package nomad import ( "fmt" "runtime" "time" "github.com/armon/go-metrics" memdb "github.com/hashicorp/go-memdb" "github.com/hashicorp/go-multierror" "github.com/hashicorp/nomad/nomad/state" "github.com/hashicorp/nomad/nomad/structs" "github.com/hashicorp/raft" ) // planApply is a long lived goroutine that reads plan allocations from // the plan queue, determines if they can be applied safely and applies // them via Raft. // // Naively, we could simply dequeue a plan, verify, apply and then respond. // However, the plan application is bounded by the Raft apply time and // subject to some latency. This creates a stall condition, where we are // not evaluating, but simply waiting for a transaction to apply. // // To avoid this, we overlap verification with apply. This means once // we've verified plan N we attempt to apply it. However, while waiting // for apply, we begin to verify plan N+1 under the assumption that plan // N has succeeded. // // In this sense, we track two parallel versions of the world. One is // the pessimistic one driven by the Raft log which is replicated. The // other is optimistic and assumes our transactions will succeed. In the // happy path, this lets us do productive work during the latency of // apply. // // In the unhappy path (Raft transaction fails), effectively we only // wasted work during a time we would have been waiting anyways. However, // in anticipation of this case we cannot respond to the plan until // the Raft log is updated. This means our schedulers will stall, // but there are many of those and only a single plan verifier. // func (s *Server) planApply() { // waitCh is used to track an outstanding application while snap // holds an optimistic state which includes that plan application. var waitCh chan struct{} var snap *state.StateSnapshot // Setup a worker pool with half the cores, with at least 1 poolSize := runtime.NumCPU() / 2 if poolSize == 0 { poolSize = 1 } pool := NewEvaluatePool(poolSize, workerPoolBufferSize) defer pool.Shutdown() for { // Pull the next pending plan, exit if we are no longer leader pending, err := s.planQueue.Dequeue(0) if err != nil { return } // Check if out last plan has completed select { case <-waitCh: waitCh = nil snap = nil default: } // Snapshot the state so that we have a consistent view of the world // if no snapshot is available if waitCh == nil || snap == nil { snap, err = s.fsm.State().Snapshot() if err != nil { s.logger.Printf("[ERR] nomad: failed to snapshot state: %v", err) pending.respond(nil, err) continue } } // Evaluate the plan result, err := evaluatePlan(pool, snap, pending.plan) if err != nil { s.logger.Printf("[ERR] nomad: failed to evaluate plan: %v", err) pending.respond(nil, err) continue } // Fast-path the response if there is nothing to do if result.IsNoOp() { pending.respond(result, nil) continue } // Ensure any parallel apply is complete before starting the next one. // This also limits how out of date our snapshot can be. if waitCh != nil { <-waitCh snap, err = s.fsm.State().Snapshot() if err != nil { s.logger.Printf("[ERR] nomad: failed to snapshot state: %v", err) pending.respond(nil, err) continue } } // Dispatch the Raft transaction for the plan future, err := s.applyPlan(pending.plan.Job, result, snap) if err != nil { s.logger.Printf("[ERR] nomad: failed to submit plan: %v", err) pending.respond(nil, err) continue } // Respond to the plan in async waitCh = make(chan struct{}) go s.asyncPlanWait(waitCh, future, result, pending) } } // applyPlan is used to apply the plan result and to return the alloc index func (s *Server) applyPlan(job *structs.Job, result *structs.PlanResult, snap *state.StateSnapshot) (raft.ApplyFuture, error) { // Determine the miniumum number of updates, could be more if there // are multiple updates per node minUpdates := len(result.NodeUpdate) minUpdates += len(result.NodeAllocation) // Setup the update request req := structs.AllocUpdateRequest{ Job: job, Alloc: make([]*structs.Allocation, 0, minUpdates), } for _, updateList := range result.NodeUpdate { req.Alloc = append(req.Alloc, updateList...) } for _, allocList := range result.NodeAllocation { req.Alloc = append(req.Alloc, allocList...) } // Set the time the alloc was applied for the first time. This can be used // to approximate the scheduling time. now := time.Now().UTC().UnixNano() for _, alloc := range req.Alloc { if alloc.CreateTime == 0 { alloc.CreateTime = now } } // Dispatch the Raft transaction future, err := s.raftApplyFuture(structs.AllocUpdateRequestType, &req) if err != nil { return nil, err } // Optimistically apply to our state view if snap != nil { // Attach the job to all the allocations. It is pulled out in the // payload to avoid the redundancy of encoding, but should be denormalized // prior to being inserted into MemDB. structs.DenormalizeAllocationJobs(req.Job, req.Alloc) nextIdx := s.raft.AppliedIndex() + 1 if err := snap.UpsertAllocs(nextIdx, req.Alloc); err != nil { return future, err } } return future, nil } // asyncPlanWait is used to apply and respond to a plan async func (s *Server) asyncPlanWait(waitCh chan struct{}, future raft.ApplyFuture, result *structs.PlanResult, pending *pendingPlan) { defer metrics.MeasureSince([]string{"nomad", "plan", "apply"}, time.Now()) defer close(waitCh) // Wait for the plan to apply if err := future.Error(); err != nil { s.logger.Printf("[ERR] nomad: failed to apply plan: %v", err) pending.respond(nil, err) return } // Respond to the plan result.AllocIndex = future.Index() // If this is a partial plan application, we need to ensure the scheduler // at least has visibility into any placements it made to avoid double placement. // The RefreshIndex computed by evaluatePlan may be stale due to evaluation // against an optimistic copy of the state. if result.RefreshIndex != 0 { result.RefreshIndex = maxUint64(result.RefreshIndex, result.AllocIndex) } pending.respond(result, nil) } // evaluatePlan is used to determine what portions of a plan // can be applied if any. Returns if there should be a plan application // which may be partial or if there was an error func evaluatePlan(pool *EvaluatePool, snap *state.StateSnapshot, plan *structs.Plan) (*structs.PlanResult, error) { defer metrics.MeasureSince([]string{"nomad", "plan", "evaluate"}, time.Now()) // Create a result holder for the plan result := &structs.PlanResult{ NodeUpdate: make(map[string][]*structs.Allocation), NodeAllocation: make(map[string][]*structs.Allocation), } // Collect all the nodeIDs nodeIDs := make(map[string]struct{}) nodeIDList := make([]string, 0, len(plan.NodeUpdate)+len(plan.NodeAllocation)) for nodeID := range plan.NodeUpdate { if _, ok := nodeIDs[nodeID]; !ok { nodeIDs[nodeID] = struct{}{} nodeIDList = append(nodeIDList, nodeID) } } for nodeID := range plan.NodeAllocation { if _, ok := nodeIDs[nodeID]; !ok { nodeIDs[nodeID] = struct{}{} nodeIDList = append(nodeIDList, nodeID) } } // Setup a multierror to handle potentially getting many // errors since we are processing in parallel. var mErr multierror.Error partialCommit := false // handleResult is used to process the result of evaluateNodePlan handleResult := func(nodeID string, fit bool, err error) (cancel bool) { // Evaluate the plan for this node if err != nil { mErr.Errors = append(mErr.Errors, err) return true } if !fit { // Set that this is a partial commit partialCommit = true // If we require all-at-once scheduling, there is no point // to continue the evaluation, as we've already failed. if plan.AllAtOnce { result.NodeUpdate = nil result.NodeAllocation = nil return true } // Skip this node, since it cannot be used. return } // Add this to the plan result if nodeUpdate := plan.NodeUpdate[nodeID]; len(nodeUpdate) > 0 { result.NodeUpdate[nodeID] = nodeUpdate } if nodeAlloc := plan.NodeAllocation[nodeID]; len(nodeAlloc) > 0 { result.NodeAllocation[nodeID] = nodeAlloc } return } // Get the pool channels req := pool.RequestCh() resp := pool.ResultCh() outstanding := 0 didCancel := false // Evalute each node in the plan, handling results as they are ready to // avoid blocking. OUTER: for len(nodeIDList) > 0 { nodeID := nodeIDList[0] select { case req <- evaluateRequest{snap, plan, nodeID}: outstanding++ nodeIDList = nodeIDList[1:] case r := <-resp: outstanding-- // Handle a result that allows us to cancel evaluation, // which may save time processing additional entries. if cancel := handleResult(r.nodeID, r.fit, r.err); cancel { didCancel = true break OUTER } } } // Drain the remaining results for outstanding > 0 { r := <-resp if !didCancel { if cancel := handleResult(r.nodeID, r.fit, r.err); cancel { didCancel = true } } outstanding-- } // If the plan resulted in a partial commit, we need to determine // a minimum refresh index to force the scheduler to work on a more // up-to-date state to avoid the failures. if partialCommit { allocIndex, err := snap.Index("allocs") if err != nil { mErr.Errors = append(mErr.Errors, err) } nodeIndex, err := snap.Index("nodes") if err != nil { mErr.Errors = append(mErr.Errors, err) } result.RefreshIndex = maxUint64(nodeIndex, allocIndex) if result.RefreshIndex == 0 { err := fmt.Errorf("partialCommit with RefreshIndex of 0 (%d node, %d alloc)", nodeIndex, allocIndex) mErr.Errors = append(mErr.Errors, err) } } return result, mErr.ErrorOrNil() } // evaluateNodePlan is used to evalute the plan for a single node, // returning if the plan is valid or if an error is encountered func evaluateNodePlan(snap *state.StateSnapshot, plan *structs.Plan, nodeID string) (bool, error) { // If this is an evict-only plan, it always 'fits' since we are removing things. if len(plan.NodeAllocation[nodeID]) == 0 { return true, nil } // Get the node itself ws := memdb.NewWatchSet() node, err := snap.NodeByID(ws, nodeID) if err != nil { return false, fmt.Errorf("failed to get node '%s': %v", nodeID, err) } // If the node does not exist or is not ready for schduling it is not fit // XXX: There is a potential race between when we do this check and when // the Raft commit happens. if node == nil || node.Status != structs.NodeStatusReady || node.Drain { return false, nil } // Get the existing allocations that are non-terminal existingAlloc, err := snap.AllocsByNodeTerminal(ws, nodeID, false) if err != nil { return false, fmt.Errorf("failed to get existing allocations for '%s': %v", nodeID, err) } // Determine the proposed allocation by first removing allocations // that are planned evictions and adding the new allocations. proposed := existingAlloc var remove []*structs.Allocation if update := plan.NodeUpdate[nodeID]; len(update) > 0 { remove = append(remove, update...) } if updated := plan.NodeAllocation[nodeID]; len(updated) > 0 { for _, alloc := range updated { remove = append(remove, alloc) } } proposed = structs.RemoveAllocs(existingAlloc, remove) proposed = append(proposed, plan.NodeAllocation[nodeID]...) // Check if these allocations fit fit, _, _, err := structs.AllocsFit(node, proposed, nil) return fit, err }