// Copyright (c) HashiCorp, Inc. // SPDX-License-Identifier: MPL-2.0 package scheduler import ( "encoding/binary" "fmt" "math/rand" log "github.com/hashicorp/go-hclog" memdb "github.com/hashicorp/go-memdb" "github.com/hashicorp/nomad/helper" "github.com/hashicorp/nomad/nomad/structs" "golang.org/x/exp/maps" "golang.org/x/exp/slices" ) // allocTuple is a tuple of the allocation name and potential alloc ID type allocTuple struct { Name string TaskGroup *structs.TaskGroup Alloc *structs.Allocation } // diffResult is used to return the sets that result from the diff type diffResult struct { place, update, migrate, stop, ignore, lost, disconnecting, reconnecting []allocTuple } func (d *diffResult) GoString() string { return fmt.Sprintf("allocs: (place %d) (update %d) (migrate %d) (stop %d) (ignore %d) (lost %d) (disconnecting %d) (reconnecting %d)", len(d.place), len(d.update), len(d.migrate), len(d.stop), len(d.ignore), len(d.lost), len(d.disconnecting), len(d.reconnecting)) } func (d *diffResult) Append(other *diffResult) { d.place = append(d.place, other.place...) d.update = append(d.update, other.update...) d.migrate = append(d.migrate, other.migrate...) d.stop = append(d.stop, other.stop...) d.ignore = append(d.ignore, other.ignore...) d.lost = append(d.lost, other.lost...) d.disconnecting = append(d.disconnecting, other.disconnecting...) d.reconnecting = append(d.reconnecting, other.reconnecting...) } // readyNodesInDCsAndPool returns all the ready nodes in the given datacenters // and pool, and a mapping of each data center to the count of ready nodes. func readyNodesInDCsAndPool(state State, dcs []string, pool string) ([]*structs.Node, map[string]struct{}, map[string]int, error) { // Index the DCs dcMap := make(map[string]int) // Scan the nodes ws := memdb.NewWatchSet() var out []*structs.Node notReady := map[string]struct{}{} var iter memdb.ResultIterator var err error if pool == structs.NodePoolAll || pool == "" { iter, err = state.Nodes(ws) } else { iter, err = state.NodesByNodePool(ws, pool) } if err != nil { return nil, nil, nil, err } for { raw := iter.Next() if raw == nil { break } // Filter on datacenter and status node := raw.(*structs.Node) if !node.Ready() { notReady[node.ID] = struct{}{} continue } if node.IsInAnyDC(dcs) { out = append(out, node) dcMap[node.Datacenter]++ } } return out, notReady, dcMap, nil } // retryMax is used to retry a callback until it returns success or // a maximum number of attempts is reached. An optional reset function may be // passed which is called after each failed iteration. If the reset function is // set and returns true, the number of attempts is reset back to max. func retryMax(max int, cb func() (bool, error), reset func() bool) error { attempts := 0 for attempts < max { done, err := cb() if err != nil { return err } if done { return nil } // Check if we should reset the number attempts if reset != nil && reset() { attempts = 0 } else { attempts++ } } return &SetStatusError{ Err: fmt.Errorf("maximum attempts reached (%d)", max), EvalStatus: structs.EvalStatusFailed, } } // progressMade checks to see if the plan result made allocations or updates. // If the result is nil, false is returned. func progressMade(result *structs.PlanResult) bool { return result != nil && (len(result.NodeUpdate) != 0 || len(result.NodeAllocation) != 0 || result.Deployment != nil || len(result.DeploymentUpdates) != 0) } // taintedNodes is used to scan the allocations and then check if the // underlying nodes are tainted, and should force a migration of the allocation, // or if the underlying nodes are disconnected, and should be used to calculate // the reconnect timeout of its allocations. All the nodes returned in the map are tainted. func taintedNodes(state State, allocs []*structs.Allocation) (map[string]*structs.Node, error) { out := make(map[string]*structs.Node) for _, alloc := range allocs { if _, ok := out[alloc.NodeID]; ok { continue } ws := memdb.NewWatchSet() node, err := state.NodeByID(ws, alloc.NodeID) if err != nil { return nil, err } // If the node does not exist, we should migrate if node == nil { out[alloc.NodeID] = nil continue } if structs.ShouldDrainNode(node.Status) || node.DrainStrategy != nil { out[alloc.NodeID] = node } // Disconnected nodes are included in the tainted set so that their // MaxClientDisconnect configuration can be included in the // timeout calculation. if node.Status == structs.NodeStatusDisconnected { out[alloc.NodeID] = node } } return out, nil } // shuffleNodes randomizes the slice order with the Fisher-Yates // algorithm. We seed the random source with the eval ID (which is // random) to aid in postmortem debugging of specific evaluations and // state snapshots. func shuffleNodes(plan *structs.Plan, index uint64, nodes []*structs.Node) { // use the last 4 bytes because those are the random bits // if we have sortable IDs buf := []byte(plan.EvalID) seed := binary.BigEndian.Uint64(buf[len(buf)-8:]) // for retried plans the index is the plan result's RefreshIndex // so that we don't retry with the exact same shuffle seed ^= index r := rand.New(rand.NewSource(int64(seed >> 2))) n := len(nodes) for i := n - 1; i > 0; i-- { j := r.Intn(i + 1) nodes[i], nodes[j] = nodes[j], nodes[i] } } // comparison records the _first_ detected difference between two groups during // a comparison in tasksUpdated // // This is useful to provide context when debugging the result of tasksUpdated. type comparison struct { modified bool label string before any after any } func difference(label string, before, after any) comparison { // push string formatting into String(), so that we never call it in the // hot path unless someone adds a log line to debug with this result return comparison{ modified: true, label: label, before: before, after: after, } } func (c comparison) String() string { return fmt.Sprintf("%s changed; before: %#v, after: %#v", c.label, c.before, c.after) } // same indicates no destructive difference between two task groups var same = comparison{modified: false} // tasksUpdated creates a comparison between task groups to see if the tasks, their // drivers, environment variables or config have been modified. func tasksUpdated(jobA, jobB *structs.Job, taskGroup string) comparison { a := jobA.LookupTaskGroup(taskGroup) b := jobB.LookupTaskGroup(taskGroup) // If the number of tasks do not match, clearly there is an update if lenA, lenB := len(a.Tasks), len(b.Tasks); lenA != lenB { return difference("number of tasks", lenA, lenB) } // Check ephemeral disk if !a.EphemeralDisk.Equal(b.EphemeralDisk) { return difference("ephemeral disk", a.EphemeralDisk, b.EphemeralDisk) } // Check that the network resources haven't changed if c := networkUpdated(a.Networks, b.Networks); c.modified { return c } // Check Affinities if c := affinitiesUpdated(jobA, jobB, taskGroup); c.modified { return c } // Check Spreads if c := spreadsUpdated(jobA, jobB, taskGroup); c.modified { return c } // Check consul namespace updated if c := consulNamespaceUpdated(a, b); c.modified { return c } // Check connect service(s) updated if c := connectServiceUpdated(a.Services, b.Services); c.modified { return c } // Check if volumes are updated (no task driver can support // altering mounts in-place) if !maps.EqualFunc(a.Volumes, b.Volumes, func(a, b *structs.VolumeRequest) bool { return a.Equal(b) }) { return difference("volume request", a.Volumes, b.Volumes) } // Check if restart.render_templates is updated // this requires a destructive update for template hook to receive the new config if c := renderTemplatesUpdated(a.RestartPolicy, b.RestartPolicy, "group restart render_templates"); c.modified { return c } // Check each task for _, at := range a.Tasks { bt := b.LookupTask(at.Name) if bt == nil { return difference("task deleted", at.Name, "(nil)") } if at.Driver != bt.Driver { return difference("task driver", at.Driver, bt.Driver) } if at.User != bt.User { return difference("task user", at.User, bt.User) } if !helper.OpaqueMapsEqual(at.Config, bt.Config) { return difference("task config", at.Config, bt.Config) } if !maps.Equal(at.Env, bt.Env) { return difference("task env", at.Env, bt.Env) } if !slices.EqualFunc(at.Artifacts, bt.Artifacts, func(a, b *structs.TaskArtifact) bool { return a.Equal(b) }) { return difference("task artifacts", at.Artifacts, bt.Artifacts) } if !at.Vault.Equal(bt.Vault) { return difference("task