* docker: disable driver when running as non-root on cgroups v2 hosts
This PR modifies the docker driver to behave like exec when being run
as a non-root user on a host machine with cgroups v2 enabled. Because
of how cpu resources are managed by the Nomad client, the nomad agent
must be run as root to manage docker-created cgroups.
* cl: update cl
This PR introduces support for using Nomad on systems with cgroups v2 [1]
enabled as the cgroups controller mounted on /sys/fs/cgroups. Newer Linux
distros like Ubuntu 21.10 are shipping with cgroups v2 only, causing problems
for Nomad users.
Nomad mostly "just works" with cgroups v2 due to the indirection via libcontainer,
but not so for managing cpuset cgroups. Before, Nomad has been making use of
a feature in v1 where a PID could be a member of more than one cgroup. In v2
this is no longer possible, and so the logic around computing cpuset values
must be modified. When Nomad detects v2, it manages cpuset values in-process,
rather than making use of cgroup heirarchy inheritence via shared/reserved
parents.
Nomad will only activate the v2 logic when it detects cgroups2 is mounted at
/sys/fs/cgroups. This means on systems running in hybrid mode with cgroups2
mounted at /sys/fs/cgroups/unified (as is typical) Nomad will continue to
use the v1 logic, and should operate as before. Systems that do not support
cgroups v2 are also not affected.
When v2 is activated, Nomad will create a parent called nomad.slice (unless
otherwise configured in Client conifg), and create cgroups for tasks using
naming convention <allocID>-<task>.scope. These follow the naming convention
set by systemd and also used by Docker when cgroups v2 is detected.
Client nodes now export a new fingerprint attribute, unique.cgroups.version
which will be set to 'v1' or 'v2' to indicate the cgroups regime in use by
Nomad.
The new cpuset management strategy fixes#11705, where docker tasks that
spawned processes on startup would "leak". In cgroups v2, the PIDs are
started in the cgroup they will always live in, and thus the cause of
the leak is eliminated.
[1] https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.htmlCloses#11289Fixes#11705#11773#11933
Makes it possible to run Linux Containers On Windows with Nomad alongside Windows Containers. Fingerprint prevents only to run Nomad in Windows 10 with Linux Containers
driver.SetConfig is not appropriate for starting up reconciler
goroutine. Some ephemeral driver instances are created for validating
config and we ought not to side-effecting goroutines for those.
We currently lack a lifecycle hook to inject these, so I picked the
`Fingerprinter` function for now, and reconciler should only run after
fingerprinter started.
Use `sync.Once` to ensure that we only start reconciler loop once.
This commit causes the docker driver to return undetected before it
first establishes a connection to the docker daemon.
This fixes a bug where hosts without docker installed would return as
unhealthy, rather than undetected.
- docker fingerprint issues a docker api system info call to get the
list of supported OCI runtimes.
- OCI runtimes are reported as comma separated list of names
- docker driver is aware of GPU runtime presence
- docker driver throws an error when user tries to run container with
GPU, when GPU runtime is not present
- docker GPU runtime name is configurable