package structs import ( "bytes" "crypto/sha1" "errors" "fmt" "io" "reflect" "regexp" "strconv" "strings" "time" "github.com/gorhill/cronexpr" "github.com/hashicorp/go-msgpack/codec" "github.com/hashicorp/go-multierror" "github.com/hashicorp/go-version" "github.com/hashicorp/nomad/helper/args" "github.com/mitchellh/copystructure" ) var ( ErrNoLeader = fmt.Errorf("No cluster leader") ErrNoRegionPath = fmt.Errorf("No path to region") ) type MessageType uint8 const ( NodeRegisterRequestType MessageType = iota NodeDeregisterRequestType NodeUpdateStatusRequestType NodeUpdateDrainRequestType JobRegisterRequestType JobDeregisterRequestType EvalUpdateRequestType EvalDeleteRequestType AllocUpdateRequestType AllocClientUpdateRequestType ) const ( // IgnoreUnknownTypeFlag is set along with a MessageType // to indicate that the message type can be safely ignored // if it is not recognized. This is for future proofing, so // that new commands can be added in a way that won't cause // old servers to crash when the FSM attempts to process them. IgnoreUnknownTypeFlag MessageType = 128 ) // RPCInfo is used to describe common information about query type RPCInfo interface { RequestRegion() string IsRead() bool AllowStaleRead() bool } // QueryOptions is used to specify various flags for read queries type QueryOptions struct { // The target region for this query Region string // If set, wait until query exceeds given index. Must be provided // with MaxQueryTime. MinQueryIndex uint64 // Provided with MinQueryIndex to wait for change. MaxQueryTime time.Duration // If set, any follower can service the request. Results // may be arbitrarily stale. AllowStale bool } func (q QueryOptions) RequestRegion() string { return q.Region } // QueryOption only applies to reads, so always true func (q QueryOptions) IsRead() bool { return true } func (q QueryOptions) AllowStaleRead() bool { return q.AllowStale } type WriteRequest struct { // The target region for this write Region string } func (w WriteRequest) RequestRegion() string { // The target region for this request return w.Region } // WriteRequest only applies to writes, always false func (w WriteRequest) IsRead() bool { return false } func (w WriteRequest) AllowStaleRead() bool { return false } // QueryMeta allows a query response to include potentially // useful metadata about a query type QueryMeta struct { // This is the index associated with the read Index uint64 // If AllowStale is used, this is time elapsed since // last contact between the follower and leader. This // can be used to gauge staleness. LastContact time.Duration // Used to indicate if there is a known leader node KnownLeader bool } // WriteMeta allows a write response to includ e potentially // useful metadata about the write type WriteMeta struct { // This is the index associated with the write Index uint64 } // NodeRegisterRequest is used for Node.Register endpoint // to register a node as being a schedulable entity. type NodeRegisterRequest struct { Node *Node WriteRequest } // NodeDeregisterRequest is used for Node.Deregister endpoint // to deregister a node as being a schedulable entity. type NodeDeregisterRequest struct { NodeID string WriteRequest } // NodeUpdateStatusRequest is used for Node.UpdateStatus endpoint // to update the status of a node. type NodeUpdateStatusRequest struct { NodeID string Status string WriteRequest } // NodeUpdateDrainRequest is used for updatin the drain status type NodeUpdateDrainRequest struct { NodeID string Drain bool WriteRequest } // NodeEvaluateRequest is used to re-evaluate the ndoe type NodeEvaluateRequest struct { NodeID string WriteRequest } // NodeSpecificRequest is used when we just need to specify a target node type NodeSpecificRequest struct { NodeID string QueryOptions } // JobRegisterRequest is used for Job.Register endpoint // to register a job as being a schedulable entity. type JobRegisterRequest struct { Job *Job WriteRequest } // JobDeregisterRequest is used for Job.Deregister endpoint // to deregister a job as being a schedulable entity. type JobDeregisterRequest struct { JobID string WriteRequest } // JobEvaluateRequest is used when we just need to re-evaluate a target job type JobEvaluateRequest struct { JobID string WriteRequest } // JobSpecificRequest is used when we just need to specify a target job type JobSpecificRequest struct { JobID string QueryOptions } // JobListRequest is used to parameterize a list request type JobListRequest struct { QueryOptions } // NodeListRequest is used to parameterize a list request type NodeListRequest struct { QueryOptions } // EvalUpdateRequest is used for upserting evaluations. type EvalUpdateRequest struct { Evals []*Evaluation EvalToken string WriteRequest } // EvalDeleteRequest is used for deleting an evaluation. type EvalDeleteRequest struct { Evals []string Allocs []string WriteRequest } // EvalSpecificRequest is used when we just need to specify a target evaluation type EvalSpecificRequest struct { EvalID string QueryOptions } // EvalAckRequest is used to Ack/Nack a specific evaluation type EvalAckRequest struct { EvalID string Token string WriteRequest } // EvalDequeueRequest is used when we want to dequeue an evaluation type EvalDequeueRequest struct { Schedulers []string Timeout time.Duration WriteRequest } // EvalListRequest is used to list the evaluations type EvalListRequest struct { QueryOptions } // PlanRequest is used to submit an allocation plan to the leader type PlanRequest struct { Plan *Plan WriteRequest } // AllocUpdateRequest is used to submit changes to allocations, either // to cause evictions or to assign new allocaitons. Both can be done // within a single transaction type AllocUpdateRequest struct { // Alloc is the list of new allocations to assign Alloc []*Allocation WriteRequest } // AllocListRequest is used to request a list of allocations type AllocListRequest struct { QueryOptions } // AllocSpecificRequest is used to query a specific allocation type AllocSpecificRequest struct { AllocID string QueryOptions } // GenericRequest is used to request where no // specific information is needed. type GenericRequest struct { QueryOptions } // GenericResponse is used to respond to a request where no // specific response information is needed. type GenericResponse struct { WriteMeta } const ( ProtocolVersion = "protocol" APIMajorVersion = "api.major" APIMinorVersion = "api.minor" ) // VersionResponse is used for the Status.Version reseponse type VersionResponse struct { Build string Versions map[string]int QueryMeta } // JobRegisterResponse is used to respond to a job registration type JobRegisterResponse struct { EvalID string EvalCreateIndex uint64 JobModifyIndex uint64 QueryMeta } // JobDeregisterResponse