Nomad communicates with CSI plugin tasks via gRPC. The plugin
supervisor hook uses this to ping the plugin for health checks which
it emits as task events. After the first successful health check the
plugin supervisor registers the plugin in the client's dynamic plugin
registry, which in turn creates a CSI plugin manager instance that has
its own gRPC client for fingerprinting the plugin and sending mount
requests.
If the plugin manager instance fails to connect to the plugin on its
first attempt, it exits. The plugin supervisor hook is unaware that
connection failed so long as its own pings continue to work. A
transient failure during plugin startup may mislead the plugin
supervisor hook into thinking the plugin is up (so there's no need to
restart the allocation) but no fingerprinter is started.
* Refactors the gRPC client to connect on first use. This provides the
plugin manager instance the ability to retry the gRPC client
connection until success.
* Add a 30s timeout to the plugin supervisor so that we don't poll
forever waiting for a plugin that will never come back up.
Minor improvements:
* The plugin supervisor hook creates a new gRPC client for every probe
and then throws it away. Instead, reuse the client as we do for the
plugin manager.
* The gRPC client constructor has a 1 second timeout. Clarify that this
timeout applies to the connection and not the rest of the client
lifetime.
These API endpoints now return results in chronological order. They
can return results in reverse chronological order by setting the
query parameter ascending=true.
- Eval.List
- Deployment.List
The `volume detach`, `volume deregister`, and `volume status` commands
accept a prefix argument for the volume ID. Update the behavior on
exact matches so that if there is more than one volume that matches
the prefix, we should only return an error if one of the volume IDs is
not an exact match. Otherwise we won't be able to use these commands
at all on those volumes. This also makes the behavior of these commands
consistent with `job stop`.
The CSI specification says:
> The CO SHALL provide the listen-address for the Plugin by way of the
`CSI_ENDPOINT` environment variable.
Note that plugins without filesystem isolation won't have the plugin
dir bind-mounted to their alloc dir, but we can provide a path to the
socket anyways.
Refactor to use opts struct for plugin supervisor hook config.
The parameter list for configuring the plugin supervisor hook has
grown enough where is makes sense to use an options struct similiar to
many of the other task runner hooks (ex. template).
The spread iterator can panic when processing an evaluation, resulting
in an unrecoverable state in the cluster. Whenever a panicked server
restarts and quorum is restored, the next server to dequeue the
evaluation will panic.
To trigger this state:
* The job must have `max_parallel = 0` and a `canary >= 1`.
* The job must not have a `spread` block.
* The job must have a previous version.
* The previous version must have a `spread` block and at least one
failed allocation.
In this scenario, the desired changes include `(place 1+) (stop
1+), (ignore n) (canary 1)`. Before the scheduler can place the canary
allocation, it tries to find out which allocations can be
stopped. This passes back through the stack so that we can determine
previous-node penalties, etc. We call `SetJob` on the stack with the
previous version of the job, which will include assessing the `spread`
block (even though the results are unused). The task group spread info
state from that pass through the spread iterator is not reset when we
call `SetJob` again. When the new job version iterates over the
`groupPropertySets`, it will get an empty `spreadAttributeMap`,
resulting in an unexpected nil pointer dereference.
This changeset resets the spread iterator internal state when setting
the job, logging with a bypass around the bug in case we hit similar
cases, and a test that panics the scheduler without the patch.
Add new namespace ACL requirement for the /v1/jobs/parse endpoint and
return early if HCLv2 parsing fails.
The endpoint now requires the new `parse-job` ACL capability or
`submit-job`.
go-getter creates a circular dependency between a Client and Getter,
which means each is inherently thread-unsafe if you try to re-use
on or the other.
This PR fixes Nomad to no longer make use of the default Getter objects
provided by the go-getter package. Nomad must create a new Client object
on every artifact download, as the Client object controls the Src and Dst
among other things. When Caling Client.Get, the Getter modifies its own
Client reference, creating the circular reference and race condition.
We can still achieve most of the desired connection caching behavior by
re-using a shared HTTP client with transport pooling enabled.
Processing an evaluation is nearly a pure function over the state
snapshot, but we randomly shuffle the nodes. This means that
developers can't take a given state snapshot and pass an evaluation
through it and be guaranteed the same plan results.
But the evaluation ID is already random, so if we use this as the seed
for shuffling the nodes we can greatly reduce the sources of
non-determinism. Unfortunately golang map iteration uses a global
source of randomness and not a goroutine-local one, but arguably
if the scheduler behavior is impacted by this, that's a bug in the
iteration.
