When shutting down an allocation that ends up needing to be
force-killed, we're getting a spurious "OOM Killed (137)" message on
the task termination event. We introduced this as part of cgroups v2
support because the Docker daemon isn't detecting the container status
correctly. Although exit code 137 is the exit code we get for
OOM-killed processes, that's because OOM kill is a `SIGKILL`. So any
sigkilled process will get that exit code.
This PR introduces support for using Nomad on systems with cgroups v2 [1]
enabled as the cgroups controller mounted on /sys/fs/cgroups. Newer Linux
distros like Ubuntu 21.10 are shipping with cgroups v2 only, causing problems
for Nomad users.
Nomad mostly "just works" with cgroups v2 due to the indirection via libcontainer,
but not so for managing cpuset cgroups. Before, Nomad has been making use of
a feature in v1 where a PID could be a member of more than one cgroup. In v2
this is no longer possible, and so the logic around computing cpuset values
must be modified. When Nomad detects v2, it manages cpuset values in-process,
rather than making use of cgroup heirarchy inheritence via shared/reserved
parents.
Nomad will only activate the v2 logic when it detects cgroups2 is mounted at
/sys/fs/cgroups. This means on systems running in hybrid mode with cgroups2
mounted at /sys/fs/cgroups/unified (as is typical) Nomad will continue to
use the v1 logic, and should operate as before. Systems that do not support
cgroups v2 are also not affected.
When v2 is activated, Nomad will create a parent called nomad.slice (unless
otherwise configured in Client conifg), and create cgroups for tasks using
naming convention <allocID>-<task>.scope. These follow the naming convention
set by systemd and also used by Docker when cgroups v2 is detected.
Client nodes now export a new fingerprint attribute, unique.cgroups.version
which will be set to 'v1' or 'v2' to indicate the cgroups regime in use by
Nomad.
The new cpuset management strategy fixes#11705, where docker tasks that
spawned processes on startup would "leak". In cgroups v2, the PIDs are
started in the cgroup they will always live in, and thus the cause of
the leak is eliminated.
[1] https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.htmlCloses#11289Fixes#11705#11773#11933
This fixes a bug where Nomad overrides a Dockerfile's STOPSIGNAL with
the default kill_signal (SIGTERM).
This adds a check for kill_signal. If it's not set, it calls
StopContainer instead of Signal, which uses STOPSIGNAL if it's
specified. If both kill_signal and STOPSIGNAL are set, Nomad tries to
stop the container with kill_signal first, before then calling
StopContainer.
Fixes#9989
When the Docker driver kills as task, we send a request via the Docker API for
dockerd to fire the signal. We send that signal and then block for the
`kill_timeout` waiting for the container to exit. But if the Docker API
blocks, we will block indefinitely because we haven't configured the API call
with the same timeout.
This changeset is a minimal intervention to add the timeout to the Docker API
call _only_ when we have the `kill_timeout` set. Future work should examine
whether we should be threading contexts through other `go-dockerclient` API
calls.
Operators commonly have docker logs aggregated using various tools and
don't need nomad to manage their docker logs. Worse, Nomad uses a
somewhat heavy docker api call to collect them and it seems to cause
problems when a client runs hundreds of log collections.
Here we add a knob to disable log aggregation completely for nomad.
When log collection is disabled, we avoid running logmon and
docker_logger for the docker tasks in this implementation.
The downside here is once disabled, `nomad logs ...` commands and API
no longer return logs and operators must corrolate alloc-ids with their
aggregated log info.
This is meant as a stop gap measure. Ideally, we'd follow up with at
least two changes:
First, we should optimize behavior when we can such that operators don't
need to disable docker log collection. Potentially by reverting to
using pre-0.9 syslog aggregation in linux environments, though with
different trade-offs.
Second, when/if logs are disabled, nomad logs endpoints should lookup
docker logs api on demand. This ensures that the cost of log collection
is paid sparingly.
Previously, we did not attempt to stop Docker Logger processes until
DestroyTask, which means that under many circumstances, we will never
successfully close the plugin client.
This commit terminates the plugin process when `run` terminates, or when
`DestroyTask` is called.
Steps to repro:
```
$ nomad agent -dev
$ nomad init
$ nomad run example.nomad
$ nomad stop example
$ ps aux | grep nomad # See docker logger process running
$ signal the dev agent
$ ps aux | grep nomad # See docker logger process running
```
plugins/driver: update driver interface to support streaming stats
client/tr: use streaming stats api
TODO:
* how to handle errors and closed channel during stats streaming
* prevent tight loop if Stats(ctx) returns an error
drivers: update drivers TaskStats RPC to handle streaming results
executor: better error handling in stats rpc
docker: better control and error handling of stats rpc
driver: allow stats to return a recoverable error
Re-export the ResourceUsage structs in drivers package to avoid drivers
directly depending on the internal client/structs package directly.
I attempted moving the structs to drivers, but that caused some import
cycles that was a bit hard to disentagle. Alternatively, I added an
alias here that's sufficient for our purposes of avoiding external
drivers depend on internal packages, while allowing us to restructure
packages in future without breaking source compatibility.