is used to respond to a job deregistration type JobDeregisterResponse struct { EvalID string EvalCreateIndex uint64 JobModifyIndex uint64 QueryMeta } // NodeUpdateResponse is used to respond to a node update type NodeUpdateResponse struct { HeartbeatTTL time.Duration EvalIDs []string EvalCreateIndex uint64 NodeModifyIndex uint64 QueryMeta } // NodeDrainUpdateResponse is used to respond to a node drain update type NodeDrainUpdateResponse struct { EvalIDs []string EvalCreateIndex uint64 NodeModifyIndex uint64 QueryMeta } // NodeAllocsResponse is used to return allocs for a single node type NodeAllocsResponse struct { Allocs []*Allocation QueryMeta } // SingleNodeResponse is used to return a single node type SingleNodeResponse struct { Node *Node QueryMeta } // JobListResponse is used for a list request type NodeListResponse struct { Nodes []*NodeListStub QueryMeta } // SingleJobResponse is used to return a single job type SingleJobResponse struct { Job *Job QueryMeta } // JobListResponse is used for a list request type JobListResponse struct { Jobs []*JobListStub QueryMeta } // SingleAllocResponse is used to return a single allocation type SingleAllocResponse struct { Alloc *Allocation QueryMeta } // JobAllocationsResponse is used to return the allocations for a job type JobAllocationsResponse struct { Allocations []*AllocListStub QueryMeta } // JobEvaluationsResponse is used to return the evaluations for a job type JobEvaluationsResponse struct { Evaluations []*Evaluation QueryMeta } // SingleEvalResponse is used to return a single evaluation type SingleEvalResponse struct { Eval *Evaluation QueryMeta } // EvalDequeueResponse is used to return from a dequeue type EvalDequeueResponse struct { Eval *Evaluation Token string QueryMeta } // PlanResponse is used to return from a PlanRequest type PlanResponse struct { Result *PlanResult WriteMeta } // AllocListResponse is used for a list request type AllocListResponse struct { Allocations []*AllocListStub QueryMeta } // EvalListResponse is used for a list request type EvalListResponse struct { Evaluations []*Evaluation QueryMeta } // EvalAllocationsResponse is used to return the allocations for an evaluation type EvalAllocationsResponse struct { Allocations []*AllocListStub QueryMeta } const ( NodeStatusInit = "initializing" NodeStatusReady = "ready" NodeStatusDown = "down" ) // ShouldDrainNode checks if a given node status should trigger an // evaluation. Some states don't require any further action. func ShouldDrainNode(status string) bool { switch status { case NodeStatusInit, NodeStatusReady: return false case NodeStatusDown: return true default: panic(fmt.Sprintf("unhandled node status %s", status)) } } // ValidNodeStatus is used to check if a node status is valid func ValidNodeStatus(status string) bool { switch status { case NodeStatusInit, NodeStatusReady, NodeStatusDown: return true default: return false } } // Node is a representation of a schedulable client node type Node struct { // ID is a unique identifier for the node. It can be constructed // by doing a concatenation of the Name and Datacenter as a simple // approach. Alternatively a UUID may be used. ID string // Datacenter for this node Datacenter string // Node name Name string // Attributes is an arbitrary set of key/value // data that can be used for constraints. Examples // include "kernel.name=linux", "arch=386", "driver.docker=1", // "docker.runtime=1.8.3" Attributes map[string]string // Resources is the available resources on the client. // For example 'cpu=2' 'memory=2048' Resources *Resources // Reserved is the set of resources that are reserved, // and should be subtracted from the total resources for // the purposes of scheduling. This may be provide certain // high-watermark tolerances or because of external schedulers // consuming resources. Reserved *Resources // Links are used to 'link' this client to external // systems. For example 'consul=foo.dc1' 'aws=i-83212' // 'ami=ami-123' Links map[string]string // Meta is used to associate arbitrary metadata with this // client. This is opaque to Nomad. Meta map[string]string // NodeClass is an opaque identifier used to group nodes // together for the purpose of determining scheduling pressure. NodeClass string // Drain is controlled by the servers, and not the client. // If true, no jobs will be scheduled to this node, and existing // allocations will be drained. Drain bool // Status of this node Status string // StatusDescription is meant to provide more human useful information StatusDescription string // Raft Indexes CreateIndex uint64 ModifyIndex uint64 } // TerminalStatus returns if the current status is terminal and // will no longer transition. func (n *Node) TerminalStatus() bool { switch n.Status { case NodeStatusDown: return true default: return false } } // Stub returns a summarized version of the node func (n *Node) Stub() *NodeListStub { return &NodeListStub{ ID: n.ID, Datacenter: n.Datacenter, Name: n.Name, NodeClass: n.NodeClass, Drain: n.Drain, Status: n.Status, StatusDescription: n.StatusDescription, CreateIndex: n.CreateIndex, ModifyIndex: n.ModifyIndex, } } // NodeListStub is used to return a subset of job information // for the job list type NodeListStub struct { ID string Datacenter string Name string NodeClass string Drain bool Status string StatusDescription string CreateIndex uint64 ModifyIndex uint64 } // Resources is used to define the resources available // on a client type Resources struct { CPU int MemoryMB int `mapstructure:"memory"` DiskMB int `mapstructure:"disk"` IOPS int Networks []*NetworkResource } // Copy returns a deep copy of the resources func (r *Resources) Copy() *Resources { newR := new(Resources) *newR = *r n := len(r.Networks) newR.Networks = make([]*NetworkResource, n) for i := 0; i < n; i++ { newR.Networks[i] = r.Networks[i].Copy() } return newR } // NetIndex finds the matching net index using device name func (r *Resources) NetIndex(n *NetworkResource) int { for idx, net := range r.Networks { if net.Device == n.Device { return idx } } return -1 } // Superset checks if one set of resources is a superset // of another. This ignores network resources, and the NetworkIndex // should be used for that. func (r *Resources) Superset(other *Resources) (bool, string) { if r.CPU < other.CPU { return false, "cpu exhausted" } if r.MemoryMB < other.MemoryMB { return false, "memory exhausted" } if r.DiskMB < other.DiskMB { return false, "disk exhausted" } if r.IOPS < other.IOPS { return false, "iops exhausted" } return true, "" } // Add adds the resources of the delta to this, potentially // returning an error if not possible. func (r *Resources) Add(delta *Resources) error { if delta == nil { return