vault", at.Vault, bt.Vault) } if !slices.EqualFunc(at.Templates, bt.Templates, func(a, b *structs.Template) bool { return a.Equal(b) }) { return difference("task templates", at.Templates, bt.Templates) } if !at.CSIPluginConfig.Equal(bt.CSIPluginConfig) { return difference("task csi config", at.CSIPluginConfig, bt.CSIPluginConfig) } if !slices.EqualFunc(at.VolumeMounts, bt.VolumeMounts, func(a, b *structs.VolumeMount) bool { return a.Equal(b) }) { return difference("task volume mount", at.VolumeMounts, bt.VolumeMounts) } // Check the metadata metaA := jobA.CombinedTaskMeta(taskGroup, at.Name) metaB := jobB.CombinedTaskMeta(taskGroup, bt.Name) if !maps.Equal(metaA, metaB) { return difference("task meta", metaA, metaB) } // Inspect the network to see if the dynamic ports are different if c := networkUpdated(at.Resources.Networks, bt.Resources.Networks); c.modified { return c } if c := nonNetworkResourcesUpdated(at.Resources, bt.Resources); c.modified { return c } // Inspect Identity being exposed if !at.Identity.Equal(bt.Identity) { return difference("task identity", at.Identity, bt.Identity) } // Most LogConfig updates are in-place but if we change Disabled we need // to recreate the task to stop/start log collection and change the // stdout/stderr of the task if at.LogConfig.Disabled != bt.LogConfig.Disabled { return difference("task log disabled", at.LogConfig.Disabled, bt.LogConfig.Disabled) } // Check if restart.render_templates is updated if c := renderTemplatesUpdated(at.RestartPolicy, bt.RestartPolicy, "task restart render_templates"); c.modified { return c } } // none of the fields that trigger a destructive update were modified, // indicating this group can be updated in-place or ignored return same } func nonNetworkResourcesUpdated(a, b *structs.Resources) comparison { // Inspect the non-network resources switch { case a.CPU != b.CPU: return difference("task cpu", a.CPU, b.CPU) case a.Cores != b.Cores: return difference("task cores", a.Cores, b.Cores) case a.MemoryMB != b.MemoryMB: return difference("task memory", a.MemoryMB, b.MemoryMB) case a.MemoryMaxMB != b.MemoryMaxMB: return difference("task memory max", a.MemoryMaxMB, b.MemoryMaxMB) case !a.Devices.Equal(&b.Devices): return difference("task devices", a.Devices, b.Devices) } return same } // consulNamespaceUpdated returns true if the Consul namespace in the task group // has been changed. // // This is treated as a destructive update unlike ordinary Consul service configuration // because Namespaces directly impact networking validity among Consul intentions. // Forcing the task through a reschedule is a sure way of breaking no-longer valid // network connections. func consulNamespaceUpdated(tgA, tgB *structs.TaskGroup) comparison { // job.ConsulNamespace is pushed down to the TGs, just check those if a, b := tgA.Consul.GetNamespace(), tgB.Consul.GetNamespace(); a != b { return difference("consul namespace", a, b) } return same } // connectServiceUpdated returns true if any services with a connect block have // been changed in such a way that requires a destructive update. // // Ordinary services can be updated in-place by updating the service definition // in Consul. Connect service changes mostly require destroying the task. func connectServiceUpdated(servicesA, servicesB []*structs.Service) comparison { for _, serviceA := range servicesA { if serviceA.Connect != nil { for _, serviceB := range servicesB { if serviceA.Name == serviceB.Name { if c := connectUpdated(serviceA.Connect, serviceB.Connect); c.modified { return c } // Part of the Connect plumbing is derived from port label, // if that changes we need to destroy the task. if serviceA.PortLabel != serviceB.PortLabel { return difference("connect service port label", serviceA.PortLabel, serviceB.PortLabel) } break } } } } return same } // connectUpdated returns true if the connect block has been updated in a manner // that will require a destructive update. // // Fields that can be updated through consul-sync do not need a destructive // update. func connectUpdated(connectA, connectB *structs.ConsulConnect) comparison { if connectA == nil && connectB == nil { return same } if connectA == nil && connectB != nil { return difference("connect added", connectA, connectB) } if connectA != nil && connectB == nil { return difference("connect removed", connectA, connectB) } if connectA.Native != connectB.Native { return difference("connect native", connectA.Native, connectB.Native) } if !connectA.Gateway.Equal(connectB.Gateway) { return difference("connect gateway", connectA.Gateway, connectB.Gateway) } if !connectA.SidecarTask.Equal(connectB.SidecarTask) { return difference("connect sidecar task", connectA.SidecarTask, connectB.SidecarTask) } // not everything in sidecar_service needs task destruction if c := connectSidecarServiceUpdated(connectA.SidecarService, connectB.SidecarService); c.modified { return c } return same } func connectSidecarServiceUpdated(ssA, ssB *structs.ConsulSidecarService) comparison { if ssA == nil && ssB == nil { return same } if ssA == nil && ssB != nil { return difference("connect service add", ssA, ssB) } if ssA != nil && ssB == nil { return difference("connect service delete", ssA, ssB) } if ssA.Port != ssB.Port { return difference("connect port", ssA.Port, ssB.Port) } // sidecar_service.tags (handled in-place via registration) // sidecar_service.proxy (handled in-place via registration + xDS) return same } func networkUpdated(netA, netB []*structs.NetworkResource) comparison { if lenNetA, lenNetB := len(netA), len(netB); lenNetA != lenNetB { return difference("network lengths", lenNetA, lenNetB) } for idx := range netA { an := netA[idx] bn := netB[idx] if an.Mode != bn.Mode { return difference("network mode", an.Mode, bn.Mode) } if an.MBits != bn.MBits { return difference("network mbits", an.MBits, bn.MBits) } if an.Hostname != bn.Hostname { return difference("network hostname", an.Hostname, bn.Hostname) } if !an.DNS.Equal(bn.DNS) { return difference("network dns", an.DNS, bn.DNS) } aPorts, bPorts := networkPortMap(an), networkPortMap(bn) if !aPorts.Equal(bPorts) { return difference("network port map", aPorts, bPorts) } } return same } // networkPortMap takes a network resource and returns a AllocatedPorts. // The value for dynamic ports is disregarded even if it is set. This // makes this function suitable for comparing two network resources for changes. func networkPortMap(n *structs.NetworkResource) structs.AllocatedPorts { var m structs.AllocatedPorts for _, p := range n.ReservedPorts { m = append(m, structs.AllocatedPortMapping{ Label: p.Label, Value: p.Value, To: p.To, HostIP: p.HostNetwork, }) } for _, p := range n.DynamicPorts { m = append(m, structs.AllocatedPortMapping{ Label: p.Label, Value: -1, To: p.To, HostIP: p.HostNetwork, }) } return m } func affinitiesUpdated(jobA, jobB *structs.Job, taskGroup string) comparison { var affinitiesA structs.Affinities var affinitiesB structs.Affinities // accumulate job affinities affinitiesA = append(affinitiesA, jobA.Affinities...) affinitiesB = append(affinitiesB, jobB.Affinities...) tgA := jobA.LookupTaskGroup(taskGroup) tgB := jobB.LookupTaskGroup(taskGroup) // append group level affinities affinitiesA = append(affinitiesA, tgA.Affinities...) affinitiesB = append(affinitiesB, tgB.Affinities...) // append task level affinities for A for _, task := range tgA.Tasks { affinitiesA = append(affinitiesA, task.Affinities...) } // append task level affinities for B for _, task := range tgB.Tasks { affinitiesB = append(affinitiesB, task.Affinities...) } // finally check if all the affinities from both jobs match if !affinitiesA.Equal(&affinitiesB) { return difference("affinities", affinitiesA, affinitiesB) } return same } func spreadsUpdated(jobA, jobB *structs.Job, taskGroup string) comparison { var spreadsA []*structs.Spread var spreadsB []*structs.Spread // accumulate job spreads spreadsA = append(spreadsA, jobA.Spreads...) spreadsB = append(spreadsB, jobB.Spreads...) tgA := jobA.LookupTaskGroup(taskGroup) tgB := jobB.LookupTaskGroup(taskGroup) // append group spreads spreadsA = append(spreadsA, tgA.Spreads...) spreadsB = append(spreadsB, tgB.Spreads...) if !slices.EqualFunc(spreadsA, spreadsB, func(a, b *structs.Spread) bool { return a.Equal(b) }) { return difference("spreads", spreadsA, spreadsB) } return same } // renderTemplatesUpdated returns the