import Component from '@glimmer/component'; import { tracked } from '@glimmer/tracking'; import { action, set } from '@ember/object'; import { inject as service } from '@ember/service'; import { run } from '@ember/runloop'; import { scaleLinear } from 'd3-scale'; import { extent, deviation, mean } from 'd3-array'; import { line, curveBasis } from 'd3-shape'; import styleStringProperty from '../utils/properties/style-string'; export default class TopoViz extends Component { @service system; @tracked element = null; @tracked topology = { datacenters: [] }; @tracked activeNode = null; @tracked activeAllocation = null; @tracked activeEdges = []; @tracked edgeOffset = { x: 0, y: 0 }; @tracked viewportColumns = 2; @tracked highlightAllocation = null; @tracked tooltipProps = {}; @styleStringProperty('tooltipProps') tooltipStyle; get isSingleColumn() { if (this.topology.datacenters.length <= 1 || this.viewportColumns === 1) return true; // Compute the coefficient of variance to determine if it would be // better to stack datacenters or place them in columns const nodeCounts = this.topology.datacenters.map((datacenter) => datacenter.nodes.length); const variationCoefficient = deviation(nodeCounts) / mean(nodeCounts); // The point at which the varation is too extreme for a two column layout const threshold = 0.5; if (variationCoefficient > threshold) return true; return false; } get datacenterIsSingleColumn() { // If there are enough nodes, use two columns of nodes within // a single column layout of datacenters to increase density. if (this.viewportColumns === 1) return true; return !this.isSingleColumn || (this.isSingleColumn && this.args.nodes.length <= 20); } // Once a cluster is large enough, the exact details of a node are // typically irrelevant and a waste of space. get isDense() { return this.args.nodes.length > 50; } dataForNode(node) { return { node, datacenter: node.datacenter, memory: node.resources.memory, cpu: node.resources.cpu, allocations: [], isSelected: false, }; } dataForAllocation(allocation, node) { const jobId = allocation.belongsTo('job').id(); return { allocation, node, jobId, groupKey: JSON.stringify([jobId, allocation.taskGroupName]), memory: allocation.allocatedResources.memory, cpu: allocation.allocatedResources.cpu, memoryPercent: allocation.allocatedResources.memory / node.memory, cpuPercent: allocation.allocatedResources.cpu / node.cpu, isSelected: false, }; } @action buildTopology() { const nodes = this.args.nodes; const allocations = this.args.allocations; // Nodes may not have a resources property due to having an old Nomad agent version. const badNodes = []; // Wrap nodes in a topo viz specific data structure and build an index to speed up allocation assignment const nodeContainers = []; const nodeIndex = {}; nodes.forEach((node) => { if (!node.resources) { badNodes.push(node); return; } const container = this.dataForNode(node); nodeContainers.push(container); nodeIndex[node.id] = container; }); // Wrap allocations in a topo viz specific data structure, assign allocations to nodes, and build an allocation // index keyed off of job and task group const allocationIndex = {}; allocations.forEach((allocation) => { const nodeId = allocation.belongsTo('node').id(); const nodeContainer = nodeIndex[nodeId]; // Ignore orphaned allocations and allocations on nodes with an old Nomad agent version. if (!nodeContainer) return; const allocationContainer = this.dataForAllocation(allocation, nodeContainer); nodeContainer.allocations.push(allocationContainer); const key = allocationContainer.groupKey; if (!allocationIndex[key]) allocationIndex[key] = []; allocationIndex[key].push(allocationContainer); }); // Group nodes into datacenters const datacentersMap = nodeContainers.reduce((datacenters, nodeContainer) => { if (!datacenters[nodeContainer.datacenter]) datacenters[nodeContainer.datacenter] = []; datacenters[nodeContainer.datacenter].push(nodeContainer); return datacenters; }, {}); // Turn hash of datacenters into a sorted array const datacenters = Object.keys(datacentersMap) .map((key) => ({ name: key, nodes: datacentersMap[key] })) .sortBy('name'); const topology = { datacenters, allocationIndex, selectedKey: null, heightScale: scaleLinear() .range([15, 40]) .domain(extent(nodeContainers.mapBy('memory'))), }; this.topology = topology; if (badNodes.length && this.args.onDataError) { this.args.onDataError([ { type: 'filtered-nodes', context: badNodes, }, ]); } } @action captureElement(element) { this.element = element; this.determineViewportColumns(); } @action showNodeDetails(node) { if (this.activeNode) { set(this.activeNode, 'isSelected', false); } this.activeNode = this.activeNode === node ? null : node; if (this.activeNode) { set(this.activeNode, 'isSelected', true); } if (this.args.onNodeSelect) this.args.onNodeSelect(this.activeNode); } @action showTooltip(allocation, element) { const bbox = element.getBoundingClientRect(); this.highlightAllocation = allocation; this.tooltipProps = { left: window.scrollX + bbox.left + bbox.width / 2, top: window.scrollY + bbox.top, }; } @action hideTooltip() { this.highlightAllocation = null; } @action associateAllocations(allocation) { if (this.activeAllocation === allocation) { this.activeAllocation = null; this.activeEdges = []; if (this.topology.selectedKey) { const selectedAllocations = this.topology.allocationIndex[this.topology.selectedKey]; if (selectedAllocations) { selectedAllocations.forEach((allocation) => { set(allocation, 'isSelected', false); }); } set(this.topology, 'selectedKey', null); } } else { if (this.activeNode) { set(this.activeNode, 'isSelected', false); } this.activeNode = null; this.activeAllocation = allocation; const selectedAllocations = this.topology.allocationIndex[this.topology.selectedKey]; if (selectedAllocations) { selectedAllocations.forEach((allocation) => { set(allocation, 'isSelected', false); }); } set(this.topology, 'selectedKey', allocation.groupKey); const newAllocations = this.topology.allocationIndex[this.topology.selectedKey]; if (newAllocations) { newAllocations.forEach((allocation) => { set(allocation, 'isSelected', true); }); } // Only show the lines if the selected allocations are sparse (low count relative to the client count or low count generally). if (newAllocations.length < 10 || newAllocations.length < this.args.nodes.length * 0.75) { this.computedActiveEdges(); } else { this.activeEdges = []; } } if (this.args.onAllocationSelect) this.args.onAllocationSelect(this.activeAllocation && this.activeAllocation.allocation); if (this.args.onNodeSelect) this.args.onNodeSelect(this.activeNode); } @action determineViewportColumns() { this.viewportColumns = this.element.clientWidth < 900 ? 1 : 2; } @action resizeEdges() { if (this.activeEdges.length > 0) { this.computedActiveEdges(); } } @action computedActiveEdges() { // Wait a render cycle run.next(() => { const path = line().curve(curveBasis); // 1. Get the active element const allocation = this.activeAllocation.allocation; const activeEl = this.element.querySelector(`[data-allocation-id="${allocation.id}"]`); const activePoint = centerOfBBox(activeEl.getBoundingClientRect()); // 2. Collect the mem and cpu pairs for all selected allocs const selectedMem = Array.from(this.element.querySelectorAll('.memory .bar.is-selected')); const selectedPairs = selectedMem.map((mem) => { const id = mem.closest('[data-allocation-id]').dataset.allocationId; const cpu = mem .closest('.topo-viz-node') .querySelector(`.cpu .bar[data-allocation-id="${id}"]`); return [mem, cpu]; }); const selectedPoints = selectedPairs.map((pair) => { return pair.map((el) => centerOfBBox(el.getBoundingClientRect())); }); // 3. For each pair, compute the midpoint of the truncated triangle of points [Mem, Cpu, Active] selectedPoints.forEach((points) => { const d1 = pointBetween(points[0], activePoint, 100, 0.5); const d2 = pointBetween(points[1], activePoint, 100, 0.5); points.push(midpoint(d1, d2)); }); // 4. Generate curves for each active->mem and active->cpu pair going through the bisector const curves = []; // Steps are used to restrict the range of curves. The closer control points are placed, the less // curvature the curve generator will generate. const stepsMain = [0, 0.8, 1.0]; // The second prong the fork does not need to retrace the entire path from the activePoint const stepsSecondary = [0.8, 1.0]; selectedPoints.forEach((points) => { curves.push( curveFromPoints(...pointsAlongPath(activePoint, points[2], stepsMain), points[0]), curveFromPoints(...pointsAlongPath(activePoint, points[2], stepsSecondary), points[1]) ); }); this.activeEdges = curves.map((curve) => path(curve)); this.edgeOffset = { x: window.scrollX, y: window.scrollY }; }); } } function centerOfBBox(bbox) { return { x: bbox.x + bbox.width / 2, y: bbox.y + bbox.height / 2, }; } function dist(p1, p2) { return Math.sqrt(Math.pow(p2.x - p1.x, 2) + Math.pow(p2.y - p1.y, 2)); } // Return the point between p1 and p2 at len (or pct if len > dist(p1, p2)) function pointBetween(p1, p2, len, pct) { const d = dist(p1, p2); const ratio = d < len ? pct : len / d; return pointBetweenPct(p1, p2, ratio); } function pointBetweenPct(p1, p2, pct) { const dx = p2.x - p1.x; const dy = p2.y - p1.y; return { x: p1.x + dx * pct, y: p1.y + dy * pct }; } function pointsAlongPath(p1, p2, pcts) { return pcts.map((pct) => pointBetweenPct(p1, p2, pct)); } function midpoint(p1, p2) { return pointBetweenPct(p1, p2, 0.5); } function curveFromPoints(...points) { return points.map((p) => [p.x, p.y]); }