nil } r.CPU += delta.CPU r.MemoryMB += delta.MemoryMB r.DiskMB += delta.DiskMB r.IOPS += delta.IOPS for _, n := range delta.Networks { // Find the matching interface by IP or CIDR idx := r.NetIndex(n) if idx == -1 { r.Networks = append(r.Networks, n.Copy()) } else { r.Networks[idx].Add(n) } } return nil } func (r *Resources) GoString() string { return fmt.Sprintf("*%#v", *r) } type Port struct { Label string Value int `mapstructure:"static"` } // NetworkResource is used to represent available network // resources type NetworkResource struct { Device string // Name of the device CIDR string // CIDR block of addresses IP string // IP address MBits int // Throughput ReservedPorts []Port // Reserved ports DynamicPorts []Port // Dynamically assigned ports } // Copy returns a deep copy of the network resource func (n *NetworkResource) Copy() *NetworkResource { newR := new(NetworkResource) *newR = *n if n.ReservedPorts != nil { newR.ReservedPorts = make([]Port, len(n.ReservedPorts)) copy(newR.ReservedPorts, n.ReservedPorts) } if n.DynamicPorts != nil { newR.DynamicPorts = make([]Port, len(n.DynamicPorts)) copy(newR.DynamicPorts, n.DynamicPorts) } return newR } // Add adds the resources of the delta to this, potentially // returning an error if not possible. func (n *NetworkResource) Add(delta *NetworkResource) { if len(delta.ReservedPorts) > 0 { n.ReservedPorts = append(n.ReservedPorts, delta.ReservedPorts...) } n.MBits += delta.MBits n.DynamicPorts = append(n.DynamicPorts, delta.DynamicPorts...) } func (n *NetworkResource) GoString() string { return fmt.Sprintf("*%#v", *n) } func (n *NetworkResource) MapLabelToValues(port_map map[string]int) map[string]int { labelValues := make(map[string]int) ports := append(n.ReservedPorts, n.DynamicPorts...) for _, port := range ports { if mapping, ok := port_map[port.Label]; ok { labelValues[port.Label] = mapping } else { labelValues[port.Label] = port.Value } } return labelValues } const ( // JobTypeNomad is reserved for internal system tasks and is // always handled by the CoreScheduler. JobTypeCore = "_core" JobTypeService = "service" JobTypeBatch = "batch" JobTypeSystem = "system" ) const ( JobStatusPending = "pending" // Pending means the job is waiting on scheduling JobStatusRunning = "running" // Running means the entire job is running JobStatusComplete = "complete" // Complete means there was a clean termination JobStatusDead = "dead" // Dead means there was abnormal termination ) const ( // JobMinPriority is the minimum allowed priority JobMinPriority = 1 // JobDefaultPriority is the default priority if not // not specified. JobDefaultPriority = 50 // JobMaxPriority is the maximum allowed priority JobMaxPriority = 100 // Ensure CoreJobPriority is higher than any user // specified job so that it gets priority. This is important // for the system to remain healthy. CoreJobPriority = JobMaxPriority * 2 ) // Job is the scope of a scheduling request to Nomad. It is the largest // scoped object, and is a named collection of task groups. Each task group // is further composed of tasks. A task group (TG) is the unit of scheduling // however. type Job struct { // Region is the Nomad region that handles scheduling this job Region string // ID is a unique identifier for the job per region. It can be // specified hierarchically like LineOfBiz/OrgName/Team/Project ID string // ParentID is the unique identifier of the job that spawned this job. ParentID string // Name is the logical name of the job used to refer to it. This is unique // per region, but not unique globally. Name string // Type is used to control various behaviors about the job. Most jobs // are service jobs, meaning they are expected to be long lived. // Some jobs are batch oriented meaning they run and then terminate. // This can be extended in the future to support custom schedulers. Type string // Priority is used to control scheduling importance and if this job // can preempt other jobs. Priority int // AllAtOnce is used to control if incremental scheduling of task groups // is allowed or if we must do a gang scheduling of the entire job. This // can slow down larger jobs if resources are not available. AllAtOnce bool `mapstructure:"all_at_once"` // Datacenters contains all the datacenters this job is allowed to span Datacenters []string // Constraints can be specified at a job level and apply to // all the task groups and tasks. Constraints []*Constraint // TaskGroups are the collections of task groups that this job needs // to run. Each task group is an atomic unit of scheduling and placement. TaskGroups []*TaskGroup // Update is used to control the update strategy Update UpdateStrategy // Periodic is used to define the interval the job is run at. Periodic *PeriodicConfig // GC is used to mark the job as available for garbage collection after it // has no outstanding evaluations or allocations. GC bool // Meta is used to associate arbitrary metadata with this // job. This is opaque to Nomad. Meta map[string]string // Job status Status string // StatusDescription is meant to provide more human useful information StatusDescription string // Raft Indexes CreateIndex uint64 ModifyIndex uint64 } // InitFields is used to initialize fields in the Job. This should be called // when registering a Job. func (j *Job) InitFields() { for _, tg := range j.TaskGroups { tg.InitFields(j) } // If the job is batch then make it GC. if j.Type == JobTypeBatch { j.GC = true } } // Copy returns a deep copy of the Job. It is expected that callers use recover. // This job can panic if the deep copy failed as it uses reflection. func (j *Job) Copy() *Job { i, err := copystructure.Copy(j) if err != nil { panic(err) } return i.(*Job) } // Validate is used to sanity check a job input func (j *Job) Validate() error { var mErr multierror.Error if j.Region == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing job region")) } if j.ID == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing job ID")) } else if strings.Contains(j.ID, " ") { mErr.Errors = append(mErr.Errors, errors.New("Job ID contains a space")) } if j.Name == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing job name")) } if j.Type == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing job type")) } if j.Priority < JobMinPriority || j.Priority > JobMaxPriority { mErr.Errors = append(mErr.Errors, fmt.Errorf("Job priority must be between [%d, %d]", JobMinPriority, JobMaxPriority)) } if len(j.Datacenters) == 0 { mErr.Errors = append(mErr.Errors, errors.New("Missing job datacenters")) } if len(j.TaskGroups) == 0 { mErr.Errors = append(mErr.Errors, errors.New("Missing job task groups")) } for idx, constr := range j.Constraints { if err := constr.Validate(); err != nil { outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } // Check for duplicate task groups taskGroups := make(map[string]int) for idx, tg := range j.TaskGroups { if tg.Name == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("Job task group %d missing name", idx+1)) } else if existing, ok := taskGroups[tg.Name]; ok { mErr.Errors = append(mErr.Errors, fmt.Errorf("Job task group %d redefines '%s' from group %d", idx+1, tg.Name, existing+1)) } else { taskGroups[tg.Name] = idx } if j.Type == "system" && tg.Count != 1 { mErr.Errors = append(mErr.Errors, fmt.Errorf("Job task group %d has count %d. Only count of 1 is supported with system scheduler", idx+1, tg.Count)) } } // Validate the task group for idx, tg := range j.TaskGroups { if err := tg.Validate(); err != nil { outer := fmt.Errorf("Task group %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } // Validate periodic is only used with batch jobs. if j.IsPeriodic() { if j.Type != JobTypeBatch { mErr.Errors = append(mErr.Errors, fmt.Errorf("Periodic can only be used with %q scheduler", JobTypeBatch)) } if err := j.Periodic.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } return mErr.ErrorOrNil() } // LookupTaskGroup finds a task group by name func (j *Job) LookupTaskGroup(name string) *TaskGroup { for _, tg := range j.TaskGroups { if tg.Name == name { return tg } } return nil } // Stub is used to return a summary of the job func (j *Job) Stub() *JobListStub { return &JobListStub{ ID: j.ID, Name: j.Name, Type: j.Type, Priority: j.Priority, Status: j.Status, StatusDescription: j.StatusDescription, CreateIndex: j.CreateIndex, ModifyIndex: j.ModifyIndex, } } // IsPeriodic returns whether a job is periodic. func (j *Job) IsPeriodic() bool { return j.Periodic != nil } // JobListStub is used to return a subset of job information // for the job list type JobListStub struct { ID string Name string Type string Priority int Status string StatusDescription string CreateIndex uint64 ModifyIndex uint64 } // UpdateStrategy is used to modify how updates are done type UpdateStrategy struct { // Stagger is the amount of time between the updates Stagger time.Duration // MaxParallel is how many updates can be done in parallel MaxParallel int `mapstructure:"max_parallel"` } // Rolling returns if a rolling strategy should be used func (u *UpdateStrategy) Rolling() bool { return u.Stagger > 0 && u.MaxParallel > 0 } const ( // PeriodicSpecCron is used for a cron spec. PeriodicSpecCron = "cron" // PeriodicSpecTest is only used by unit tests. It is a sorted, comma // seperated list of unix timestamps at which to launch. PeriodicSpecTest = "_internal_test" ) // Periodic defines the interval a job should be run at. type PeriodicConfig struct { // Enabled determines if the job should be run periodically. Enabled bool // Spec specifies the interval the job should be run as. It is parsed based // on the SpecType. Spec string // SpecType defines the format of the spec. SpecType string } func (p *PeriodicConfig) Validate() error { if !p.Enabled { return nil } if p.Spec == "" { return fmt.Errorf("Must specify a spec") } switch p.SpecType { case PeriodicSpecCron: // Validate the cron spec if _, err := cronexpr.Parse(p.Spec); err != nil { return fmt.Errorf("Invalid cron spec %q: %v", p.Spec, err) } case PeriodicSpecTest: // No-op default: return fmt.Errorf("Unknown periodic specification type %q", p.SpecType) } return nil } // Next returns the closest time instant matching the spec that is after the // passed time. If no matching instance exists, the zero value of time.Time is // returned. The `time.Location` of the returned value matches that of the // passed time. func (p *PeriodicConfig) Next(fromTime time.Time) time.Time { switch p.SpecType { case PeriodicSpecCron: if e, err := cronexpr.Parse(p.Spec); err == nil { return e.Next(fromTime) } case PeriodicSpecTest: split := strings.Split(p.Spec, ",") if len(split) == 1 && split[0] == "" { return time.Time{} } // Parse the times times := make([]time.Time, len(split)) for i, s := range split { unix, err := strconv.Atoi(s) if err != nil { return time.Time{} } times[i] = time.Unix(int64(unix), 0) } // Find the next match for _, next := range times { if fromTime.Before(next) { return next } } } return time.Time{} } // PeriodicLaunch tracks the last launch time of a periodic job. type PeriodicLaunch struct { ID string // ID of the periodic job. Launch time.Time // The last launch time. // Raft Indexes CreateIndex uint64 ModifyIndex uint64 } var ( defaultServiceJobRestartPolicy = RestartPolicy{ Delay: 15 * time.Second, Attempts: 2, Interval: 1 * time.Minute, RestartOnSuccess: true, Mode: RestartPolicyModeDelay, } defaultBatchJobRestartPolicy = RestartPolicy{ Delay: 15 * time.Second, Attempts: 15, Interval: 7 * 24 * time.Hour, RestartOnSuccess: false, Mode: RestartPolicyModeDelay, } ) const ( // RestartPolicyModeDelay causes an artificial delay till the next interval is // reached when the specified attempts have been reached in the interval. RestartPolicyModeDelay = "delay" // RestartPolicyModeFail causes a job to fail if the specified number of // attempts are reached within an interval. RestartPolicyModeFail = "fail" ) // RestartPolicy configures how Tasks are restarted when they crash or fail. type RestartPolicy struct { // Attempts is the number of restart that will occur in an interval. Attempts int // Interval is a duration in which we can limit the number of restarts // within. Interval time.Duration // Delay is the time between a failure and a restart. Delay time.Duration // RestartOnSuccess determines whether a task should be restarted if it // exited successfully. RestartOnSuccess bool `mapstructure:"on_success"` // Mode controls what happens when the task restarts more than attempt times // in an interval. Mode string } func (r *RestartPolicy) Validate() error { switch r.Mode { case RestartPolicyModeDelay, RestartPolicyModeFail: default: return fmt.Errorf("Unsupported restart mode: %q", r.Mode) } if r.Interval == 0 { return nil } if time.Duration(r.Attempts)*r.Delay > r.Interval { return fmt.Errorf("Nomad can't restart the TaskGroup %v times in an interval of %v with a delay of %v", r.Attempts, r.Interval, r.Delay) } return nil } func NewRestartPolicy(jobType string) *RestartPolicy { switch jobType { case JobTypeService, JobTypeSystem: rp := defaultServiceJobRestartPolicy return &rp case JobTypeBatch: rp := defaultBatchJobRestartPolicy return &rp } return nil } // TaskGroup is an atomic unit of placement. Each task group belongs to // a job and may contain any number of tasks. A task group support running // in many replicas using the same configuration.. type TaskGroup struct { // Name of the task group Name string // Count is the number of replicas of this task group that should // be scheduled. Count int // Constraints can be specified at a task group level and apply to // all the tasks contained. Constraints []*Constraint //RestartPolicy of a TaskGroup RestartPolicy *RestartPolicy // Tasks are the collection of tasks that this task group needs to run Tasks []*Task // Meta is used to associate arbitrary metadata with this // task group. This is opaque to Nomad. Meta map[string]string } // InitFields is used to initialize fields in the TaskGroup. func (tg *TaskGroup) InitFields(job *Job) { // Set the default restart policy. if tg.RestartPolicy == nil { tg.RestartPolicy = NewRestartPolicy(job.Type) } for _, task := range tg.Tasks { task.InitFields(job, tg) } } // Validate is used to sanity check a task group func (tg *TaskGroup) Validate() error { var mErr multierror.Error if tg.Name == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing task group name")) } if tg.Count <= 0 { mErr.Errors = append(mErr.Errors, errors.New("Task group count must be positive")) } if len(tg.Tasks) == 0 { mErr.Errors = append(mErr.Errors, errors.New("Missing tasks for task group")) } for idx, constr := range tg.Constraints { if err := constr.Validate(); err != nil { outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } if tg.RestartPolicy != nil { if err := tg.RestartPolicy.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } else { mErr.Errors = append(mErr.Errors, fmt.Errorf("Task Group %v should have a restart policy", tg.Name)) } // Check for duplicate tasks tasks := make(map[string]int) for idx, task := range tg.Tasks { if task.Name == "" { mErr.Errors = append(mErr.Errors, fmt.Errorf("Task %d missing name", idx+1)) } else if existing, ok := tasks[task.Name]; ok { mErr.Errors = append(mErr.Errors, fmt.Errorf("Task %d redefines '%s' from task %d", idx+1, task.Name, existing+1)) } else { tasks[task.Name] = idx } } // Validate the tasks for idx, task := range tg.Tasks { if err := task.Validate(); err != nil { outer := fmt.Errorf("Task %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } return mErr.ErrorOrNil() } // LookupTask finds a task by name func (tg *TaskGroup) LookupTask(name string) *Task { for _, t := range tg.Tasks { if t.Name == name { return t } } return nil } func (tg *TaskGroup) GoString() string { return fmt.Sprintf("*%#v", *tg) } const ( ServiceCheckHTTP = "http" ServiceCheckTCP = "tcp" ServiceCheckDocker = "docker" ServiceCheckScript = "script" ) // The ServiceCheck data model represents the consul health check that // Nomad registers for a Task type ServiceCheck struct { Name string // Name of the check, defaults to id Type string // Type of the check - tcp, http, docker and script Script string // Script to invoke for script check Path string // path of the health check url for http type check Protocol string // Protocol to use if check is http, defaults to http Interval time.Duration // Interval of the check Timeout time.Duration // Timeout of the response from the check before consul fails the check } func (sc *ServiceCheck) Validate() error { t := strings.ToLower(sc.Type) if t != ServiceCheckTCP && t != ServiceCheckHTTP { return fmt.Errorf("Check with name %v has invalid check type: %s ", sc.Name, sc.Type) } if sc.Type == ServiceCheckHTTP && sc.Path == "" { return fmt.Errorf("http checks needs the Http path information.") } if sc.Type == ServiceCheckScript && sc.Script == "" { return fmt.Errorf("Script checks need the script to invoke") } return nil } func (sc *ServiceCheck) Hash(serviceID string) string { h := sha1.New() io.WriteString(h, serviceID) io.WriteString(h, sc.Name) io.WriteString(h, sc.Type) io.WriteString(h, sc.Script) io.WriteString(h, sc.Path) io.WriteString(h, sc.Path) io.WriteString(h, sc.Protocol) io.WriteString(h, sc.Interval.String()) io.WriteString(h, sc.Timeout.String()) return fmt.Sprintf("%x", h.Sum(nil)) } const ( NomadConsulPrefix = "nomad-registered-service" ) // The Service model represents a Consul service defintion type Service struct { Name string // Name of the service, defaults to id Tags []string // List of tags for the service PortLabel string `mapstructure:"port"` // port for the service Checks []*ServiceCheck // List of checks associated with the service } // InitFields interpolates values of Job, Task Group and Task in the Service // Name. This also generates check names, service id and check ids. func (s *Service) InitFields(job string, taskGroup string, task string) { s.Name = args.ReplaceEnv(s.Name, map[string]string{ "JOB": job, "TASKGROUP": taskGroup, "TASK": task, "BASE": fmt.Sprintf("%s-%s-%s", job, taskGroup, task), }, ) for _, check := range s.Checks { if check.Name == "" { check.Name = fmt.Sprintf("service: %q check", s.Name) } } } // Validate checks if the Check definition is valid func (s *Service) Validate() error { var mErr multierror.Error for _, c := range s.Checks { if err := c.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } return mErr.ErrorOrNil() } // Hash calculates the hash of the check based on it's content and the service // which owns it func (s *Service) Hash() string { h := sha1.New() io.WriteString(h, s.Name) io.WriteString(h, strings.Join(s.Tags, "")) io.WriteString(h, s.PortLabel) return fmt.Sprintf("%x", h.Sum(nil)) } const ( // DefaultKillTimeout is the default timeout between signaling a task it // will be killed and killing it. DefaultKillTimeout = 5 * time.Second ) // Task is a single process typically that is executed as part of a task group. type Task struct { // Name of the task Name string // Driver is used to control which driver is used Driver string // Config is provided to the driver to initialize Config map[string]interface{} // Map of environment variables to be used by the driver Env map[string]string // List of service definitions exposed by the Task Services []*Service // Constraints can be specified at a task level and apply only to // the particular task. Constraints []*Constraint // Resources is the resources needed by this task Resources *Resources // Meta is used to associate arbitrary metadata with this // task. This is opaque to Nomad. Meta map[string]string // KillTimeout is the time between signaling a task that it will be // killed and killing it. KillTimeout time.Duration `mapstructure:"kill_timeout"` } // InitFields initializes fields in the task. func (t *Task) InitFields(job *Job, tg *TaskGroup) { t.InitServiceFields(job.Name, tg.Name) // Set the default timeout if it is not specified. if t.KillTimeout == 0 { t.KillTimeout = DefaultKillTimeout } } // InitServiceFields interpolates values of Job, Task Group // and Tasks in all the service Names of a Task. This also generates the service // id, check id