr.Errors, err) } result.RefreshIndex = index if result.RefreshIndex == 0 { err := fmt.Errorf("partialCommit with RefreshIndex of 0") mErr.Errors = append(mErr.Errors, err) } // If there was a partial commit and we are operating within a // deployment correct for any canary that may have been desired to be // placed but wasn't actually placed correctDeploymentCanaries(result) } return result, mErr.ErrorOrNil() } // correctDeploymentCanaries ensures that the deployment object doesn't list any // canaries as placed if they didn't actually get placed. This could happen if // the plan had a partial commit. func correctDeploymentCanaries(result *structs.PlanResult) { // Hot path if result.Deployment == nil || !result.Deployment.HasPlacedCanaries() { return } // Build a set of all the allocations IDs that were placed placedAllocs := make(map[string]struct{}, len(result.NodeAllocation)) for _, placed := range result.NodeAllocation { for _, alloc := range placed { placedAllocs[alloc.ID] = struct{}{} } } // Go through all the canaries and ensure that the result list only contains // those that have been placed for _, group := range result.Deployment.TaskGroups { canaries := group.PlacedCanaries if len(canaries) == 0 { continue } // Prune the canaries in place to avoid allocating an extra slice i := 0 for _, canaryID := range canaries { if _, ok := placedAllocs[canaryID]; ok { canaries[i] = canaryID i++ } } group.PlacedCanaries = canaries[:i] } } // evaluateNodePlan is used to evaluate the plan for a single node, // returning if the plan is valid or if an error is encountered func evaluateNodePlan(snap *state.StateSnapshot, plan *structs.Plan, nodeID string) (bool, string, error) { // If this is an evict-only plan, it always 'fits' since we are removing things. if len(plan.NodeAllocation[nodeID]) == 0 { return true, "", nil } // Get the node itself ws := memdb.NewWatchSet() node, err := snap.NodeByID(ws, nodeID) if err != nil { return false, "", fmt.Errorf("failed to get node '%s': %v", nodeID, err) } // If the node does not exist or is not ready for scheduling it is not fit // XXX: There is a potential race between when we do this check and when // the Raft commit happens. if node == nil { return false, "node does not exist", nil } else if node.Status != structs.NodeStatusReady { return false, "node is not ready for placements", nil } else if node.SchedulingEligibility == structs.NodeSchedulingIneligible { return false, "node is not eligible for draining", nil } else if node.Drain { // Deprecate in favor of scheduling eligibility and remove post-0.8 return false, "node is draining", nil } // Get the existing allocations that are non-terminal existingAlloc, err := snap.AllocsByNodeTerminal(ws, nodeID, false) if err != nil { return false, "", fmt.Errorf("failed to get existing allocations for '%s': %v", nodeID, err) } // Determine the proposed allocation by first removing allocations // that are planned evictions and adding the new allocations. var remove []*structs.Allocation if update := plan.NodeUpdate[nodeID]; len(update) > 0 { remove = append(remove, update...) } // Remove any preempted allocs if preempted := plan.NodePreemptions[nodeID]; len(preempted) > 0 { remove = append(remove, preempted...) } if updated := plan.NodeAllocation[nodeID]; len(updated) > 0 { remove = append(remove, updated...) } proposed := structs.RemoveAllocs(existingAlloc, remove) proposed = append(proposed, plan.NodeAllocation[nodeID]...) // Check if these allocations fit fit, reason, _, err := structs.AllocsFit(node, proposed, nil, true) return fit, reason, err } func max(a, b uint64) uint64 { if a > b { return a } return b }