difference in the RestartPolicy's // render_templates field, if set func renderTemplatesUpdated(a, b *structs.RestartPolicy, msg string) comparison { noRenderA := a == nil || !a.RenderTemplates noRenderB := b == nil || !b.RenderTemplates if noRenderA && !noRenderB { return difference(msg, false, true) } if !noRenderA && noRenderB { return difference(msg, true, false) } return same // both nil, or one nil and the other false } // setStatus is used to update the status of the evaluation func setStatus(logger log.Logger, planner Planner, eval, nextEval, spawnedBlocked *structs.Evaluation, tgMetrics map[string]*structs.AllocMetric, status, desc string, queuedAllocs map[string]int, deploymentID string) error { logger.Debug("setting eval status", "status", status) newEval := eval.Copy() newEval.Status = status newEval.StatusDescription = desc newEval.DeploymentID = deploymentID newEval.FailedTGAllocs = tgMetrics if nextEval != nil { newEval.NextEval = nextEval.ID } if spawnedBlocked != nil { newEval.BlockedEval = spawnedBlocked.ID } if queuedAllocs != nil { newEval.QueuedAllocations = queuedAllocs } return planner.UpdateEval(newEval) } // inplaceUpdate attempts to update allocations in-place where possible. It // returns the allocs that couldn't be done inplace and then those that could. func inplaceUpdate(ctx Context, eval *structs.Evaluation, job *structs.Job, stack Stack, updates []allocTuple) (destructive, inplace []allocTuple) { // doInplace manipulates the updates map to make the current allocation // an inplace update. doInplace := func(cur, last, inplaceCount *int) { updates[*cur], updates[*last-1] = updates[*last-1], updates[*cur] *cur-- *last-- *inplaceCount++ } ws := memdb.NewWatchSet() n := len(updates) inplaceCount := 0 for i := 0; i < n; i++ { // Get the update update := updates[i] // Check if the task drivers or config has changed, requires // a rolling upgrade since that cannot be done in-place. existing := update.Alloc.Job if c := tasksUpdated(job, existing, update.TaskGroup.Name); c.modified { continue } // Terminal batch allocations are not filtered when they are completed // successfully. We should avoid adding the allocation to the plan in // the case that it is an in-place update to avoid both additional data // in the plan and work for the clients. if update.Alloc.TerminalStatus() { doInplace(&i, &n, &inplaceCount) continue } // Get the existing node node, err := ctx.State().NodeByID(ws, update.Alloc.NodeID) if err != nil { ctx.Logger().Error("failed to get node", "node_id", update.Alloc.NodeID, "error", err) continue } if node == nil { continue } // The alloc is on a node that's now in an ineligible DC if !node.IsInAnyDC(job.Datacenters) { continue } // The alloc is on a node that's now in an ineligible node pool if !node.IsInPool(job.NodePool) { continue } // Set the existing node as the base set stack.SetNodes([]*structs.Node{node}) // Stage an eviction of the current allocation. This is done so that // the current allocation is discounted when checking for feasibility. // Otherwise we would be trying to fit the tasks current resources and // updated resources. After select is called we can remove the evict. ctx.Plan().AppendStoppedAlloc(update.Alloc, allocInPlace, "", "") // Attempt to match the task group option := stack.Select(update.TaskGroup, &SelectOptions{AllocName: update.Alloc.Name}) // Pop the allocation ctx.Plan().PopUpdate(update.Alloc) // Skip if we could not do an in-place update if option == nil { continue } // Restore the network and device offers from the existing allocation. // We do not allow network resources (reserved/dynamic ports) // to be updated. This is guarded in taskUpdated, so we can // safely restore those here. for task, resources := range option.TaskResources { var networks structs.Networks var devices []*structs.AllocatedDeviceResource if update.Alloc.AllocatedResources != nil { if tr, ok := update.Alloc.AllocatedResources.Tasks[task]; ok { networks = tr.Networks devices = tr.Devices } } else if tr, ok := update.Alloc.TaskResources[task]; ok { networks = tr.Networks } // Add the networks and devices back resources.Networks = networks resources.Devices = devices } // Create