and check names. func (t *Task) InitServiceFields(job string, taskGroup string) { for _, service := range t.Services { service.InitFields(job, taskGroup, t.Name) } } func (t *Task) GoString() string { return fmt.Sprintf("*%#v", *t) } func (t *Task) FindHostAndPortFor(portLabel string) (string, int) { for _, network := range t.Resources.Networks { if p, ok := network.MapLabelToValues(nil)[portLabel]; ok { return network.IP, p } } return "", 0 } // Set of possible states for a task. const ( TaskStatePending = "pending" // The task is waiting to be run. TaskStateRunning = "running" // The task is currently running. TaskStateDead = "dead" // Terminal state of task. ) // TaskState tracks the current state of a task and events that caused state // transistions. type TaskState struct { // The current state of the task. State string // Series of task events that transistion the state of the task. Events []*TaskEvent } const ( // A Driver failure indicates that the task could not be started due to a // failure in the driver. TaskDriverFailure = "Driver Failure" // Task Started signals that the task was started and its timestamp can be // used to determine the running length of the task. TaskStarted = "Started" // Task terminated indicates that the task was started and exited. TaskTerminated = "Terminated" // Task Killed indicates a user has killed the task. TaskKilled = "Killed" ) // TaskEvent is an event that effects the state of a task and contains meta-data // appropriate to the events type. type TaskEvent struct { Type string Time int64 // Unix Nanosecond timestamp // Driver Failure fields. DriverError string // A driver error occured while starting the task. // Task Terminated Fields. ExitCode int // The exit code of the task. Signal int // The signal that terminated the task. Message string // A possible message explaining the termination of the task. // Task Killed Fields. KillError string // Error killing the task. } func NewTaskEvent(event string) *TaskEvent { return &TaskEvent{ Type: event, Time: time.Now().UnixNano(), } } func (e *TaskEvent) SetDriverError(err error) *TaskEvent { if err != nil { e.DriverError = err.Error() } return e } func (e *TaskEvent) SetExitCode(c int) *TaskEvent { e.ExitCode = c return e } func (e *TaskEvent) SetSignal(s int) *TaskEvent { e.Signal = s return e } func (e *TaskEvent) SetExitMessage(err error) *TaskEvent { if err != nil { e.Message = err.Error() } return e } func (e *TaskEvent) SetKillError(err error) *TaskEvent { if err != nil { e.KillError = err.Error() } return e } // Validate is used to sanity check a task group func (t *Task) Validate() error { var mErr multierror.Error if t.Name == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing task name")) } if t.Driver == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing task driver")) } if t.Resources == nil { mErr.Errors = append(mErr.Errors, errors.New("Missing task resources")) } if t.KillTimeout.Nanoseconds() < 0 { mErr.Errors = append(mErr.Errors, errors.New("KillTimeout must be a positive value")) } for idx, constr := range t.Constraints { if err := constr.Validate(); err != nil { outer := fmt.Errorf("Constraint %d validation failed: %s", idx+1, err) mErr.Errors = append(mErr.Errors, outer) } } for _, service := range t.Services { if err := service.Validate(); err != nil { mErr.Errors = append(mErr.Errors, err) } } return mErr.ErrorOrNil() } const ( ConstraintDistinctHosts = "distinct_hosts" ConstraintRegex = "regexp" ConstraintVersion = "version" ) // Constraints are used to restrict placement options. type Constraint struct { LTarget string // Left-hand target RTarget string // Right-hand target Operand string // Constraint operand (<=, <, =, !=, >, >=), contains, near } func (c *Constraint) String() string { return fmt.Sprintf("%s %s %s", c.LTarget, c.Operand, c.RTarget) } func (c *Constraint) Validate() error { var mErr multierror.Error if c.Operand == "" { mErr.Errors = append(mErr.Errors, errors.New("Missing constraint operand")) } // Perform additional validation based on operand switch c.Operand { case ConstraintRegex: if _, err := regexp.Compile(c.RTarget); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Regular expression failed to compile: %v", err)) } case ConstraintVersion: if _, err := version.NewConstraint(c.RTarget); err != nil { mErr.Errors = append(mErr.Errors, fmt.Errorf("Version constraint is invalid: %v", err)) } } return mErr.ErrorOrNil() } const ( AllocDesiredStatusRun = "run" // Allocation should run AllocDesiredStatusStop = "stop" // Allocation should stop AllocDesiredStatusEvict = "evict" // Allocation should stop, and was evicted AllocDesiredStatusFailed = "failed" // Allocation failed to be done ) const ( AllocClientStatusPending = "pending" AllocClientStatusRunning = "running" AllocClientStatusDead = "dead" AllocClientStatusFailed = "failed" ) // Allocation is used to allocate the placement of a task group to a node. type Allocation struct { // ID of the allocation (UUID) ID string // ID of the evaluation that generated this allocation EvalID string // Name is a logical name of the allocation. Name string // NodeID is the node this is being placed on NodeID string // Job is the parent job of the task group being allocated. // This is copied at allocation time to avoid issues if the job // definition is updated. JobID string Job *Job // TaskGroup is the name of the task group that should be run TaskGroup string // Resources is the total set of resources allocated as part // of this allocation of the task group. Resources *Resources // TaskResources is the set of resources allocated to each // task. These should sum to the total Resources. TaskResources map[string]*Resources // Services is a map of service names to service ids Services map[string]string // Metrics associated with this allocation Metrics *AllocMetric // Desired Status of the allocation on the client DesiredStatus string // DesiredStatusDescription is meant to provide more human useful information DesiredDescription string // Status of the allocation on the client ClientStatus string // ClientStatusDescription is meant to provide more human useful information ClientDescription string // TaskStates stores the state of each task, TaskStates map[string]*TaskState // Raft Indexes CreateIndex uint64 ModifyIndex uint64 } // TerminalStatus returns if the desired or actual status is terminal and // will no longer transition. func (a *Allocation) TerminalStatus() bool { // First check the desired state and if that isn't terminal, check client // state. switch a.DesiredStatus { case AllocDesiredStatusStop, AllocDesiredStatusEvict, AllocDesiredStatusFailed: return true default: } switch a.ClientStatus { case