If processing a specific evaluation causes the scheduler (and
therefore the entire server) to panic, that evaluation will never
get a chance to be nack'd and cleared from the state store. It will
get dequeued by another scheduler, causing that server to panic, and
so forth until all servers are in a panic loop. This prevents the
operator from intervening to remove the evaluation or update the
state.
Recover the goroutine from the top-level `Process` methods for each
scheduler so that this condition can be detected without panicking the
server process. This will lead to a loop of recovering the scheduler
goroutine until the eval can be removed or nack'd, but that's much
better than taking a downtime.
Update the logic in the Nomad client's alloc health tracker which
erroneously marks existing healthy allocations with dead poststart ephemeral
tasks as unhealthy even if they were already successful during a previous
deployment.
This PR replaces use of time.After with a safe helper function
that creates a time.Timer to use instead. The new function returns
both a time.Timer and a Stop function that the caller must handle.
Unlike time.NewTimer, the helper function does not panic if the duration
set is <= 0.
* csi: resolve invalid claim states on read
It's currently possible for CSI volumes to be claimed by allocations
that no longer exist. This changeset asserts a reasonable state at
the state store level by registering these nil allocations as "past
claims" on any read. This will cause any pass through the periodic GC
or volumewatcher to trigger the unpublishing workflow for those claims.
* csi: make feasibility check errors more understandable
When the feasibility checker finds we have no free write claims, it
checks to see if any of those claims are for the job we're currently
scheduling (so that earlier versions of a job can't block claims for
new versions) and reports a conflict if the volume can't be scheduled
so that the user can fix their claims. But when the checker hits a
claim that has a GCd allocation, the state is recoverable by the
server once claim reaping completes and no user intervention is
required; the blocked eval should complete. Differentiate the
scheduler error produced by these two conditions.
The volumewatcher that runs on the leader needs to make RPC calls
rather than writing to raft (as we do in the deploymentwatcher)
because the unpublish workflow needs to make RPC calls to the
clients. This requires that the volumewatcher has access to the
leader's ACL token.
But when leadership transitions, the new leader creates a new leader
ACL token. This ACL token needs to be passed into the volumewatcher
when we enable it, otherwise the volumewatcher can find itself with a
stale token.
* csi: resolve invalid claim states on read
It's currently possible for CSI volumes to be claimed by allocations
that no longer exist. This changeset asserts a reasonable state at
the state store level by registering these nil allocations as "past
claims" on any read. This will cause any pass through the periodic GC
or volumewatcher to trigger the unpublishing workflow for those claims.
* csi: make feasibility check errors more understandable
When the feasibility checker finds we have no free write claims, it
checks to see if any of those claims are for the job we're currently
scheduling (so that earlier versions of a job can't block claims for
new versions) and reports a conflict if the volume can't be scheduled
so that the user can fix their claims. But when the checker hits a
claim that has a GCd allocation, the state is recoverable by the
server once claim reaping completes and no user intervention is
required; the blocked eval should complete. Differentiate the
scheduler error produced by these two conditions.
The HCL1 parser did not respect connect.sidecar_task.resources if the
connect.sidecar_service block was not set (an optimiztion that no longer
makes sense with connect gateways).
Fixes#10899
This PR sets the minimum Go version for the `api` submodule to Go 1.17.
It also upgrades
- gorilla/websocket 1.4.1 -> 1.4.2
- mitchelh/mapstructure 1.4.2 -> 1.4.3
- stretchr/testify 1.5.1 -> 1.7.0
Closes#11518#11602#11528
The volumewatcher that runs on the leader needs to make RPC calls
rather than writing to raft (as we do in the deploymentwatcher)
because the unpublish workflow needs to make RPC calls to the
clients. This requires that the volumewatcher has access to the
leader's ACL token.
But when leadership transitions, the new leader creates a new leader
ACL token. This ACL token needs to be passed into the volumewatcher
when we enable it, otherwise the volumewatcher can find itself with a
stale token.
This PR upgrades our CI images and fixes some affected tests.
- upgrade go-machine-image to premade latest ubuntu LTS (ubuntu-2004:202111-02)
- eliminate go-machine-recent-image (no longer necessary)
- manage GOPATH in GNUMakefile (see https://discuss.circleci.com/t/gopath-is-set-to-multiple-directories/7174)
- fix tcp dial error check (message seems to be OS specific)
- spot check values measured instead of specifically 'RSS' (rss no longer reported in cgroups v2)
- use safe MkdirTemp for generating tmpfiles
NOT applied: (too flakey)
- eliminate setting GOMAXPROCS=1 (build tools were also affected by this setting)
- upgrade resource type for all imanges to large (2C -> 4C)
github.com/kr/pty was moved to github.com/creack/pty
Swap this dependency so we can upgrade to the latest version
and no longer need a replace directive.