a shallow copy newAlloc := new(structs.Allocation) *newAlloc = *update.Alloc // Update the allocation newAlloc.EvalID = eval.ID newAlloc.Job = nil // Use the Job in the Plan newAlloc.Resources = nil // Computed in Plan Apply newAlloc.AllocatedResources = &structs.AllocatedResources{ Tasks: option.TaskResources, TaskLifecycles: option.TaskLifecycles, Shared: structs.AllocatedSharedResources{ DiskMB: int64(update.TaskGroup.EphemeralDisk.SizeMB), Ports: update.Alloc.AllocatedResources.Shared.Ports, Networks: update.Alloc.AllocatedResources.Shared.Networks.Copy(), }, } newAlloc.Metrics = ctx.Metrics() ctx.Plan().AppendAlloc(newAlloc, nil) // Remove this allocation from the slice doInplace(&i, &n, &inplaceCount) } if len(updates) > 0 { ctx.Logger().Debug("made in-place updates", "in-place", inplaceCount, "total_updates", len(updates)) } return updates[:n], updates[n:] } // desiredUpdates takes the diffResult as well as the set of inplace and // destructive updates and returns a map of task groups to their set of desired // updates. func desiredUpdates(diff *diffResult, inplaceUpdates, destructiveUpdates []allocTuple) map[string]*structs.DesiredUpdates { desiredTgs := make(map[string]*structs.DesiredUpdates) for _, tuple := range diff.place { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Place++ } for _, tuple := range diff.stop { name := tuple.Alloc.TaskGroup des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Stop++ } for _, tuple := range diff.ignore { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Ignore++ } for _, tuple := range diff.migrate { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Migrate++ } for _, tuple := range inplaceUpdates { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.InPlaceUpdate++ } for _, tuple := range destructiveUpdates { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.DestructiveUpdate++ } return desiredTgs } // adjustQueuedAllocations decrements the number of allocations pending per task // group based on the number of allocations successfully placed func adjustQueuedAllocations(logger log.Logger, result *structs.PlanResult, queuedAllocs map[string]int) { if result == nil { return } for _, allocations := range result.NodeAllocation { for _, allocation := range allocations { // Ensure that the allocation is newly created. We check that // the CreateIndex is equal to the ModifyIndex in order to check // that the allocation was just created. We do not check that // the CreateIndex is equal to the results AllocIndex because // the allocations we get back have gone through the planner's // optimistic snapshot and thus their indexes may not be // correct, but they will be consistent. if allocation.CreateIndex != allocation.ModifyIndex { continue } if _, ok := queuedAllocs[allocation.TaskGroup]; ok { queuedAllocs[allocation.TaskGroup]-- } else { logger.Error("allocation placed but task group is not in list of unplaced allocations", "task_group", allocation.TaskGroup) } } } } // updateNonTerminalAllocsToLost updates the allocations which are in pending/running state // on tainted node to lost, but only for allocs already DesiredStatus stop or evict func updateNonTerminalAllocsToLost(plan *structs.Plan, tainted map[string]*structs.Node, allocs []*structs.Allocation) { for _, alloc := range allocs { node, ok := tainted[alloc.NodeID] if !ok { continue } // Only handle down nodes or nodes that are gone (node == nil) if node != nil && node.Status != structs.NodeStatusDown { continue } // If the alloc is already correctly marked lost, we're done if (alloc.DesiredStatus == structs.AllocDesiredStatusStop || alloc.DesiredStatus == structs.AllocDesiredStatusEvict) && (alloc.ClientStatus == structs.AllocClientStatusRunning || alloc.ClientStatus == structs.AllocClientStatusPending) { plan.AppendStoppedAlloc(alloc, allocLost, structs.AllocClientStatusLost, "") } } } // genericAllocUpdateFn is a factory for the scheduler to create an allocUpdateType // function to be passed into the reconciler. The factory takes objects that // exist only in the scheduler context and returns a function that can be used // by the reconciler to make decisions about how to update an allocation. The // factory