AllocClientStatusDead, AllocClientStatusFailed: return true default: return false } } // Stub returns a list stub for the allocation func (a *Allocation) Stub() *AllocListStub { return &AllocListStub{ ID: a.ID, EvalID: a.EvalID, Name: a.Name, NodeID: a.NodeID, JobID: a.JobID, TaskGroup: a.TaskGroup, DesiredStatus: a.DesiredStatus, DesiredDescription: a.DesiredDescription, ClientStatus: a.ClientStatus, ClientDescription: a.ClientDescription, TaskStates: a.TaskStates, CreateIndex: a.CreateIndex, ModifyIndex: a.ModifyIndex, } } // PopulateServiceIDs generates the service IDs for all the service definitions // in that Allocation func (a *Allocation) PopulateServiceIDs() { // Make a copy of the old map which contains the service names and their // generated IDs oldIDs := make(map[string]string) for k, v := range a.Services { oldIDs[k] = v } a.Services = make(map[string]string) tg := a.Job.LookupTaskGroup(a.TaskGroup) for _, task := range tg.Tasks { for _, service := range task.Services { // If the ID for a service name is already generated then we re-use // it if ID, ok := oldIDs[service.Name]; ok { a.Services[service.Name] = ID } else { // If the service hasn't been generated an ID, we generate one. // We add a prefix to the Service ID so that we can know that this service // is managed by Nomad since Consul can also have service which are not // managed by Nomad a.Services[service.Name] = fmt.Sprintf("%s-%s", NomadConsulPrefix, GenerateUUID()) } } } } // AllocListStub is used to return a subset of alloc information type AllocListStub struct { ID string EvalID string Name string NodeID string JobID string TaskGroup string DesiredStatus string DesiredDescription string ClientStatus string ClientDescription string TaskStates map[string]*TaskState CreateIndex uint64 ModifyIndex uint64 } // AllocMetric is used to track various metrics while attempting // to make an allocation. These are used to debug a job, or to better // understand the pressure within the system. type AllocMetric struct { // NodesEvaluated is the number of nodes that were evaluated NodesEvaluated int // NodesFiltered is the number of nodes filtered due to a constraint NodesFiltered int // ClassFiltered is the number of nodes filtered by class ClassFiltered map[string]int // ConstraintFiltered is the number of failures caused by constraint ConstraintFiltered map[string]int // NodesExhausted is the number of nodes skipped due to being // exhausted of at least one resource NodesExhausted int // ClassExhausted is the number of nodes exhausted by class ClassExhausted map[string]int // DimensionExhausted provides the count by dimension or reason DimensionExhausted map[string]int // Scores is the scores of the final few nodes remaining // for placement. The top score is typically selected. Scores map[string]float64 // AllocationTime is a measure of how long the allocation // attempt took. This can affect performance and SLAs. AllocationTime time.Duration // CoalescedFailures indicates the number of other // allocations that were coalesced into this failed allocation. // This is to prevent creating many failed allocations for a // single task group. CoalescedFailures int } func (a *AllocMetric) EvaluateNode() { a.NodesEvaluated += 1 } func (a *AllocMetric) FilterNode(node *Node, constraint string) { a.NodesFiltered += 1 if node != nil && node.NodeClass != "" { if a.ClassFiltered == nil { a.ClassFiltered = make(map[string]int) } a.ClassFiltered[node.NodeClass] += 1 } if constraint != "" { if a.ConstraintFiltered == nil { a.ConstraintFiltered = make(map[string]int) } a.ConstraintFiltered[constraint] += 1 } } func (a *AllocMetric) ExhaustedNode(node *Node, dimension string) { a.NodesExhausted += 1 if node != nil && node.NodeClass != "" { if a.ClassExhausted == nil { a.ClassExhausted = make(map[string]int) } a.ClassExhausted[node.NodeClass] += 1 } if dimension != "" { if a.DimensionExhausted == nil { a.DimensionExhausted = make(map[string]int) } a.DimensionExhausted[dimension] += 1 } } func (a *AllocMetric) ScoreNode(node *Node, name string, score float64) { if a.Scores == nil { a.Scores = make(map[string]float64) } key := fmt.Sprintf("%s.%s", node.ID, name) a.Scores[key] = score } const ( EvalStatusPending = "pending" EvalStatusComplete = "complete" EvalStatusFailed = "failed" ) const ( EvalTriggerJobRegister = "job-register" EvalTriggerJobDeregister = "job-deregister" EvalTriggerNodeUpdate = "node-update" EvalTriggerScheduled = "scheduled" EvalTriggerRollingUpdate = "rolling-update" ) const ( // CoreJobEvalGC is used for the garbage collection of evaluations // and allocations. We periodically scan evaluations in a terminal state, // in which all the corresponding allocations are also terminal. We // delete these out of the system to bound the state. CoreJobEvalGC = "eval-gc" // CoreJobNodeGC is used for the garbage collection of failed nodes. // We periodically scan nodes in a terminal state, and if they have no // corresponding allocations we delete these out of the system. CoreJobNodeGC = "node-gc" // CoreJobJobGC is used for the garbage collection of eligible jobs. We // periodically scan garbage collectible jobs and check if both their // evaluations and allocations are terminal. If so, we delete these out of // the system. CoreJobJobGC = "job-gc" ) // Evaluation is used anytime we need to apply business logic as a result // of a change to our desired state (job specification) or the emergent state // (registered nodes). When the inputs change, we need to "evaluate" them, // potentially taking action (allocation of work) or doing nothing if the state // of the world does not require it. type Evaluation struct { // ID is a randonly generated UUID used for this evaluation. This // is assigned upon the creation of the evaluation. ID string // Priority is used to control scheduling importance and if this job // can preempt other jobs. Priority int // Type is used to control which schedulers are available to handle // this evaluation. Type string // TriggeredBy is used to give some insight into why this Eval // was created. (Job change, node failure, alloc failure, etc). TriggeredBy string // JobID is the job this evaluation is scoped to. Evaluations cannot // be run in parallel for a given JobID, so we serialize on this. JobID string // JobModifyIndex is the modify index of the job at the time // the evaluation was created JobModifyIndex uint64 // NodeID is the node that was affected triggering the evaluation. NodeID string // NodeModifyIndex is the modify index of the node at the time // the evaluation was created NodeModifyIndex uint64 // Status of the evaluation Status string // StatusDescription is meant to provide more human useful information StatusDescription string // Wait is a minimum wait time for running the eval. This is used to // support a rolling upgrade. Wait time.Duration // NextEval is the evaluation ID for the eval created to do a followup. // This is used to support rolling upgrades, where we need a chain of evaluations. NextEval string // PreviousEval is the evaluation ID for the eval creating this one to do a followup. // This is used to support rolling upgrades, where we need a chain of evaluations. PreviousEval string // Raft Indexes CreateIndex uint64 ModifyIndex uint64 } // TerminalStatus returns if the current status is terminal and // will no longer transition. func (e *Evaluation) TerminalStatus() bool { switch e.Status { case EvalStatusComplete, EvalStatusFailed: return true default: return false } } func (e *Evaluation) GoString() string { return fmt.Sprintf("", e.ID, e.JobID) } func (e *Evaluation) Copy() *Evaluation { ne := new(Evaluation) *ne = *e return ne } // ShouldEnqueue checks if a given evaluation should be enqueued func (e *Evaluation) ShouldEnqueue() bool { switch e.Status { case EvalStatusPending: return true case EvalStatusComplete, EvalStatusFailed: return false default: panic(fmt.Sprintf("unhandled evaluation (%s) status %s", e.ID, e.Status)) } } // MakePlan is used to make a plan from the given evaluation // for a given Job func (e *Evaluation) MakePlan(j *Job) *Plan { p := &Plan{ EvalID: e.ID, Priority: e.Priority, NodeUpdate: make(map[string][]*Allocation), NodeAllocation: make(map[string][]*Allocation), } if j != nil { p.AllAtOnce = j.AllAtOnce } return p } // NextRollingEval creates an evaluation to followup this eval for rolling updates func (e *Evaluation) NextRollingEval(wait time.Duration) *Evaluation { return &Evaluation{ ID: GenerateUUID(), Priority: e.Priority, Type: e.Type, TriggeredBy: EvalTriggerRollingUpdate, JobID: e.JobID, JobModifyIndex: e.JobModifyIndex, Status: EvalStatusPending, Wait: wait, PreviousEval: e.ID, } } // Plan is used to submit a commit plan for task allocations. These // are submitted to the leader which verifies that resources have // not been overcommitted before admiting the plan. type Plan struct { // EvalID is the evaluation ID this plan is associated with EvalID string // EvalToken is used to prevent a split-brain processing of // an evaluation. There should only be a single scheduler running // an Eval at a time, but this could be violated after a leadership // transition. This unique token is used to reject plans that are // being submitted from a different leader. EvalToken string // Priority is the priority of the upstream job Priority int // AllAtOnce is used to control if incremental scheduling of task groups // is allowed or if we must do a gang scheduling of the entire job. // If this is false, a plan may be partially applied. Otherwise, the // entire plan must be able to make progress. AllAtOnce bool // NodeUpdate contains all the allocations for each node. For each node, // this is a list of the allocations to update to either stop or evict. NodeUpdate map[string][]*Allocation // NodeAllocation contains all the allocations for each node. // The evicts must be considered prior to the allocations. NodeAllocation map[string][]*Allocation // FailedAllocs are allocations that could not be made, // but are persisted so that the user can use the feedback // to determine the cause. FailedAllocs []*Allocation } func (p *Plan) AppendUpdate(alloc *Allocation, status, desc string) { newAlloc := new(Allocation) *newAlloc = *alloc newAlloc.DesiredStatus = status newAlloc.DesiredDescription = desc node := alloc.NodeID existing := p.NodeUpdate[node] p.NodeUpdate[node] = append(existing, newAlloc) } func (p *Plan) PopUpdate(alloc *Allocation) { existing := p.NodeUpdate[alloc.NodeID] n := len(existing) if n > 0 && existing[n-1].ID == alloc.ID { existing = existing[:n-1] if len(existing) > 0 { p.NodeUpdate[alloc.NodeID] = existing } else { delete(p.NodeUpdate, alloc.NodeID) } } } func (p *Plan) AppendAlloc(alloc *Allocation) { node := alloc.NodeID existing := p.NodeAllocation[node] p.NodeAllocation[node] = append(existing, alloc) } func (p *Plan) AppendFailed(alloc *Allocation) { p.FailedAllocs = append(p.FailedAllocs, alloc) } // IsNoOp checks if this plan would do nothing func (p *Plan) IsNoOp() bool { return len(p.NodeUpdate) == 0 && len(p.NodeAllocation) == 0 && len(p.FailedAllocs) == 0 } // PlanResult is the result of a plan submitted to the leader. type PlanResult struct { // NodeUpdate contains all the updates that were committed. NodeUpdate map[string][]*Allocation // NodeAllocation contains all the allocations that were committed. NodeAllocation map[string][]*Allocation // FailedAllocs are allocations that could not be made, // but are persisted so that the user can use the feedback // to determine the cause. FailedAllocs []*Allocation // RefreshIndex is the index the worker should refresh state up to. // This allows all evictions and allocations to be materialized. // If any allocations were rejected due to stale data (node state, // over committed) this can be used to force a worker refresh. RefreshIndex uint64 // AllocIndex is the Raft index in which the evictions and // allocations took place. This is used for the write index. AllocIndex uint64 } // IsNoOp checks if this plan result would do nothing func (p *PlanResult) IsNoOp() bool { return len(p.NodeUpdate) == 0 && len(p.NodeAllocation) == 0 && len(p.FailedAllocs) == 0 } // FullCommit is used to check if all the allocations in a plan // were committed as part of the result. Returns if there was // a match, and the number of expected and actual allocations. func (p *PlanResult) FullCommit(plan *Plan) (bool, int, int) { expected := 0 actual := 0 for name, allocList := range plan.NodeAllocation { didAlloc, _ := p.NodeAllocation[name] expected += len(allocList) actual += len(didAlloc) } return actual == expected, expected, actual } // msgpackHandle is a shared handle for encoding/decoding of structs var MsgpackHandle = func() *codec.MsgpackHandle { h := &codec.MsgpackHandle{RawToString: true} // Sets the default type for decoding a map into a nil interface{}. // This is necessary in particular because we store the driver configs as a // nil interface{}. h.MapType = reflect.TypeOf(map[string]interface{}(nil)) return h }() // Decode is used to decode a MsgPack encoded object func Decode(buf []byte, out interface{}) error { return codec.NewDecoder(bytes.NewReader(buf), MsgpackHandle).Decode(out) } // Encode is used to encode a MsgPack object with type prefix func Encode(t MessageType, msg interface{}) ([]byte, error) { var buf bytes.Buffer buf.WriteByte(uint8(t)) err := codec.NewEncoder(&buf, MsgpackHandle).Encode(msg) return buf.Bytes(), err }