* initial setup for terrform to install podman task driver
podman
* Update e2e provisioning to support root podman
Excludes setup for rootless podman. updates source ami to ubuntu 18.04
Installs podman and configures podman varlink
base podman test
ensure client status running
revert terraform directory changes
* back out random go-discover go mod change
* include podman varlink docs
* address comments
* client/heartbeatstop: reversed time condition for startup grace
* scheduler/generic_sched: use `delayInstead` to avoid a loop
Without protecting the loop that creates followUpEvals, a delayed eval
is allowed to create an immediate subsequent delayed eval. For both
`stop_after_client_disconnect` and the `reschedule` block, a delayed
eval should always produce some immediate result (running or blocked)
and then only after the outcome of that eval produce a second delayed
eval.
* scheduler/reconcile: lostLater are different than delayedReschedules
Just slightly. `lostLater` allocs should be used to create batched
evaluations, but `handleDelayedReschedules` assumes that the
allocations are in the untainted set. When it creates the in-place
updates to those allocations at the end, it causes the allocation to
be treated as running over in the planner, which causes the initial
`stop_after_client_disconnect` evaluation to be retried by the worker.
This PR switches the Nomad repository from using govendor to Go modules
for managing dependencies. Aspects of the Nomad workflow remain pretty
much the same. The usual Makefile targets should continue to work as
they always did. The API submodule simply defers to the parent Nomad
version on the repository, keeping the semantics of API versioning that
currently exists.
This is mostly a direct application of the ember-angle-brackets-codemod.
I manually restored newlines in multi-line component invocations, usually
preserving file line length except for now-non-positional link-to @route.
I needed to rename task to taskState in some cases to avoid Ember
Concurrency naming conflicts.
Fixes#2093
Enable configuring `memory_hard_limit` in the docker config stanza for tasks.
If set, this field will be passed to the container runtime as `--memory`, and
the `memory` configuration from the task resource configuration will be passed
as `--memory_reservation`, creating hard and soft memory limits for tasks using
the docker task driver.
This partially addresses #7799.
Task state filesystems are contained within a subdirectory of their
parent allocation, so almost everything that existed for browsing task
state filesystems was applicable to browsing allocations, just without
the task name prepended to the path. I aimed to push this differential
handling into as few contained places as possible.
The tests also have significant overlap, so this includes an extracted
behavior to run the same tests for allocations and task states.