allows the reconciler to be unaware of how to determine the type of // update necessary and can minimize the set of objects it is exposed to. func genericAllocUpdateFn(ctx Context, stack Stack, evalID string) allocUpdateType { return func(existing *structs.Allocation, newJob *structs.Job, newTG *structs.TaskGroup) (ignore, destructive bool, updated *structs.Allocation) { // Same index, so nothing to do if existing.Job.JobModifyIndex == newJob.JobModifyIndex { return true, false, nil } // Check if the task drivers or config has changed, requires // a destructive upgrade since that cannot be done in-place. if c := tasksUpdated(newJob, existing.Job, newTG.Name); c.modified { return false, true, nil } // Terminal batch allocations are not filtered when they are completed // successfully. We should avoid adding the allocation to the plan in // the case that it is an in-place update to avoid both additional data // in the plan and work for the clients. if existing.TerminalStatus() { return true, false, nil } // Get the existing node ws := memdb.NewWatchSet() node, err := ctx.State().NodeByID(ws, existing.NodeID) if err != nil { ctx.Logger().Error("failed to get node", "node_id", existing.NodeID, "error", err) return true, false, nil } if node == nil { return false, true, nil } // The alloc is on a node that's now in an ineligible DC if !node.IsInAnyDC(newJob.Datacenters) { return false, true, nil } if !node.IsInPool(newJob.NodePool) { return false, true, nil } // Set the existing node as the base set stack.SetNodes([]*structs.Node{node}) // Stage an eviction of the current allocation. This is done so that // the current allocation is discounted when checking for feasibility. // Otherwise we would be trying to fit the tasks current resources and // updated resources. After select is called we can remove the evict. ctx.Plan().AppendStoppedAlloc(existing, allocInPlace, "", "") // Attempt to match the task group option := stack.Select(newTG, &SelectOptions{AllocName: existing.Name}) // Pop the allocation ctx.Plan().PopUpdate(existing) // Require destructive if we could not do an in-place update if option == nil { return false, true, nil } // Restore the network and device offers from the existing allocation. // We do not allow network resources (reserved/dynamic ports) // to be updated. This is guarded in taskUpdated, so we can // safely restore those here. for task, resources := range option.TaskResources { var networks structs.Networks var devices []*structs.AllocatedDeviceResource if existing.AllocatedResources != nil { if tr, ok := existing.AllocatedResources.Tasks[task]; ok { networks = tr.Networks devices = tr.Devices } } else if tr, ok := existing.TaskResources[task]; ok { networks = tr.Networks } // Add the networks back resources.Networks = networks resources.Devices = devices } // Create a shallow copy newAlloc := new(structs.Allocation) *newAlloc = *existing // Update the allocation newAlloc.EvalID = evalID newAlloc.Job = nil // Use the Job in the Plan newAlloc.Resources = nil // Computed in Plan Apply newAlloc.AllocatedResources = &structs.AllocatedResources{ Tasks: option.TaskResources, TaskLifecycles: option.TaskLifecycles, Shared: structs.AllocatedSharedResources{ DiskMB: int64(newTG.EphemeralDisk.SizeMB), }, } // Since this is an inplace update, we should copy network and port // information from the original alloc. This is similar to how // we copy network info for task level networks above. // // existing.AllocatedResources is nil on Allocations created by // Nomad v0.8 or earlier. if existing.AllocatedResources != nil { newAlloc.AllocatedResources.Shared.Networks = existing.AllocatedResources.Shared.Networks newAlloc.AllocatedResources.Shared.Ports = existing.AllocatedResources.Shared.Ports } // Use metrics from existing alloc for in place upgrade // This is because if the inplace upgrade succeeded, any scoring metadata from // when it first went through the scheduler should still be preserved. Using scoring // metadata from the context would incorrectly replace it with metadata only from a single node that the // allocation is already on. newAlloc.Metrics = existing.Metrics.Copy() return false, false, newAlloc } }